
TASK Quarterly 26 (2) 2022

DISTRIBUTED ACCELERATED PROJECTION-BASED CONSENSUS 
DECOMPOSITION

Wiktor Maj
Centre of Informatics – Tricity Academic Supercomputer Network (CI TASK)
Gdansk University of Technology
wiktor.maj@pg.edu.pl

Abstract
With the development of machine learning and Big Data, the concepts of linear and non-linear optimization techniques are 
becoming increasingly valuable for many quantitative disciplines. Problems of that nature are typically solved using distinctive 
optimization algorithms, iterative methods, or heuristics. A new variant of the Accelerated Projection-Based Consensus (APC) 
iterative method is proposed, which is faster than its classical version while handling large sparse matrices in distributed set-
tings. The algorithm is proposed, and its description and implementation in a high-level programming language are presented. 
Convergence tests measuring acceleration factors based on real-world datasets are done, and their results are promising. The 
results of this research can be used as an alternative to solving numerical optimization problems.
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1. Introduction
Examining an overdetermined system of linear equations 

, typically for a sizeable sparse coefficient matrix 
 with its corresponding constant terms vector 

 where m > n, the goal is to find estimator ˆ  such 
that   . Setting up Ordinary Least Squares 

(OLS) [1] coefficient vector of the least-squares hyperplane 
expressed as , where ATA is a Gram matrix 
[2], and AT b is known as the moment matrix of regressand 
by regressors [3], is one of the most recognized, well-per-
formed technique to find unknown parameters. In a distributed 
environment, operating on compressed sparse matrices makes 
computation slow due to the inflexibility of arithmetic oper-
ations on them. On the other hand, decompressing comple-
mentary matrix A and finding its inverses requires extensive 
use of computational resources, which can unschedule task 
running or even crash workers. Numerous large-scale optimi-
zation problems are unfeasible to be trained on a single host. 
For instance, language models quickly scale up out of memory 
boundaries due to the number of hyperparameters involved 
in training. Hundreds of DGX A100 multi-GPU servers have 
been used to train a 530-billion parameter model on text data-
sets [4]. Despite the additional complexity layer and potential 
performance bottlenecks, distributing the workflow across 
multiple computing nodes provides robustness and scalability 
to make the models run.

Two main approaches are adapted in distributed machine 
learning workflows: model parallelism and data parallelism. 
Usually, both of them are present in modern high-level pro-
gramming frameworks. In the case of data parallelism, there 
is evidence supporting the efficacy of globally exemplary 
methods such as Distributed Gradient Descent (DGD) [5], 
Alternating Direction Method of Multipliers (ADMM) [6], 
and Accelerated Projection-Based Consensus (APC) [7] with 
a view of the growth in the popularity of Big Data. Moreo-
ver, the progression of the development of distributed algo-
rithms has led to the rise of ample open-source, high-level 
distributed computing frameworks such as Apache Spark [8] 
and Dask [9], which organizations are successfully using for 
commercial applications. The preceding considerations have 
strongly influenced contributions to infrastructural changes 
from bare-metal to more portable, virtualized, or containerized 
paradigms.

The main contribution is the decomposition of Accelerated 
Projection-Based Consensus [7] (See Acknowledgments) to 
avoid computationally expensive operations, particularly 
matrix inversions. The idea is to put the largest number of 
small-sized tasks into processing instead of fewer, larger indi-
visible tasks to make a more performant use of parallelism 
(Section 2). The full necessary implementation (Section 3) 
in the Python [10] programming language is provided. Con-
vergence behavior (Section 4) compared to classical APC is 
demonstrated, with speedup times to the referenced datasets. 
The manual example was conducted (Section 5), and the 
results of the experiments are interpreted (Section 6) with 
their explanation. The main focus was on linear and non-linear 
optimization problems. However, the underlying concepts are 
present in other research areas as well.

2. The Algorithm
For  subsets of equations, let us find  
such that  and  with its 
corresponding  constant terms vectors. For 
m = n, using the fact that the non-singular Ai square matrix 
is invertible (pseudoinverses in modern programming 
frameworks use singular value decomposition [11], which 
slightly enlarges computational times), each system of equa-
tions i consists of a single unique solution  hav-
ing  projection matrix onto the 
nullspace of Ai [7], where In is a  identity matrix. In 
a variety of applications, symmetric matrices (meaning that 

 appear intrinsically. In 
the case of Ai matrix asymmetricity, it can be replaced by 

 as a Toeplitz decomposition subproduct 
[12] assuming Ai of no loss of generality [13]. Therefore, the 
orthonormal basis for the  is what 
evinces that .

Each matrix Ai can be decomposed as Ai = QiRi using full 
QR factorization [14] where Qi is an orthogonal and Ri 
is a square upper triangular matrix, respectively. There-
fore, considering the sources of perturbation errors [15], 

.  Because 
Qi columns are orthogonal unit vectors, simplifying 

 thanks to the  property with the 
rule that the transpose of a product is the product of the trans-
pose in the reverse order,  eases the nota-
tion of  to . Equivalently, 
the inverse of a product is the product of the inverses in the 
reverse order, so assuming that , the 
simplified formula of the projection matrix onto the nullspace 
of .

Considering the  case, further decompositions may 
produce an excessive quantity of matrices, which is disadvan-
tageous in the distributed environment due to the substantial 
task overhead time compared to its computational work time. 
Therefore, setting  non-square 
full rank matrices , where m > l > n and I > J with 
doing full QR factorization on Aj, results in getting (l  l) 
unitary matrix multiplier where its last (l  (l – n)) partition 
is multiplied by 0. It is far more efficient to get the first n 
orthogonal columns using a reduced QR factorization form 
[16] instead.

(1)

 is the initial solution estimate vector 
of . Inverting the Rj matrix is still a costly operation. 
Although, using the fact that the upper triangular Rj matrix has 
one possible non-zero coefficient factor  on the n-th row 
and column, the n-th component of  can be quickly found 
using bj with the n-th vector of the  matrix denoted as 

.

(2)

Similarly, in each  matrix, entries  are directly referenced 
with rj vector spaces in a way that the multiplication factors 
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of the upper rows can be backwardly substituted [17] using 
previously calculated results , where 

c = n, n – 1, ..., 1 is a column number of Rj. Thus, there exists 
the ability for each p-th component of  vector to be cal-
culated recursively.

(3)

The computational complexity of inverting the Rj matrix using 
the Gauss–Jordan elimination algorithm [18] is . Even 
if optimized CW-like algorithms [19] are used alternatively, 
none of them would be as fast as backward substitution, which 
takes .

 is the semi-orthogonal matrix [20], where  is the 
orthogonal projection onto its column space, and the projec-
tion matrix onto the nullspace of Aj is remapped, implying 
isometry of Euclidean space.

(4)

The average of the initial results across the computing nodes 
is simply the arithmetic average of the J estimate results.

(5)

Having defined the  and  (0, 1) parameters, updating the 
estimates and averaging the solutions through the T number 
of epochs is done as defined in classical Accelerated Projec-
tion-Based Consensus [7].

(6)

(7)

It is essential to identify what can be parallelized at a given 
stage of execution to minimize waiting processing time. Com-
plete denotation is introduced in Algorithm 1.

Algorithm 1: Distributed Accelerated Projection-Based Con-
sensus Decomposition

Input: Single or multiple full rank sparse coefficient matrices 
concatenated to A with its corresponding concatenated con-
stant terms vectors b, parameters , , a number of partitions 
as J and a number of epochs as T.

Output: Averaged solution vector  to a global system of lin-
ear or non-linear equations.

1. Initialization: Decompress J submatrices from A and J 
subvectors from b on worker nodes, propagate In matrix.

2. Do QR decomposition (1) on J matrices in parallel.
3. Concurrently find the initial solution (2) (3) for J matrices 

with projection matrix (4) onto their nullspace.
4. Average the solution (5) over the nodes.
5. for t = 0 to T – 1 do
6. In parallel, get the t-th solution update (6) for J matrices.
7. Update the average solution (7) over the nodes.
8. end for

3. The Algorithm Implementation
Dask [9] is a flexible library for parallel computing in Python [10]. The processing workflow is scheduled in the form of 
a computational graph, exploited by the Dask scheduler, and lazily evaluated by Dask workers. An instance of such a graph is 
shown in Figure 1. Operations on computing nodes defined in Algorithm 1 are done using SciPy [21] and NumPy [22] built-in 
array object representations with their assortment of functional routines. The proposed implementation has been carried out 
using the virtualized computing environment of the Centre of Informatics Tricity Academic Supercomputer and networK.
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 Figure 1. Computational graph representation performing a single-ite-
ration computation of a two-partitioned input dataset

4. Convergence Behavior
Taking the full rank coefficient matrix , constant 
terms vector , and pre-calculated  as the most 
accurate solution vector to a system of equations, we can 
create an augmented  matrix with the correlative 

 vector, linearly combined from A and b, respectively.

(8)

Let J partitions out of  be divisible such that each 
partition initialized on workers is not rank deficient, and 

. Knowing that the original system of equa-
tions is consistent, the Algorithm’s 1 output is defined 
as a multivariable function f meeting the assumption 

. Hence, the mean 

squared error (MSE) [23] between the n-th vector components 
of  and  should be lower. Tests have been conducted on 

various sizes of Schenk_IBMNA datasets from the SuiteSparse 
Matrix Collection [24] with heuristically chosen parameters.

Due to approximations, the decomposed APC mean squared 
error of the initial solution should always be greater than in 
classical APC, where the initial solution is assumed to be found 
using matrix inverses. Both solutions converge to approxi-
mately the same level of minima in Figure 2 and are compared 
with the baseline Distributed Gradient Descent (DGD) [5] 
error, keeping in mind more firm possible divergencies in the 
decomposed APC after some t-th epoch. Statistics of multiple 
runs on different datasets are arranged in Table 1.

Figure 2: Average squared difference between the estimated  value and 
 value over the number of epochs. The test was performed 

on the modified c-27 dataset [24], where n =  of variables, 
(m + n) =  of equations, w =  of workers, e =  of equ-
ations per worker

Table 1. Total execution times measurement where each algo-
rithm approximately reaches its minima, run on w = 2, 4-core, 
single-threaded workers using independent input datasets

A matrix shape T number 
of epochs

Averaged processing 
wall time AccelerationClassical 

APC
Decomposed 

APC
(9308  2327) 80 ≈ 12.2s ≈ 9.87s ≈ 1.24
(15188  3797) 70 ≈ 31.6s ≈ 21.2s ≈ 1.49
(18252  4563) 95 ≈ 52.3s ≈ 34.4s ≈ 1.52
(21284  5321) 85 ≈ 74s ≈ 44s ≈ 1.68
(37084  9271) 175 ≈ 379s ≈ 212s ≈ 1.79

5. Example
Consider the (18252  4563) coefficient matrix A having 
μ = 0.013, σ = 24.31 and the sparsity level of 99.85, together 
with (18252  1) constant terms vector b taken from Schenk_
IBMNA datasets [24].

(9)
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Referring to Figure 1, the processing output of the graph is 
(4563  1) solution vector having μ ≈ –0.0027 and σ ≈ 0.0763.

(10)

The magnitude of the mean absolute error (MAE) [25] 
between the initial solution and the solution after the one iter-
ation should be relatively small(< 1e – 08)for such A and b. 
However, it suggests some direction of change. The output of 
subsequent iterations can be adjusted by configuring the  and 
 hyperparameters.

6. Conclusion
The suggested variant of Accelerated Projection-Based Con-
sensus [7] relying on factorization approximations is notably 
faster in terms of processing than its classical model, assum-
ing matrix inversions. Both variants converge. The proposed 
variant is insignificantly less accurate and burdened with less 
stability. However, due to its ease and speed of implementa-
tion, it is a reasonable alternative for distributed optimization 
problems. It can be used as a baseline model in numerous 
real-world applications, especially in engineering.
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