
TASK Quarterly 26 (2) 2022

DISTRIBUTED ACCELERATED PROJECTION-BASED CONSENSUS
DECOMPOSITION

Wiktor Maj
Centre of Informatics – Tricity Academic Supercomputer Network (CI TASK)
Gdansk University of Technology
wiktor.maj@pg.edu.pl

Abstract
With the development of machine learning and Big Data, the concepts of linear and non-linear optimization techniques are
becoming increasingly valuable for many quantitative disciplines. Problems of that nature are typically solved using distinctive
optimization algorithms, iterative methods, or heuristics. A new variant of the Accelerated Projection-Based Consensus (APC)
iterative method is proposed, which is faster than its classical version while handling large sparse matrices in distributed set-
tings. The algorithm is proposed, and its description and implementation in a high-level programming language are presented.
Convergence tests measuring acceleration factors based on real-world datasets are done, and their results are promising. The
results of this research can be used as an alternative to solving numerical optimization problems.

Keywords:
factorization approximation, numerical optimization, distributed computing, acceleration

https://doi.org/10.34808/yrfh-s352

https://doi.org/10.34808/yrfh-s352

33

1. Introduction
Examining an overdetermined system of linear equations

, typically for a sizeable sparse coefficient matrix
 with its corresponding constant terms vector

 where m > n, the goal is to find estimator ˆ such
that . Setting up Ordinary Least Squares

(OLS) [1] coefficient vector of the least-squares hyperplane
expressed as , where ATA is a Gram matrix
[2], and AT b is known as the moment matrix of regressand
by regressors [3], is one of the most recognized, well-per-
formed technique to find unknown parameters. In a distributed
environment, operating on compressed sparse matrices makes
computation slow due to the inflexibility of arithmetic oper-
ations on them. On the other hand, decompressing comple-
mentary matrix A and finding its inverses requires extensive
use of computational resources, which can unschedule task
running or even crash workers. Numerous large-scale optimi-
zation problems are unfeasible to be trained on a single host.
For instance, language models quickly scale up out of memory
boundaries due to the number of hyperparameters involved
in training. Hundreds of DGX A100 multi-GPU servers have
been used to train a 530-billion parameter model on text data-
sets [4]. Despite the additional complexity layer and potential
performance bottlenecks, distributing the workflow across
multiple computing nodes provides robustness and scalability
to make the models run.

Two main approaches are adapted in distributed machine
learning workflows: model parallelism and data parallelism.
Usually, both of them are present in modern high-level pro-
gramming frameworks. In the case of data parallelism, there
is evidence supporting the efficacy of globally exemplary
methods such as Distributed Gradient Descent (DGD) [5],
Alternating Direction Method of Multipliers (ADMM) [6],
and Accelerated Projection-Based Consensus (APC) [7] with
a view of the growth in the popularity of Big Data. Moreo-
ver, the progression of the development of distributed algo-
rithms has led to the rise of ample open-source, high-level
distributed computing frameworks such as Apache Spark [8]
and Dask [9], which organizations are successfully using for
commercial applications. The preceding considerations have
strongly influenced contributions to infrastructural changes
from bare-metal to more portable, virtualized, or containerized
paradigms.

The main contribution is the decomposition of Accelerated
Projection-Based Consensus [7] (See Acknowledgments) to
avoid computationally expensive operations, particularly
matrix inversions. The idea is to put the largest number of
small-sized tasks into processing instead of fewer, larger indi-
visible tasks to make a more performant use of parallelism
(Section 2). The full necessary implementation (Section 3)
in the Python [10] programming language is provided. Con-
vergence behavior (Section 4) compared to classical APC is
demonstrated, with speedup times to the referenced datasets.
The manual example was conducted (Section 5), and the
results of the experiments are interpreted (Section 6) with
their explanation. The main focus was on linear and non-linear
optimization problems. However, the underlying concepts are
present in other research areas as well.

2. The Algorithm
For subsets of equations, let us find
such that and with its
corresponding constant terms vectors. For
m = n, using the fact that the non-singular Ai square matrix
is invertible (pseudoinverses in modern programming
frameworks use singular value decomposition [11], which
slightly enlarges computational times), each system of equa-
tions i consists of a single unique solution hav-
ing projection matrix onto the
nullspace of Ai [7], where In is a identity matrix. In
a variety of applications, symmetric matrices (meaning that

 appear intrinsically. In
the case of Ai matrix asymmetricity, it can be replaced by

 as a Toeplitz decomposition subproduct
[12] assuming Ai of no loss of generality [13]. Therefore, the
orthonormal basis for the is what
evinces that .

Each matrix Ai can be decomposed as Ai = QiRi using full
QR factorization [14] where Qi is an orthogonal and Ri
is a square upper triangular matrix, respectively. There-
fore, considering the sources of perturbation errors [15],

. Because
Qi columns are orthogonal unit vectors, simplifying

 thanks to the property with the
rule that the transpose of a product is the product of the trans-
pose in the reverse order, eases the nota-
tion of to . Equivalently,
the inverse of a product is the product of the inverses in the
reverse order, so assuming that , the
simplified formula of the projection matrix onto the nullspace
of .

Considering the case, further decompositions may
produce an excessive quantity of matrices, which is disadvan-
tageous in the distributed environment due to the substantial
task overhead time compared to its computational work time.
Therefore, setting non-square
full rank matrices , where m > l > n and I > J with
doing full QR factorization on Aj, results in getting (l l)
unitary matrix multiplier where its last (l (l – n)) partition
is multiplied by 0. It is far more efficient to get the first n
orthogonal columns using a reduced QR factorization form
[16] instead.

(1)

 is the initial solution estimate vector
of . Inverting the Rj matrix is still a costly operation.
Although, using the fact that the upper triangular Rj matrix has
one possible non-zero coefficient factor on the n-th row
and column, the n-th component of can be quickly found
using bj with the n-th vector of the matrix denoted as

.

(2)

Similarly, in each matrix, entries are directly referenced
with rj vector spaces in a way that the multiplication factors

34

of the upper rows can be backwardly substituted [17] using
previously calculated results , where

c = n, n – 1, ..., 1 is a column number of Rj. Thus, there exists
the ability for each p-th component of vector to be cal-
culated recursively.

(3)

The computational complexity of inverting the Rj matrix using
the Gauss–Jordan elimination algorithm [18] is . Even
if optimized CW-like algorithms [19] are used alternatively,
none of them would be as fast as backward substitution, which
takes .

 is the semi-orthogonal matrix [20], where is the
orthogonal projection onto its column space, and the projec-
tion matrix onto the nullspace of Aj is remapped, implying
isometry of Euclidean space.

(4)

The average of the initial results across the computing nodes
is simply the arithmetic average of the J estimate results.

(5)

Having defined the and (0, 1) parameters, updating the
estimates and averaging the solutions through the T number
of epochs is done as defined in classical Accelerated Projec-
tion-Based Consensus [7].

(6)

(7)

It is essential to identify what can be parallelized at a given
stage of execution to minimize waiting processing time. Com-
plete denotation is introduced in Algorithm 1.

Algorithm 1: Distributed Accelerated Projection-Based Con-
sensus Decomposition

Input: Single or multiple full rank sparse coefficient matrices
concatenated to A with its corresponding concatenated con-
stant terms vectors b, parameters , , a number of partitions
as J and a number of epochs as T.

Output: Averaged solution vector to a global system of lin-
ear or non-linear equations.

1. Initialization: Decompress J submatrices from A and J
subvectors from b on worker nodes, propagate In matrix.

2. Do QR decomposition (1) on J matrices in parallel.
3. Concurrently find the initial solution (2) (3) for J matrices

with projection matrix (4) onto their nullspace.
4. Average the solution (5) over the nodes.
5. for t = 0 to T – 1 do
6. In parallel, get the t-th solution update (6) for J matrices.
7. Update the average solution (7) over the nodes.
8. end for

3. The Algorithm Implementation
Dask [9] is a flexible library for parallel computing in Python [10]. The processing workflow is scheduled in the form of
a computational graph, exploited by the Dask scheduler, and lazily evaluated by Dask workers. An instance of such a graph is
shown in Figure 1. Operations on computing nodes defined in Algorithm 1 are done using SciPy [21] and NumPy [22] built-in
array object representations with their assortment of functional routines. The proposed implementation has been carried out
using the virtualized computing environment of the Centre of Informatics Tricity Academic Supercomputer and networK.

35

36

 Figure 1. Computational graph representation performing a single-ite-
ration computation of a two-partitioned input dataset

4. Convergence Behavior
Taking the full rank coefficient matrix , constant
terms vector , and pre-calculated as the most
accurate solution vector to a system of equations, we can
create an augmented matrix with the correlative

 vector, linearly combined from A and b, respectively.

(8)

Let J partitions out of be divisible such that each
partition initialized on workers is not rank deficient, and

. Knowing that the original system of equa-
tions is consistent, the Algorithm’s 1 output is defined
as a multivariable function f meeting the assumption

. Hence, the mean

squared error (MSE) [23] between the n-th vector components
of and should be lower. Tests have been conducted on

various sizes of Schenk_IBMNA datasets from the SuiteSparse
Matrix Collection [24] with heuristically chosen parameters.

Due to approximations, the decomposed APC mean squared
error of the initial solution should always be greater than in
classical APC, where the initial solution is assumed to be found
using matrix inverses. Both solutions converge to approxi-
mately the same level of minima in Figure 2 and are compared
with the baseline Distributed Gradient Descent (DGD) [5]
error, keeping in mind more firm possible divergencies in the
decomposed APC after some t-th epoch. Statistics of multiple
runs on different datasets are arranged in Table 1.

Figure 2: Average squared difference between the estimated value and
 value over the number of epochs. The test was performed

on the modified c-27 dataset [24], where n = of variables,
(m + n) = of equations, w = of workers, e = of equ-
ations per worker

Table 1. Total execution times measurement where each algo-
rithm approximately reaches its minima, run on w = 2, 4-core,
single-threaded workers using independent input datasets

A matrix shape T number
of epochs

Averaged processing
wall time AccelerationClassical

APC
Decomposed

APC
(9308 2327) 80 ≈ 12.2s ≈ 9.87s ≈ 1.24
(15188 3797) 70 ≈ 31.6s ≈ 21.2s ≈ 1.49
(18252 4563) 95 ≈ 52.3s ≈ 34.4s ≈ 1.52
(21284 5321) 85 ≈ 74s ≈ 44s ≈ 1.68
(37084 9271) 175 ≈ 379s ≈ 212s ≈ 1.79

5. Example
Consider the (18252 4563) coefficient matrix A having
μ = 0.013, σ = 24.31 and the sparsity level of 99.85, together
with (18252 1) constant terms vector b taken from Schenk_
IBMNA datasets [24].

(9)

37

Referring to Figure 1, the processing output of the graph is
(4563 1) solution vector having μ ≈ –0.0027 and σ ≈ 0.0763.

(10)

The magnitude of the mean absolute error (MAE) [25]
between the initial solution and the solution after the one iter-
ation should be relatively small(< 1e – 08)for such A and b.
However, it suggests some direction of change. The output of
subsequent iterations can be adjusted by configuring the and
 hyperparameters.

6. Conclusion
The suggested variant of Accelerated Projection-Based Con-
sensus [7] relying on factorization approximations is notably
faster in terms of processing than its classical model, assum-
ing matrix inversions. Both variants converge. The proposed
variant is insignificantly less accurate and burdened with less
stability. However, due to its ease and speed of implementa-
tion, it is a reasonable alternative for distributed optimization
problems. It can be used as a baseline model in numerous
real-world applications, especially in engineering.

Acknowledgments
Greatest appreciation to the Accelerated Projection-Based
Consensus [7] contributors for their support of the open access
movement as well as the Centre of Informatics Tricity Aca-
demic Supercomputer and networK for providing computing
power on the Tryton supercomputer.

References
[1] Alexander Burton. OLS (Linear) Regression, pp.

509–514. Wiley, 08 2021.

[2] W. Keith Nicholson. Linear Algebra with Applications.
Lyryx Learning Inc., Calgary, Alberta, Canada, 2020.
Book version 2021A.

[3] Arthur Stanley Goldberger et al. Econometric theory.
New York: John Wiley & Sons., 1964.

[4] Julien Simon. Large language models: A new Moore’s
law?, Oct 2021.

[5] Brian Swenson, Ryan Murray, Soummya Kar, and H
Vincent Poor. Distributed stochastic gradient descent:
Nonconvexity, nonsmoothness, and convergence to local
minima. arXiv preprint arXiv:2003.02818, 2020.

[6] Ermin Wei and Asuman Ozdaglar. Distributed alternat-
ing direction method of multipliers. In 2012 IEEE 51st
IEEE Conference on Decision and Control (CDC), pp.
5445–5450, 2012.

[7] Navid Azizan-Ruhi, Farshad Lahouti, Salman Aves-
timehr, and Babak Hassibi. Distributed solution of large-
scale linear systems via accelerated projection-based
consensus, 2017.

[8] Eman Shaikh, Iman Mohiuddin, Yasmeen Alufaisan, and
Irum Nahvi. Apache spark: A big data processing engine.
pp. 1–6, 11 2019.

[9] Matthew Rocklin. Dask: Parallel computation with
blocked algorithms and task scheduling. pp. 126–132.
Python in Science Conference, 01 2015.

[10] Guido van Rossum. Python programming language.
In USENIX Annual Technical Conference, 2007.

[11] V. Klema and A. Laub. The singular value decomposition:
Its computation and some applications. IEEE Transac-
tions on Automatic Control, 25(2):164–176, 1980.

[12] Stephen Andrilli and David Hecker. Chapter 1 – vectors
and matrices. In Stephen Andrilli and David Hecker, edi-
tors, Elementary Linear Algebra (Fifth Edition), pp. 1–83.
Academic Press, Boston, fifth edition, 2016.

[13] E.K.P. Chong and S.H. Zak. An Introduction to Optimiza-
tion. Wiley-Interscience Series in Discrete Mathematics
and Optimi. Wiley, 2004.

[14] Walter Gander. Algorithms for the QR-decomposition.
Seminar für Angewandte Mathematik: Research report,
1980.

[15] Erik Vleck. On the error in the product QR decomposition.
SIAM J. Matrix Analysis Applications, 31:1775–1791,
01 2010.

[16] L.N. Trefethen and D. Bau. Numerical Linear Algebra.
Other Titles in Applied Mathematics. Society for Indus-
trial and Applied Mathematics (SIAM, 3600 Market
Street, Floor 6, Philadelphia, PA 19104), 1997.

[17] Alberto Moreira. Cs557a: Solving linear systems of equa-
tions. 2000.

[18] Steven C. Althoen and Renate McLaughlin. Gauss-Jordan
reduction: A brief history. The American Mathematical
Monthly, 94(2):130–142, 1987.

[19] Zhikuan Zhao, Jack K Fitzsimons, Michael A Osborne,
Stephen J Roberts, and Joseph F Fitzsimons. Quantum
algorithms for training Gaussian processes. Physical
Review A, 100(1):012304, 2019.

[20] Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li,
Hainan Xu, Mahsa Yarmohammadi, and Sanjeev Khudan-
pur. Semi-orthogonal low-rank matrix factorization for
deep neural networks. In Interspeech, pp. 3743–3747,
2018.

[21] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R.J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, ̇Ilhan Polat, Yu Feng, Eric W. Moore, Jake Van-
derPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E.A. Quintero, Charles R. Harris, Anne
M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

38

[22] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Courna-
peau, Eric Wieser, Julian Taylor, Sebastian Berg, Nath-
aniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Río, Mark Wiebe, Pearu Peterson,
Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke,
and Travis E. Oliphant. Array programming with NumPy.
Nature, 585(7825):357–362, September 2020.

[23] Alexei Botchkarev. A new typology design of perfor-
mance metrics to measure errors in machine learning
regression algorithms. Interdisciplinary Journal of Infor-
mation, Knowledge, and Management, 14:045–076,
2019.

[24] Timothy A. Davis and Yifan Hu. The university of Flor-
ida sparse matrix collection. ACM Trans. Math. Softw.,
38(1), Dec 2011.

[25] Gary Brassington. Mean absolute error and root mean
square error: which is the better metric for assessing
model performance? In EGU General Assembly Con-
ference Abstracts, EGU General Assembly Conference
Abstracts, pp. 3574, April 2017.

