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Abstract
In 2020, Behr [1] introduced the problem of edge coloring of signed graphs and proved that every signed graph (G,
σ) can be colored using ∆(G) or ∆(G)+ 1 colors, where ∆(G) denotes the maximum degree of G. Three years later,
Janczewski et al. [2] introduced a notion of signed class 1, such that a graph G is of signed class 1 if and only if every
signed graph (G, σ) can be colored using ∆(G) colors.

It is a well-known fact [3] that almost all graphs are of class 1. In this paper, we conjecture that a similar fact is
true for signed class 1, that almost all graphs are of signed class 1. To support the hypothesis we implemented an
application that colored all the signed graphs with at most 8 vertices. We describe an algorithm behind the application
and discuss the results of conducted experiments.

Keywords:
signed graphs, edge coloring of signed graphs

1Corresponding author. E-mail: skalar@eti.pg.gda.pl
2E-mail: krzysztof.szymon.turowski@gmail.com
3E-mail: bart.wroblew@gmail.com

TASK Quarterly 27 (2) 2023



1. Introduction
This paper exclusively focuses on simple, finite and

undirected graphs. Graph G is characterized by a set of
vertices V (G) and a set of edges E(G), with their respec-
tive cardinalities denoted by n(G) and m(G). The degree
of any given vertex v within a graph G is represented by
degG(v), while ∆(G) denotes the highest degree among
all the vertices of G. An incidence is a pair (v, e), where
v denotes a vertex, e denotes an edge and v is one of the
endpoints of e. An incidence (v, e) is concisely denoted
as v : e and the set of all incidences of a graph is denoted
by I(G). All remaining definitions and symbols align with
those established by Diestel [4].

Signed graphs initially came into existence in the
1950s, introduced by Harary [5] as a generalized form of
simple graphs. The primary goal was to more effectively
represent social interactions encompassing sentiments of
dislike, indifference and liking. A signed graph is a pair
(G, σ), in which G denotes a graph and σ : E(G)→{±1}
denotes a function. The terms G and σ represent the un-
derlying graph and the signature of (G, σ), respectively.
An edge e ∈ E(G) is called positive (or negative) if and
only if σ(e) = 1 (respectively, σ(e) =−1). A cycle within
(G, σ) is called positive (or negative) when the product
of its edge signs is positive (or negative, respectively).
A signed graph featuring exclusively positive cycles
is called balanced, while in all other cases, it is called
unbalanced.

In a signed graph (G, σ), switching refers to an oper-
ation performed on a subset V ′ ⊆V (G), leading to a new
signed graph (G, σ ′), where σ ′ : E(G)→{±1} is defined
by:

σ
′(uv) =

{
−σ(uv), if V ′ includes exactly one of u, v,
σ(uv), in all other cases.

As an illustration, when a single vertex is switched—in
other words, when a subset of vertices with a cardinality
one undergoes switching—the signs of its incident edges
are negated. If a signed graph (G, σ ′) can be derived from
(G, σ) through the switching of certain vertices, we state
that (G, σ ′) and (G, σ) are switching equivalent. It is well-
known that switching equivalence is an equivalence rela-
tion within the collection of all signed graphs having a
fixed underlying graph.

Theorem 1 (Naserasr et al. [6]). Let G be a simple graph
and c be the number of its connected components. The num-
ber of signatures σ such that (G, σ) are not pairwise switch-
ing equivalent is 2m(G)−n(G)+c.

In this paper, we examine the problem of edge
coloring of signed graphs and make a conjecture about
the number of colors required to color almost all signed

graphs. We also present the results of running an
exponential coloring algorithm on small graphs. In
Section 2 we define a problem of edge coloring of signed
graphs and present the main conjecture of the paper. In
Section 3 we describe an application and the algorithmwe
implemented in order to test the conjecture. In Section 4
we present results obtained from running the algorithm
for small signed graphs.

2. Edge coloring of signed graphs
In the year 2020, Behr [1] proposed the concept of

edge coloring in signed graphs as a generalization of stan-
dard graph edge coloring. Suppose n is a positive integer,
and

Mn =

{
{0, ±1, . . . , ± k}, if n = 2k+1,
{±1, . . . , ± k}, if n = 2k.

An n-edge-coloring of a signed graph (G, σ) is a function
c : I(G)→ Mn which satisfies c(u : uv) =−σ(uv)c(v : uv)
for every edge uv ∈ E(G) and c(u : e1) ̸= c(u : e2) for all
distinct edges e1 ̸= e2 such that u : e1, u : e2 ∈ I(G). By
χ ′(G, σ) we denote the chromatic index of a signed graph
(G, σ), which is the smallest n allowing (G, σ) to have
an n-edge-coloring. Since the problem of edge coloring of
signed graphs is a generalization of the standard edge col-
oring problems, all the applications of the standard prob-
lem transfer to its signed version.

Behr [1] proved that a signed path can be colored us-
ing only two colors, and a signed cycle can similarly be
colored with 2 colors if and only if it’s balanced. The main
result of Behr’s article [1] is the generalized Vizing’s the-
orem, also called the Behr’s theorem.

Theorem 2 (Behr [1]). ∆(G) ≤ χ ′(G, σ) ≤ ∆(G)+ 1 for
all signed graphs (G, σ).

Behr [7] defined the problem of edge coloring in such
away that it works well with the concept of vertex switch-
ing. Behr proved that all the switching equivalent signed
graphs share the same value of χ ′. It follows that in order
to get to know χ ′ of all the switching equivalent signed
graphs, it is enough to color only one of these graphs.

A graph G is of class 1 if χ ′(G) = ∆(G) and it is of
class 2 if χ ′(G) = ∆(G) + 1. Janczewski et al. [2] intro-
duced two new classes of graphs, signed class 1 (denoted
by 1±) and signed class 2 (denoted by 2±). A graph G is
of class 1± if χ ′(G, σ) = ∆(G) for any signature σ . Sim-
ilarly, a graph G is of class 2± if χ ′(G, σ) = ∆(G)+1 for
any signature σ . In other words, a graph is of class 1±

(respectively, 2±) if all the signed graphs having G as an
underlying graph have the chromatic index of ∆(G) (re-
spectively, ∆(G)+1). Clearly, there are graphs of neither
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signed class 1 nor signed class 2. An obvious example is
a cycle on n vertices—if it is balanced, it can be colored
using ∆ colors, else it requires ∆+1 colors.

Janczewski et al. [2] proved that some of the well-
known classes of graphs belong to signed class 1.

Theorem 3 (Janczewski et al. [2]). All trees, wheels, neck-
laces, cacti (other than cycles) and complete bipartite graphs
(with parts of different sizes) belong to signed class 1.

Behr [7] also defined class ratio C (G) of graph G as
the number of possible signatures σ : E(G)→{±1} such
that the signed graph (G, σ) is ∆(G)-colorable, divided
by the number of all possible signatures defined on E(G),
i.e. 2m(G). The class ratio is a rational number satisfying
0 ≤ C (G) ≤ 1 and, by previous definitions, G is of class
1± (respectively, 2±) if and only ifC (G) = 1 (respectively,
C (G) = 0).

Theorem4 (Erdős et al. [3]). Almost all graphs are of class
one.

We conjecture that a result similar to Theorem 4
holds for edge coloring signed graphs and class 1±.

Conjecture 5. Almost all graphs4 are of signed class one.

3. Coloring algorithm
To test Conjecture 5 we implemented an application

capable of finding the chromatic index of a given signed
graph. The application uses an exponential backtracking
algorithm that exhaustingly tries to create a proper edge
coloring. We used it to color all non-switching-equivalent
non-isomorphic connected signed graphs on up to eight
vertices. We focused only on connected graphs since the
chromatic index of a disconnected graph is always the
maximum of the chromatic indices of its connected com-
ponents.

In order to color all those graphs, we needed a prac-
tical way to generate them. We used the “geng” tool, part
of the “nauty” [8] package, to generate all non-isomorphic
non-empty connected graphs with up to eight vertices.
These graphs were generated once and preserved on the
drive in the g6 format—a standard format for representing
graphs as strings. Our application was capable of reading
such a file and constructing a graph based on its corre-
sponding g6 string. For computation purposes, we rep-
resented a graph by using a combination of an adjacency
matrix and an adjacency list. This approach combines the
advantages of both solutions—it enables us to verify the
existence of a given edge in O(1) time and enumerate all

4Almost all graphs means that the proportion of graphs with n ver-
tices having a property tends to 1 as n tends to infinity.

the neighbours of a given vertex in O(∆) time. While this
method slows the graph creation process, the graph is cre-
ated once and remains unchanged during the exponential
coloring algorithm, so the creation time is negligible. We
store signs of edges within the adjacency matrix, which
also allows us to check the sign of a given edge in O(1)
time.

Clearly, graphs created from g6 strings are not
signed graphs, so for each graph, we needed a way to
generate signed graphs having this graph as an under-
lying graph. Since all the switching equivalent signed
graphs possess the same χ ′, it was sufficient to only
generate all non-switching-equivalent signed graphs
having a given graph as an underlying graph. A simple
algorithm for generating all non-switching-equivalent
graphs follows from the proof of Theorem 1. For a
given graph G, it finds an arbitrary spanning tree T on
this graph. To produce all non-switching-equivalent
signed graphs on graph G, it assigns a positive sign to
each edge from the set E(T ) and considers all possible
assignment of signs to the remaining edges of graph
G. Since m(T ) = n(G) − 1, the algorithm generates
2m(G)−m(T ) = 2m(G)−n(G)+1 non-switching-equivalent
signed graphs—all possible non-switching-equivalent
signed graphs with a shared underlying graph.

For every signed graph, our program attempted to
color it using ∆ colors. If successful, this indicated that
the graph is ∆-edge-colorable. Otherwise, it is not and
requires ∆+ 1 colors to be colored properly. The proce-
dure for coloring a single signed graph using ∆ colors is a
simple exponential backtracking algorithm that examines
all possible coloring of incidences of the input graph. Ini-
tially, it selects a single incidence for every edge since col-
oring one of the edge’s incidences dictates the color that
must be used for the other incidence. Following this, it
orders all the selected incidences. Then, it considers two
possible colorings of the first incidence—either using color
0 or 1. It does not have to check all the possible ∆ colors.
This is because if there is a ∆-coloring that assigns a color
c /∈ {0, 1} to that incidence, it is possible to create another
∆-coloring of that graph by swapping colors ±c and ±1
in such a way that the first incidence gets color 1. When
coloring the ith incidence (i > 1), the algorithm branches
into∆ cases, assigning all possible colors to that incidence.
If a given color cannot be used to color the incidence (due
to the presence of another incidence already utilizing that
color and both incidences sharing a common vertex), the
entire branch is discarded. If the algorithm successfully
colors all the incidences without causing any conflicts, the
input graph can be colored using ∆ colors. If no branches
are left and a full coloring has not been produced, a ∆-
coloring of an input graph does not exist.

It would be possible to optimize the algorithm even
further. One could safely remove all the leaves from the
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input graph as long as that does not change the maximum
degree of the graph. It surely does not change the result
since all the removed leaves in such a case could be easily
colored using available colors. Another possible optimiza-
tion would be checking if an input graph is of any of the
classes listed in Theorem 3. If it was, it would be clear that
it can be colored using ∆ colors.

Theorem 6 (Behr [7]). Let (G, σ) be a signed graph with
an even value of ∆(G). Let M(G) be a subgraph induced by
all vertices of maximum degree. If M(G) is an independent
set, then G can be colored using ∆(G) colors.

Another optimization follows from the above Theo-
rem 6. One could check if an input graph meets all the
conditions—it has an even ∆ and the subgraph induced by
all its vertices of maximum degree is an independent set,
then it is clear that it can be colored using ∆ colors.

We did not implement such optimizations since the
number of graphs we considered was low enough that ad-
ditional optimizations were not needed. Since the expo-
nential nature of the algorithm they also probably would
not allow us to color all signed graphs with 9 vertices.

4. Results
There are exactly 12112 non-empty non-isomorphic

connected graphs with up to 8 vertices and more than
19 million non-empty non-isomorphic non-switching-
equivalent connected signed graphs with up to 8 vertices.
We colored all these signed graphs using the algorithm
described in Section 3. For every graph, we also calculated
its class ratio to find out how common graphs of signed
classes 1 and 2 are.

We did not consider larger graphs since there are
more than 4 billion non-empty non-isomorphic non-
switching-equivalent connected signed graphs with 9
vertices and more than 3 trillion of such graphs with 10
vertices. We stopped at graphs with 8 vertices since they
represent a meaningful part of small graphs and can all
be colored in a reasonable amount of time.

Table 1 presents the numbers of n-vertex non-empty
non-isomorphic connected graphs that belong to signed
class 1 or signed class 2. The results show that there are
no graphs with 8 or less vertices that belong to signed
class 2. Clearly, signed class 2 is not empty—Janczewski
et al. [2] proved that there exists a signed class 2 graph for
every odd ∆ value. Results presented in Table 1 support
Conjecture 5. They show that more than 90% of all graphs
with 6, 7 and 8 vertices belong to signed class 1. More
than 99% of all graphs with 8 vertices belong to that class.
We expect that the trend continues and almost all larger
graphs are of class 1±.

Proof of Theorem 4 follows directly from the fact

proved by Vizing [9] that every graph of class 2 has at least
3 vertices of maximum degree. We analyzed the structure
of all the 119 graphs with at most 8 vertices that are out-
side signed class 1 and observed that all of them have at
least 3 such vertices. We propose the following conjec-
ture:

Conjecture 7. Every graph outside signed class 1 has at
least 3 vertices of maximum degree.

One could think that it follows directly from the Viz-
ing results but it does not. Indeed, it is true that if graph
G is of class 2 it cannot be of signed class 1, since a signed
graphwithG as an underlying graph and all the signs neg-
ative requires ∆(G)+ 1 colors. But there are also graphs
outside signed class 1 that are not of class 2 (meaning they
are of class 1). An obvious example is an even cycle that
is of class 1 and is not of signed class 1. So potentially
there could be graphs outside signed class 1 that do have
no more than 2 vertices of maximum degree but we think
there are no such graphs.

We observe that if Conjecture 7 is true, then Conjec-
ture 5 is also true. It follows directly from the fact that
almost all graphs have a unique vertex of maximum de-
gree [3].

Table 2 presents a distribution of all signed graphs
with n vertices into graphs with χ ′ = ∆ and χ ′ = ∆+ 1.
Again, for all signed graphs with 6, 7 and 8 vertices, over
90% of them can be colored using ∆ colors. More than
99% of all signed graphs with 8 vertices are ∆-colorable.

We have also analyzed some classes of graphs for
which the problem of edge coloring of signed graphs has
not yet been solved. Table 3 presents calculated class ra-
tio of complete graphs. Based on these results we propose
another conjecture:

Conjecture 8. All complete graphs K2n are of class 1±.

Based on Table 2, one could observe that signed
graphs with an even number of vertices can be colored
using ∆ colors more often than signed graphs with an odd
number of vertices. For example, from all signed graphs
with 6 and 7 vertices, as many as 97.66% and 99.39% of
them, respectively, can be colored using ∆ colors but only
91.23% of all signed graphs with 7 vertices can be colored
using ∆ colors. It seems to be true and is mostly caused
by complete graphs. We observe that complete graphs
Kn are the graphs with the most number of switching
equivalence classes among all n vertex graphs and it
seems that complete signed graphs with an odd number
of vertices do not belong to signed class 1, and their
class ratio is not larger than 0.5. It follows that most of
the n-vertex signed graphs that require ∆+ 1 colors are
indeed complete graphs. We can observe that there are
16901 graphs with 7 vertices that require ∆+1 colors to
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Table 1: The numbers of n-vertex non-empty non-isomorphic connected graphs of signed classes 1 and 2.

n all graphs graphs in 1± % graphs in 2± % graphs outside of 1± and 2± %
2 1 1 100 0 0 0 0
3 2 1 50 0 0 1 50
4 6 5 83.33 0 0 1 16.67
5 21 17 80.95 0 0 4 19.05
6 112 107 95.54 0 0 5 4.46
7 853 821 96.25 0 0 32 3.75
8 11117 11041 99.32 0 0 76 0.68

Table 2: The numbers of n-vertex non-empty non-isomorphic non-switching-equivalent connected signed graphs requiring either ∆ or ∆+1
colors.

n number of graphs number of graphs with χ ′ = ∆ % number of graphs with χ ′ = ∆+1 %
2 1 1 100 0 0
3 3 2 66.67 1 33.33
4 18 17 94.44 1 5.56
5 193 156 80.83 37 19.17
6 4316 4215 97.66 101 2.34
7 192817 175916 91.23 16901 8.77
8 19402921 19285367 99.39 117554 0.61

be properly colored and as many as 16405 of them are
complete graphs.

We present all graphs with up to 8 vertices that are
not of signed class 1 in Appendix A.

5. Conclusions
In the paper, we conjectured that almost all graphs

are of signed class 1. We implemented an application that
uses an exponential algorithm for coloring signed graphs.
We colored a lot of small graphs and the results we re-
ceived support the hypothesis—it seems like indeed al-
most all graphs are of signed class 1. We also noticed that
graphs of signed class 2 are extremely rare—there is no
such graph within all the graphs with up to eight vertices.
We observed that all graphs outside signed class 1 have at
least 3 vertices of maximum degree, and it is well-known
that almost all graphs have a unique vertex of maximum
degree. All these results suggest that Conjecture 5 is true.

We will continue computer experiments to verify the
hypothesis for larger graphs and examine the problem for
more classes of graphs.
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A. Graphs outside signed class 1
Using the application described in Section 3we found

all graphs with up to 8 vertices that are not of signed class
1. There is no such graph with 2 vertices, since the only
connected graph with 2 vertices is the path P2. Clearly, all
signed graphs with underlying graph P2 can be colored
using only color 0 and ∆(P2) = 1. Below we present all
the graphs with at least 3 and at most 8 vertices which are
not of signed class 1.

For graphs with 3 and 4 vertices only cycles C3 and
C4, respectively, are not of signed class 1.

There are 4 graphs with 5 vertices that are not of
signed class 1. They are presented in Figure 1.

There are 5 graphs with 6 vertices that are not of
signed class 1. They are presented in Figure 2.

There are 32 graphs with 7 vertices that are not of
signed class 1. We present some of them in Figure 3.

There are 76 graphs with 8 vertices that are not of
signed class 1. We present some of them in Figure 4.
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Table 3: The numbers of non-empty non-isomorphic non-switching-equivalent signed graphs having a given Kn as an underlying graph
requiring either ∆ or ∆+1 colors.

underlying graph signed graphs with χ ′ = ∆ signed graphs with χ ′ = ∆+1 class ratio
K2 1 0 1
K3 1 1 1/2

K4 8 0 1
K5 31 33 31/64

K6 1024 0 1
K7 16363 16405 16363/32768

K8 2097152 0 1

Table 4: All graphs with 3 vertices which are not of signed class 1.

g6 string of G n(G) m(G) no. of signed graphs with χ ′ = ∆ no. of signed graphs with χ ′ = ∆+1 class ratio
Bw 3 3 1 1 1/2

Table 5: All graphs with 4 vertices which are not of signed class 1.

g6 string of G n(G) m(G) no. of signed graphs with χ ′ = ∆ no. of signed graphs with χ ′ = ∆+1 class ratio
C] 4 4 1 1 1/2

Table 6: All graphs with 5 vertices which are not of signed class 1.

g6 string of G n(G) m(G) no. of signed graphs with χ ′ = ∆ no. of signed graphs with χ ′ = ∆+1 class ratio
DUW 5 5 1 1 1/2

D]w 5 7 6 2 3/4

D^{ 5 9 31 1 31/32

D~{ 5 10 31 33 31/64

DUW D]w D^{ D~{

Figure 1: All four non-isomorphic connected graphs on 5 vertices that do not belong to signed class 1.

Table 7: All graphs with 6 vertices which are not of signed class 1.

g6 string of G n(G) m(G) no. of signed graphs with χ ′ = ∆ no. of signed graphs with χ ′ = ∆+1 class ratio
EEh_ 6 6 1 1 1/2

EEzO 6 8 6 2 3/4

ETno 6 10 31 1 31/32

E]zg 6 11 31 33 31/64

E]~o 6 12 64 64 1/2

EEh_ EEzO ETno E]zg E]~o

Figure 2: All five non-isomorphic connected graphs on 6 vertices that do not belong to signed class 1.
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Table 8: All graphs with 7 vertices which are not of signed class 1.

g6 string of G n(G) m(G) no. of signed graphs with χ ′ = ∆ no. of signed graphs with χ ′ = ∆+1 class ratio
FCp`_ 7 7 1 1 1/2

FCZbO 7 9 6 2 3/4

FCxv? 7 10 15 1 15/16

FCusw 7 11 31 1 31/32

FEhv? 7 10 13 3 13/16

FEhuO 7 10 12 4 3/4

FEzUg 7 12 31 33 31/64

FEzvO 7 13 127 1 127/128

FFzf_ 7 13 127 1 127/128

FFzeo 7 13 127 1 127/128

FFzvO 7 14 127 129 127/256

FFz~o 7 16 1023 1 1023/1024

FQjR_ 7 10 14 2 7/8

FQinO 7 11 31 1 31/32

FQytW 7 12 62 2 31/32

FQzvO 7 13 64 64 1/2

FQzuo 7 13 127 1 127/128

FUZv_ 7 13 64 64 1/2

FUxv_ 7 13 127 1 127/128

FUxvO 7 13 127 1 127/128

FUxuo 7 13 126 2 63/64

FUzro 7 14 127 129 127/256

FU~vo 7 16 1023 1 1023/1024

FU~vW 7 16 1023 1 1023/1024

FV~~w 7 19 8191 1 8191/8192

F]zno 7 16 1023 1 1023/1024

F]znW 7 16 1022 2 511/512

F]zlw 7 16 1023 1 1023/1024

F]~vo 7 17 2026 22 1013/1024

F]~~w 7 19 8191 1 8191/8192

F^~~w 7 20 16363 21 16363/16384

F~~~w 7 21 16363 16405 16363/32768

FCp`_ FCZbO FQjR_ FU~vo F~~~w

Figure 3: Some of non-isomorphic connected graphs on 7 vertices that do not belong to signed class one.

G?qa`_ G?ovEO G?oppg GCrJeW G]~v~w

Figure 4: Some of non-isomorphic connected graphs on 8 vertices that do not belong to signed class one.
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Table 9: All graphs with 8 vertices which are not of signed class 1.

g6 string of G n(G) m(G) no. of signed graphs with χ ′ = ∆ no. of signed graphs with χ ′ = ∆+1 class ratio
G?qa`_ 8 8 1 1 1/2

G?ovEO 8 10 6 2 3/4

G?oppg 8 10 6 2 3/4

G?rLeW 8 12 31 1 31/32

G?rNeW 8 13 31 33 31/64

G?qjf? 8 11 13 3 13/16

G?o~F? 8 11 15 1 15/16

G?zffO 8 14 127 1 127/128

G?zfeW 8 14 127 1 127/128

G?zTb_ 8 12 31 1 31/32

G?~vf_ 8 16 256 256 1/2

GCRcqo 8 11 12 4 3/4

GCQuck 8 12 31 1 31/32

GCQuQo 8 11 14 2 7/8

GCrRug 8 14 127 1 127/128

GCrRuW 8 14 126 2 63/64

GCpuuo 8 14 64 64 1/2

GCrJeW 8 13 62 2 31/32

GCXe`W 8 11 12 4 3/4

GCZfVG 8 14 127 1 127/128

GCZfUW 8 14 127 1 127/128

GCZTck 8 13 62 2 31/32

GCZUuo 8 14 127 1 127/128

GCZUug 8 14 64 64 1/2

GCZUuW 8 14 127 1 127/128

GCXnBW 8 13 31 33 31/64

GCXnbW 8 14 62 66 31/64

GCZvf_ 8 15 127 129 127/256

GCZnfO 8 15 127 129 127/256

GCdcuo 8 12 31 1 31/32

GCxvVG 8 15 127 129 127/256

GCzvbo 8 16 256 256 1/2
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Table 10: All graphs with 8 vertices which are not of signed class 1. (cont.)

g6 string of G n(G) m(G) no. of signed graphs with χ ′ = ∆ no. of signed graphs with χ ′ = ∆+1 class ratio
GCv^ew 8 17 1023 1 1023/1024

GCv^es 8 17 1023 1 1023/1024

GCv^e[ 8 17 1023 1 1023/1024

GCv^c{ 8 17 1023 1 1023/1024

GEr^es 8 17 1023 1 1023/1024

GEr^ek 8 17 1023 1 1023/1024

GEr^e[ 8 17 1023 1 1023/1024

GEr]vo 8 17 1023 1 1023/1024

GEr^vo 8 18 2046 2 1023/1024

GEr^uw 8 18 2026 22 1013/1024

GEjeqw 8 15 127 129 127/256

GEhuuW 8 15 127 129 127/256

GEhttW 8 15 126 130 63/128

GEzU~o 8 18 2046 2 1023/1024

GEv]~w 8 20 8191 1 8191/8192

GEv]|{ 8 20 8191 1 8191/8192

GEv~u{ 8 21 16382 2 8191/8192

GEnfbW 8 16 256 256 1/2

GEnbvG 8 16 256 256 1/2

GFzfvo 8 19 4092 4 1023/1024

GQhTVO 8 13 62 2 31/32

GQjRak 8 14 124 4 31/32

GQjVRW 8 15 127 129 127/256

GQjnVK 8 17 1023 1 1023/1024

GQjnT[ 8 17 1022 2 511/512

GQzTrg 8 16 256 256 1/2

GQyurg 8 16 256 256 1/2

GQzvVW 8 18 2046 2 1023/1024

GQzvVS 8 18 2046 2 1023/1024

GQzn^[ 8 20 8191 1 8191/8192

GUZvfg 8 18 2046 2 1023/1024

GUZvfK 8 18 2046 2 1023/1024

GUZvek 8 18 2046 2 1023/1024

GUZvvg 8 19 4092 4 1023/1024

GUxvvo 8 19 4092 4 1023/1024

GUz]}{ 8 21 16382 2 8191/8192

GTm~vw 8 21 16382 2 8191/8192

GTm~vs 8 21 16382 2 8191/8192

GTm|~w 8 21 16363 21 16363/16384

G]zn^w 8 22 32764 4 8191/8192

G]zn^[ 8 22 16363 16405 16363/32768

G]zn\{ 8 22 32764 4 8191/8192

G]~vvs 8 23 32764 32772 8191/16384

G]~v~w 8 24 65536 65536 1/2
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