
Serverless edge computing with mobile documents agents
M. Godlewska, B. Wiszniewski

Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Dept. of Intelligent Interactive Systems
11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland

https://doi.org/10.34808/hyfz-f798

Abstract
Exchange of documents as email attachments in collaborative decision making lacks support for keeping track of
threads of performed activities, which often leads to email overload and strain. A proactive document email attach-
ment linking the passive content and active services could build reproducibility in collaborative processes, even if
workers may tend to exchange emails indiscriminately. The key role in achieving this is played by the migration path
embedded in the document code, which when interpreted by the specially designed smart email client can support
document steering. Owing to this, the email system can provide a platform for document-centric processing and can
introduce self-organization in the dynamically set virtual organization using it. Proactive documents exchanged as
standard MIME attachments enable any type of working content with reduced workload and improved work perfor-
mance, without any substantial investment in the job resources already available in the workplace. Moreover, they
enable smooth incorporation of email-based collaboration in a solution that pushes the boundaries of building overall
intelligence and enhanced cognition across the cloud-edge continuum.

Keywords:
Document-centric collaboration; Business process automation; Smart objects; FaaS

TASK Quarterly 28 (1) 2024

https://doi.org/10.34808/hyfz-f798


1. Introduction
In the paper we propose to augment email with

proactive document attachments combining passive con-
tent with active services and interacting with users, their
personal devices and cloud services while performing
individual activities in the business process in which they
participate. Owing to this, a regular email system could
be converted into a kind of flexible multi-agent system
dynamically balancing computational resources of a
business process implementation within the entire cloud
edge continuum [1] and introducing self-organization to
email-based document exchange [2].

For decades, electronic mail has been a widely ac-
cepted computer mediated communication platform. It
enables combining simple textual messages with attach-
ments of any format and structure making it suitable for
collaborative work based on document exchange. When
doing this in an organized way, collaborators can share,
distribute and acquire information to make individual or
collective decisions, establish facts or produce new knowl-
edge. Although they may proceed formally with the in-
tent to implement a business process to resolve a specific
problem, their organization may be set ad hoc and remain
informal and virtual, without the need to engage any spe-
cific workflow system. This dynamics is made possible
due to the fundamental nature of email, where messages
may be sent to anybody, anywhere, anytime and while
using operating devices of any type. However, this free-
dom comes at a cost, which is information overload and
strain, often reported by workers when the flow of mes-
sages becomes excessive or chaotic. Indeed, email systems
lack the means to enforce discipline and structure in the
organization.

Below we present in detail our agent-based smart
objects, both their internal structure making them
proactive documents equipped with functionality thanks
to which they can simultaneously be information and
interface units [3], as well as mechanisms enabling their
migration in the network of mobile edge devices and
the implementation of distributed workflow processes
of arbitrary complexity [4]. We will argue that our
proactive document agents operating at the edge can
provide a self-optimizing solution for balancing global
cloud resources and local participants’ resources, with
the latter playing a key role in implementing particularly
hard-to-automate parts of the business process [5]. In
Section 2, the research problem of the paper is formally
stated. It concerns the implementation of business
processes based on exchange of documents using an
existing email system. Requirements for the proposed
solution have been specified based upon the analysis of
job demands and job resources in email based virtual
organizations.

Messages sent via email are static text files with at-
tachments. This approach is safe and universal. However,
the process and functionality definition can also be sent
in a serialized and readable form if XML or JSON syntax
is used. Section 3 presents the concept of a proactive doc-
ument agent that can be sent in a static form via email
protocols and, after reaching the recipient and receiving
appropriate authorization, activate its functionality on the
local device.

Section 4 introduces the Mobile Interactive Docu-
ment (MIND) architecture for such documents attached
to email messages and a generic functionality of the
smart email client (SEC) which is both a lightweight
email client and a container in which document agents
can deserialize and carry out their mission. SEC enables
workflow to be executed largely based on the information
provided by the document. This is possible thanks to the
document coordination patterns described in our other
paper [6].

In Section 5, a case study of the collaboration process
based on MIND documents is presented. It provided us
with the basis for several experimental proof-of-concept
SEC prototypes, implemented for various desktop and
mobile computers and platforms. Section 6 briefly
reviews various technology components to contrast
them to the proposed MIND solution and discusses the
implementability of several process management models
using our document-agent platform. Finally, Section 7
concludes the paper and summarizes our future research
on expanding MIND document architecture further.

2. Process enactment based on
email
A long time after its invention, email is still the most

prevalent form of computer-mediated communication
by people, who widely accept it as fast, cost effective
and accessible, also when exchanging documents within
organizations [7]. Unfortunately, with the increasing
amount of emails received, workers may find themselves
unable to cope with the influx of messages and report
information overload and strain, especially when the
received emails are redundant or ambiguous. These
phenomena have a negative impact on productivity and
increase operational costs of the organization [8]. Our
motivation to augment email systems to better cope with
the above was to find a solution that would not require
organizations to replace their existing email systems or
business process management practices with something
completely new. In that regard, let us first identify
job demands and resources in such a setting and next
specify what functionality the email-based communica-

2



tion medium should provide to enable straightforward
implementation of knowledge processes.

2.1. Job Demands and Resources
A useful tool for assessing job demands in organiza-

tions could be the JD-R model [9]. It assumes that work-
ing characteristics in the organization can be classified
as job demands and job resources, and that job strain de-
velops if certain job demands are too high when job re-
sources are limited. Given that, the basic job demand for
a worker handling emailed documents would be retriev-
ing the delivered message from the mailbox, detaching
the document from the message, performing some activ-
ity related to its content, and forwarding it next to an-
other worker. However, if the activity is an element of
a larger process performed by many workers within the
organization, job demands for that worker will be much
higher than that [10]. If a single worker is involved in
several threads of activities at the same time he/she will
be required to keep track of many concurrent activities. It
would be difficult to exercise control over these activities
when other collaborators are required to complete related
activities in other parts of a larger process. Flagging mes-
sages as important would not help in this instance, as it
is a common practice of email users to mark as urgent
any message being sent – with the intention to request
that the recipient process it faster. In consequence, if thus
marked messages are received in excess, they would prob-
ably be disregarded. The worker involved locally in many
threads would also be required to keep track of each activ-
ity thatmay extend over time and to control which portion
of it has already been completed and what remains to be
done. Another requirement would be collation of related
items to retain them in one email folder. One difficulty
in meeting this demand would be that specific relations
between documents may be implicitly determined by the
overall structure of the process, so all workers involved
in the process must possess the same understanding of its
semantics and be able to mark the related messages ac-
cordingly.

The research reported in [11] indicated that the
demands imposed on collaborators in the email-based
settings mentioned above are disproportionally loaded
on the recipient, who may often perceive senders as
egocentrics – assuming that the recipient will always
know what to do with the received message and its
attachments, will do it immediately, will always possess
the required resources and knowledge and therefore will
not have to be specifically instructed or guided. This kind
of perceived egocentrism is probably the main source of
miscommunication, when the sender is convinced that
his/her message is clear, but the recipient does not inter-

pret it in the way the sender intended. Communication of
such ambiguous messages would usually require parties
to take corrective actions implying additional devoting
of time and attention to handle the message again. The
advent of mobile devices pushed that disproportion even
further, by extending availability and accessibility of
recipients to the 24/7 level.

Further in the paper, we consider several coordina-
tion patterns for collaborative work based on documents,
whose manual implementation by senders using the
common functionality of email systems would lead
(intentionally or not) to collaborators perceiving them as
egocentrics. Typical situations may include:

▶ The message is sent to a party who is not necessarily
the right person for the required job. Clarifying that
between parties would involve additional communi-
cation and delays in completing the assignment.

▶ The message is sent in error without any document
attached or with the incorrect attachment. Sending
then the corrective message would contribute to the
increased influx of messages and the recipient’s con-
fusion or frustration. If sending the incorrect mes-
sage goes unnoticed by the sender, the recipient would
probably have to revoke or reverse any activities per-
formed thus far relative to the incorrect document.

▶ The message is flagged as urgent by the sender, with-
out assessing its real urgency; its urgency may vary in
time depending on events beyond the sender’s control.

▶ The sender does not know whether the recipient
possesses sufficient resources to complete the activity.
This may relate to whether the latter has the right
tool installed, uses a desktop or mobile device, opens
the message during off-time or when out of office, the
attached document is password protected, etc.

▶ Themessage is ambiguous in terms of what tool would
best suit handling the document content. For exam-
ple, formatting of some text documents would not take
into account that the recipient may use an alterna-
tive tool to edit it (affecting font substitution, default
styles, tabs, page margins, etc.).

Senders may also experience egocentrism of their
collaborators, especially when after sending a message
they become recipients. Typical situations may include:

▶ Upon completing the current activity, the sender has
to wait for details (to be passed via email, by texting or
a telephone call) to whom the document should next
be forwarded from another worker involved in a dif-
ferent part of the process. Alternatively, the sender
may know to whom the message should be sent but
has to wait for "the go" signal from another worker.

▶ The sender is waiting for the detailed feedback on the
document from its recipient; there is noway to enforce

3



any detailed feedback from the immediate successor
or from workers involved in further (more distant) ac-
tivities in the process.

Resources, which according to the aforementioned
JD-R model could buffer the impact of overload and strain
and improve implementation of collaborative processes
with email, may include the following:

▶ The knowledge about the process structure is in the
system, whereas the knowledge on how to perform
the activity is left to the workers. In other words, the
system knows to whom each document should be sent
and is able to calculate the urgency level of each activ-
ity.

▶ Messages with document attachments are automati-
cally sent by the system, ensuring no forgotten or in-
correct attachments are possible.

▶ The attached document provides some elementary (lo-
cal) functionality to help the worker to successfully
complete the activity.

▶ Based on the calculated message level of urgency,
time of delivery and type of device used to open it,
the system can assess whether the recipient should be
bothered with the message and possesses sufficient
resources to process it.

▶ When necessary, feedback to each document is imple-
mented as an element of the process.

The above has brought us to the conclusion that the
driving force of document based collaborative processes
using email could be the documents themselves and that
this could be achieved at no extra costs to the workers and
their organizations. In particular, the email system should
not be replaced by any other system, to allow people to
further cultivate their organizational habits of using email
as their basic communication medium.

3. Proactive Document Agents
Traditional models of collaborative work based on

document exchange assume each document to be a pas-
sive object, whose content represents a certain corpus of
data in terms of bytes, syntax and structure, to be pro-
cessed with some dedicated tool. The worker handling the
document has to select and activate the tool individually,
based on its syntax and the local system resources.

Workers who exchange documents using email do
not have at their disposal any practical mechanism to pro-
vide explicit or implicit control of the emergent behav-
ior of a collaborative process that they may wish to im-
plement. The question is how to make the given collec-
tion of interacting document agents to give rise to repro-
ducible collaboration patterns of behaviors that the indi-

vidual agents acting alone would not be able to exhibit
and to aid workers exchanging email indiscriminately in
building self-organization in the process.

If, however, the exchanged documents possess
execution capability, they may automatically call the
appropriate software function required to work with
their content and interact with their human users. Such
a document-centric computing paradigm could then
involve documents implemented as autonomous agents,
which render and use services interchangeably with their
human counterparts. If the agents additionally include a
workflow component that routes them to the appropriate
workers, they may be able to migrate on their own
between various execution devices operated by people.

Further in Section 4- we propose to incorporate in
the body of proactive document attachments a predefined
migration path, which could be interpreted by a special-
ized "smart" email client capable of enacting a regular pro-
cess with activities and transitions. With that, no modifi-
cations to the underlying email systems would be neces-
sary, as management of each worker’s inbox would only
require messages with a specific custom header indicating
the proactive attachment to be filtered out and the respec-
tive activity to be performed to be selected from the path.
Upon completing the activity, the transition would be fol-
lowed.

Asmentioned above, the key functionality of the doc-
ument agent enabling document-centric collaboration are
its ability to execute and to migrate. The former refers to
activation of the incoming document agent (object) and
calling its services to process the related content brought
to the device by the agent, whereas the latter refers to the
specific operations to be performed on the document to
forward it to collaborators operating other devices.

Services of the activated document agent are called
by the local client running on the receiving device and
acting as the intermediary between the document and the
worker. Three types of services are possible: an embedded
service, implemented as a piece of code or script that may
be executed directly in the local system of the receiving
worker’s device, a local service, implemented as a script
that can test for availability and if necessary activate a
specific tool installed on the worker’s device, and an ex-
ternal service, implemented as a script requesting the local
system to call a specified remote service.

For security reasons, execution of the aforemen-
tioned services is governed by preferences of the actual
worker, who may decide whether to allow the document
to activate its embedded code or just to open its content
with his/her locally installed tools. Of course in either
case the attached document is routinely scanned for
viruses by the locally available anti-virus tool. A decision
to activate a proactive document does not deviate from

4



the typical situation when the recipient of a message has
to decide whether to open a plain (passive) document
attached to it. Usually, when he/she is sure that the
document comes from a trusted source, the decision is
to open the attachment1. In the solution proposed in the
paper, we expanded the range of possible decisions not
only based on the personal preferences of the receiving
worker, but also on the current location of the device
on which the document will be opened, the device
performance characteristics, the security parameters of
its system software, the quality and security of the avail-
able network connection, and several other attributes,
whose values define the document execution context.
Moreover, values of these attributes may be negotiated
automatically by the document and its receiving worker’s
device [12]. A preferences file, prepared by the worker,
enables our smart email client to choose the appropriate
sets of negotiable attribute values called modes: a private
mode indicates what types of document computations
would not be possible (local services/tools are preferred
and no embedded services are allowed), a travel mode
indicates that access to available networks is possible
but unstable or not recommended for security reasons
(thus external services are not allowed), a business mode
assuming documents coming from the corporate, trusted
network from inside of the worker’s organization (both
embedded and external services are allowed), and an
airplane mode with no access to any network (external
services are not possible and the received document can
further be processed only off-line), and so on.

The mobility of the document agent on the other
hand could utilize the whole range of data communi-
cation protocols used on the Internet for sending and
retrieving email messages, including the lower layer
TCP/IP or HTTP/HTTPS data streaming protocols, as
well as protocols of higher layers, such as SMTP, POP3
and IMAP.

4. The MIND Model
The proposed document architecture enables

autonomous document-agents which can carry both
content to be worked on and a description of steps to be
performed by individual collaborators during the entire
process. The document can dynamically adjust to various
execution contexts provided by devices visited during
migration. These contexts can change dynamically,
depending, among others, on the functionality of a
proactive document, the policies implemented by its
originator, the operational characteristics of its current

1Contemporary viruses that can infect an electronic document, e.g.
PDF, DOCX or ZIP, usually activate some malicious activity on open-
ing its content, making such a document in fact a reactive one.

execution device, its location and, and the preferences
of the relevant worker. Owing to that, our documents
can be handled in a number of ways: automatically, by
using a code embedded in their body (if permitted by the
worker), with the use of local services or tools installed
on the relevant device or by external (third party) services
if an Internet connection is available or permitted at the
time of executing the activity.

4.1. Hub Document
The structure of a hub document, as shown in Fig-

ure 1, constitutes in its serialized form a bundle of XML
data files containing content and resource files, which are
sent by email in one package. Content files represent a
passive document corpus of data to be worked on by doc-
ument services and workers indicated in the migration
path. Data may be structured in any way and encoded
in any MIME format [13]. Resource files describe a doc-
ument migration path and its required resources, such as
services and workers. They are selected by the process
originator, according to the specific format and purpose
of the document’s content. Upon arrival at its destina-
tion, the package is unpacked and resource files are un-
marshalled to executable objects. A local working direc-
tory structure is created on the receiving device for stor-
ing these objects and all unzipped content files.

A service object provides document functionality
that makes it proactive. The path component con-
sists of objects of the relevant process – represented
as standard elements of XPDL, a workflow definition
language used in our experimental implementation
of mobile document-agents [14]. They are: activity
objects, specifying the respective process activities to
be performed and transition objects, specifying the
migration path to be followed. Each activity object has
one or more performer objects and may refer to worker
or service objects alike. The worker object provides the
worker’s email address, while the service object specifies
URIs identifying the related document functionality. In
general, each activity may be performed by the worker,
service, or a combination of both. The passive document
content of the part objects, constitutes the corpus of
data to be worked on by the relevant activity object.
If multiple incoming or outgoing process threads are
involved, the activity object may have a transition-
restriction object, incorporating either split or join
objects indicating its particular coordination pattern
type.

The variety of formats that could be used to represent
a document content would make accessing it difficult for
the receivingworker. Owing to embedded functionality of
a document provided by its service components, such dif-

5



hub−document

+id

+security
+title

from

to

+id
+mime−type
+content

part

+id

+uri
+name

service

id

id

path

worker

+id
+from
+to

+id
+name
+phone−number
+email−address

0..* 1

+id
+name

transition

performer

+id

+type

join

task

+id
+current−activity

1..*

1..*1..*

activity

transition−restrictions

1..*

0..1 0..1

+type

split

{xor}

0..1

0..1 0..*

Figure 1: A document-agent architecture

ficulties can be eliminated without making the proposed
model dependent on any particular content format. It also
simplifies the overall document structure, since the func-
tionality organizing access to document assets (parts) can
be coded directly in the document services.

4.2. Smart Email Client
The generic functionality of a smart email client

capable of handling proactive document attachments is
specified in the diagram shown in Figure 2.

Initially the email message with a packed hub-
document is delivered to the respective worker’s
mailbox on an email server (S1). Each such message is
distinguished from other messages stored in the mailbox
by a custom header field, followed by a unique document
identifier. Depending on the particular collaboration
pattern, transition to state S2 may require delivery of one
or more messages. A smart email client identifies to that
effect all relevant messages in the mailbox and retrieves
them to its local inbox. Making document components
ready to unpack (S3) may require authentication by the
worker. Unpacking of the retrieved messages enables
assembling hub-document objects (S4), which entails
creation of a local folder structure to hold unzipped
content files and deserialized resource objects indicated
in Figure 1. Activation of the document enables its
embedded functionality, so it may interact with the client,
a worker, the local system, and available external services
(S5). Interaction begins with obtaining a document path
component (S6), determining a current-activity to be
performed, and results in resuming a thread of a process
on the execution device (S7). Note that the respective
activity object includes a task object, which enables

interaction of a document with the client and the user
via service objects (S8). When the required work on the
content of part objects is completed, current-activity
is considered complete (S9). States S7, S8 and S9 specify
the generic execution states of the activity, distinguished
for proper implementation of the milestone and cancel
activity patterns specified in the previous section. The
client determines the next activity to be performed and
the respective worker object responsible for that (S10).
The latter specifies the email-address of the worker,
indicated by the performer object in the activity object
of the path component that follows the completed
current-activity. If the worker is the same as before,
the content of local folders is refined (cleaned) to prepare
document part content objects processed so far for the
next activity, which is eventually enabled (S7) for the next
cycle. All document components for other workers are
serialized accordingly (S11), depending on the particular
collaboration pattern specified by the related transition-
restictions object (S12) packed in one or more messages,
submitted to the respective email server and sent out
(S13).

A smart email client can be implemented either as a
stand-alone application or a plug-in to the existing email
client. In either case it shall be considered a lightweight
email client, as its responsibility would simply be retriev-
ing and submitting messages with a document-specific
header field content, as mentioned before, activating
selected objects serialized in the attached document files
and making them work in a local system.

6



S3

S6

S1 S2

S8

S4

S9S7

S13 S12 S11

S5

S10

ready
to unpack

obtained
path

mailbox
deliver to

current
get

activity

activity
finish

activity
start

message(s)
submit

message(s)
received

message(s) on
local device

retrieve from
mailbox

authenticate
worker

assemble
document

pack in

message(s)

activity
get next

document(s)

serialize

document(s)
ready

performed
activity being

activate document
components

enabled
activity

refine working folders of this worker

message(s)
sent

in folders
document
activated

get document path

activity

message(s)
ready

determined
next worker

complete

Figure 2: States of a document lifetime on the execution device

5. Experiments
Several proof-of-concept prototypes of smart email

clients were implemented by us to handle proactive at-
tachments according to the diagram in Figure 2. They
were tested using the class roster application described
below. Although it implements relatively uncomplicated
decision processes, related to grading student work in a
typical academic setting, it is sufficient to demonstrate the
non-algorithmic flavor of an interactive computer system.

5.1. Class Roster Case Study
Consider the course grading knowledge process in

which instructors judge the academic quality of students’
work and assign grades as symbols of their evaluation.
In doing so, they collaborate towards assigning a final
(semester) grade for each student registered in the course.
A Registrar’s Office (RO) is the course grade roster
document originator, whose collaborator is a Course
Leader (CL). CL runs his/her subprocess to successively
collect credits from other instructors during all semester
weeks. Structure and implementation of that subprocess
is irrelevant to RO. While RO may use an on-line grading
system for one-time roster submission and approval,
CL is free to implement collection of credits on his/her
own, in our case with email messages. The dynamics of
the grading process involves scheduled events, such as
assessment of lab assignments and unscheduled events,
such as occasional grade corrections, which can both be
readily implemented with the document coordination
patterns defined before.

Figure 3 specifies the course management process

from the perspective of RO, to which CL is the only col-
laborator. Note two sequencer patterns – one for sending
the roster only with student names and IDs to CL at the
beginning of the semester and another for receiving it
with final grades at the end of the semester. Details on
collecting scores that correspond to assignments listed
in the course schedule, in particular their weights and
timing, are irrelevant to RO, who perceives grading as a
single activity performed by CL. Alternatively, CL can
implement that activity using the internal subprocess to
handle all relevant types of classes selected from the set
of lectures, tutorials, seminars, projects or labs, engage
instructors running them, and monitor deadlines for
each respective assignment. A generic structure of that
subprocess is shown in Figure 4.

Sequencer, decomposing splitter, merger, iterator
and internal subprocess patterns shown in Figurese 3
and 4 were designed to be executable by SEC. The com-
plete set of such patterns, called document coordination
patterns, is presented in detail in our paper [6]. Also the
class roster example is described there in more detail
to present all the patterns. In this paper we focused on
the functionality of SLE as both an email client and a
container for document agents.

5.2. Prototypes of Clients
The first smart email client prototype was imple-

mented by us in Java for desktop computers and laptops
running Microsoft Windows and Linux. It was used to
test the mobility of document agents between physically
distributed execution devices. Owing to the universality
of common email protocols and the MIME-based standard

7



C
O

U
R

SE
 G

R
A

D
IN

G

R
E

G
. O

FF
IC

E

Create class 
roster

C
. L

E
A

D
E

R

Archive class
roster

Assigning 
grades

SEQUENCER

SEQUENCER

INTERNAL SUBPROCESS

Figure 3: The main grading process

A
SS

IG
N

IN
G

 G
R

A
D

E
S Distribute

class roster

C
. L

E
A

D
E

R

Receive
grades

Evaluate

DECOMPOSING SPLITTER

MERGER

Evaluate

Evaluate

ITERATOR

I 1
I 2

I N

Figure 4: Course leader subprocess

encoding of document attachments [13], our documents
can include various data types and freely travel between
heterogeneous platforms. Similarly, using XML for
assembling hub-document components enabled their
activation by binding them to Java objects. That Java
prototype was ported next to the Android platform and
its textual user interface replaced with the more intuitive
graphical touch-up version.

Subsequently, a smart email client prototype was
reimplemented for the Apple iOS platforms. The func-
tionality of SLE was preserved regardless of the platform.
Besides the operating system, the users may prefer not
to activate received documents on their devices. In such
a case, the user is free to choose to deal directly with
the passive content of the related document. Sample
screenshots of our four prototype implementations of
smart email clients are presented in Figure 5. They all
implement the generic functionality of the client specified
by the state diagram in Figure 2, have the same working
screen layout, and exhibit a similar behavior.

The Login page (see Figure 5a) allows the worker to
specify a mailbox to log in and access messages with doc-
uments to work on. A network connection is needed dur-

ing that phase in order to retrieve all documents delivered
to the given worker from his/her email server. The user
can set the option to download only title headers if she/he
does not want to download entire documents on a given
device or network. The To Do List page (see Figure 5b)
specifies all threads of which documents have been re-
trieved to the worker’s local inbox. The worker can decide
which case to handle first based on the urgency indicated
by the color of the case identifiers; they may be respec-
tively ’negligible’, ’moderate’, ’medium’ or ’high’. By se-
lecting the case to work on, its relevant Activity page (see
Figure 5c) is opened. Depending on the particular collabo-
ration pattern, starting the activity may require receiving
more document components still to come. The Start but-
ton remains inactive as long as any of them have not yet
been delivered. In the meantime, the worker may check
the state of other pending processes, scroll back to the To
Do List page and select another case. When all required
document components are finally delivered, the Start but-
ton becomes active. By pressing it, the worker opens the
Content page and interacts with the relevant document
(see Figure 5d). In this particular example, the document
is a class roster form requesting theworker to fill in grades

8



(a) Login page (MS Windows) (b) To do list (Android) (c) Activity (Android) (d) Content page (iOS)

Figure 5: Class roster application user interface

for all listed students, as explained in Subsection 5.1. Upon
completion of the document, it closes automatically and
migrates further along its path.

6. Related work
Our concept of a proactive document agent draws

on four notions: active documents constituting si-
multaneously units of information and interaction to
their users [3], mobile agents, which are software ob-
jects that can migrate from one computer to another
autonomously and continue their execution on the
destination computer [15], workflow systems, which pro-
vide infrastructures to arrange applications automating
business processes involving human participants [4], and
serverless computing [16].

6.1. Active documents
A Placeless Document architecture [17] imple-

mented document functionality with active properties
that could travel with a document, e.g. when sent by
email, and provided execution infrastructure capable of
performing document-specific activities. It introduced
two types of active properties: inline, for intercepting
operations attempted by users on a document, and
delegates, which could extend document behavior in
response to that. In contrast to MIND, a Placeless
Document is reactive – it can respond to external events
by intercepting operations and delegating interaction to
some specialized object associating the document with
the workflow. In consequence, the process could not be

controlled by the document itself, as the delegate was
only a client to some external workflow service.

The concept of a proactive document, capable of
traveling from one computer to another under its own
control, has been introduced by MobiDoc – a compound
document-agent platform [18]. Its document-agents can
migrate independently as isolated entities, owing to their
embedded code. A dedicated MobileSpaces agent system
was designed to support this but soon fell into obsoles-
cence for its lack of forward compatibility. Solutions
proposed by MIND attempt to prevent that occurrence
by founding document-agent mobility on stable email
messaging protocols and services. Owing to the proactive
MIND attachments, an email system could bring to the
network organization all the benefits of a multi-agent
system, enabling implementation of complex collective
behaviors with simple individual agent behaviors but
without the need to implement a full-size agent platform
that would require trained administrators to run it.

6.2. Mobile agent platforms
In the late 1990s, multi-agent systems held great

promise of new types of applications to be superior in
situations that are non-deterministic or so ill-structured
as to appear non-deterministic. After stagnating for a
while, the proliferation of the IoT concept over the past
decade seems to be reinvigorating research into agent-
based computing [19]. Nevertheless, out of many agent
platforms that have been developed, just a few survived
to date; the survey in [20] proposed five categories of
criteria which could be used to assess these platforms as
the alternative to email based exchange of proactive doc-

9



uments proposed in this paper and potentially exhibiting
the desired characteristics of a job resource for document-
centric collaborative work considered in Subsection 2.1
The categories included: platform property, usability,
operating ability, pragmatics, and security management,
split further for more nuanced characterizations of
each agent platform. Platform properties referred to
basic characteristics of the platform that the potential
developer needs to know to understand its purpose.
Usability referred to the suitability of the platform for
the construction of agent applications. Operating ability
comprised all aspects that should be considered during
the agent’s execution. Pragmatics indicated whether the
platform can provide practical solutions and respectively
security management, whether agent-based applications
running on it could be secure.

If the virtual organization is to be set up ad hoc
from a group of casual collaborators (as proposed earlier
in the paper), it would be essential to have a cost-free
option to install and configure the required run-time
environment. Therefore, consideration should be given
to the open source criterion listed in the survey in the
platform property category and to the installation and
technological maturity criteria listed in the pragmatics
category. Document originators and workflow designers
would prefer their documents seamlessly interact with
performers and external services alike, therefore the sim-
plicity and communication criteria listed in the usability
category should be considered too. Another important is-
sue for a proactive document-agent would be its ability to
execute on various devices, despite their heterogeneity in
terms of operating systems and supported programming
languages – the two criteria listed in the survey in the
operating ability category. Moreover, if document-centric
applications considered in the paper are to be reused in a
prolonged period of time, the stability criterion listed in
this category should also be considered. In other words,
each realistic document agent application should be
based on a universal network computing platform, like
the Java Virtual Machine (JVM), which can be deployed
on possibly every internet enabled device, is executable
under any operating system, and does not require fre-
quent modifications as it evolves in time. The platform
considered for the implementation of MIND documents
should also satisfy two criteria listed in the security
management category, namely the end-to-end security
criterion, when documents are to be opened for process-
ing and thereafter sent to another worker, and the overall
platform security criterion. Finally, the mobility criterion
not explicitly distinguished in the cited survey should
also be considered, since implementing document-agents
as objects that can migrate autonomously with their code
and data from one computer to another is essential for
the distributed processing model proposed in the paper.

In fact most of the platforms analyzed in the cited survey
suited better simulation of agents’ interaction and their
emergent collective behavior rather than their migration.

After taking into account all of the above, only
the AGLOBE [21], AgentScape [22] and JADE [23]
platforms are worth considering. They all are open
source, technologically mature and stable, use Java to
implement functionality of their agents, rely on JVM as
their agents’ principal run-time environment, and are
relatively simple to install. However, AGLOBE does not
support communication with agents of other platforms,
as its applications are designed to form closed systems,
dedicated to modeling various real-world scenarios such
as solving logistics problems or optimizing cooperation
of autonomous robots [21]. Due to this, implementation
of the external subprocess could be problematic. The
JADE platform enables flexible implementation of agent
connectivity using the common HTTP protocol, supports
HTTPS for encrypted communication, and allows for
user authentication for platform security. It can be used
on devices with limited resources, including smart-
phones, and as an industry-driven product, is the most
popular agent platform in the academic and industrial
communities.

Our first implemented prototype of MIND used
JADE. In order to execute on the given device and to
migrate to another one, document agents required a
set of special container objects running on all devices
they could possibly visit. A device operated by the
document originator who started the relevant workflow
process required the main container object to start first,
to which all other peripheral container objects started
on other devices had to register next. In other words,
collaborators had to set-up the organization’s platform
by configuring and connecting execution devices to be
used during the entire process before actually starting
it. One disadvantage of this was that devices of all
involved performers had to be known beforehand in
order to properly configure the platform. Moreover, con-
figuring a network of containers to enable unrestricted
migration of document agents – when containers were
hosted by devices running different operating systems
and protected behind various firewalls – was prone to
errors and not an easy procedure for ordinary workers.
Another problem was related to serialization errors we
encountered; when larger documents, with content of a
size above a certain threshold in their part components
(see Figure 1), were about to migrate to another device
(see state S11 in Figure 2). If the serialization error
occurred the document agent simply vanished and the
workflow process was broken. Handling that exception
properly required setting up the platform before starting
the related workflow process, as in the case of registering
peripheral containers mentioned before and complicated

10



implementation of clients handling MIND documents,
compared to their email based counterparts implemented
in our prototype.

6.3. Serverless platforms
A provision of the MIND architecture making it pos-

sible to call external services from anywhere in the In-
ternet allows document agents to extend their function-
ality beyond the limitations of personal devices operated
by individual knowledge workers, imposed both by their
hardware performance characteristics and system config-
uration. Of particular interest are services for informa-
tion retrieval and file processing, usually requiring access
to large data repositories (e.g. intelligent form filling) or
involving computationally intensive analysis of visual or
textual content (e.g. automatic translation or sentiment
analysis). The diverse specificity of business processes
that may be implemented with mobile document agents
proposed in the paper leads to rather unstable working
conditions for providers of such services implemented in
the traditional cloud architecture – where servers con-
stitute a monolithic system containing all business logic.
Examples include occasional use of narrowly specialized
cloud services, such as formatting a document in accor-
dance with the requirements of a given company, or dele-
gating some activity of one workflow process to another.
If provided in such a ”monolithic” form, they would not be
economically viable for cloud providers due to the need to
maintain servers in idle state between processes. A more
rational solution, within amore general concept of server-
less computing, would be spreading business logic into
smaller functions and activating them only when needed.
Such an event-driven execution model is known as Func-
tion as a Service (FaaS) [16] and provides a perfect set-
ting for implementing specialized applications required to
complete business process activities of knowledge work-
ers operating their ”lean” mobile devices on the edge with
the help of ”rich” cloud resources. Developers can simply
package their application code in containers for deploy-
ment, whereas a cloud provider will dynamically allocate
its resources to automatically scale the application [24].

Since the first FaaS platform AWS Lambda was
released by Amazon [25], other key commercial competi-
tors as well as open source developers have followed [26].
The widespread availability of these services, together
with the possibility of using e-mail as a transport layer
for our proactive MIND documents, creates unlimited
possibilities for building document exchange systems in
knowledge-based organizations.

7. Conclusion
As argued in Section 3, collaborative work based on

document exchange by email involves communication of
content, meaning effective exchange of portions of infor-
mation between workers, and coordination of activities
performed by them in the business process. In a more
general sense, these may be viewed as knowledge trans-
actions, defined as transportation of knowledge objects
between two or more communicating workers [27]. This
in turn leads to the concept of the knowledge-intensive
process, whose conduct and execution depends on vari-
ous interconnected knowledge-intensive decisions made
by process members; they concern the knowledge objects
and transactions alike [28]. The MIND solution proposed
in the paper enables convenient separation of these two
concerns in email-based collaboration: knowledge about
the process structure remains in the system, whereas the
knowledge on how to perform the particular activity is
left to the worker. As illustrated by the running exam-
ple in Section 5, this can introduce a reasonable level of
process management to email based document exchange.

To substantiate this claim, let us refer to the spec-
trum of knowledge-intensive process classes proposed
in [29]. Spontaneous exchange of emails with attached
documents and without any coordination of knowledge
transactions results in unstructured processes. Although
such processes can exhibit a great level of flexibility to
collaborators, predictability of the results and repeata-
bility of the order of execution of individual activities
could be problematic, as decisions of process participants
on this are solely based on their experience and implicit
knowledge. In email systems, it would cause overload
and strain problems discussed in Section 2. If, however,
messages with attached documents could bring any
information to guide or instruct collaborators on how to
control their knowledge transactions, thus implemented
processes would exhibit a loosely structured behavior.
Their scope would then be implicitly framed by indi-
cating to the worker the undesired behavior. This is
the case of some additional variables carried by MIND
documents. The overall process logic would not have
to be explicitly defined, but its structured, pre-defined
fragments should introduce rules governing at least its
essential knowledge transactions. If collaborators need to
make ad-hoc changes to the process at runtime, they can
add subprocesses – whenever the actual course of action
needs to deviate or expand beyond the particular activity.
Thus according to [29], the MIND based process would
become structured with ad hoc exceptions. Finally, with a
migration path built in the document body as proposed in
the paper, the relevant process would become structured
– with all possible options and decisions that can be made
during process enactment captured in a process model

11



defined a priori, which can be repeatedly instantiated in
a predictable and controlled manner.

Given the above, it may be argued that MIND email
attachments provide sufficient flexibility in modeling the
whole spectrum of process classes to the extent limited
only by the common sense assumption on avoiding email
overload and strain. In particular the structured with ad-
hoc exceptions class of processes is interesting, as due to
the duality of our proactive document, workers may ac-
cess/open the document content directly with a local ap-
plication of their choice or let SEC do that indirectly by in-
voking document services; they can also modify the doc-
ument’s migration path by adding subprocesses or modi-
fying workers/ performers assigned to specific activities.
In that way, both anticipated or unanticipated exceptions
can be handled dynamically.

Although the path objects embedded in each MIND
document specify the associated process as sequences
of activities representing units of work, the document-
centric approach proposed in the paper conforms to the
data-centric paradigm rather than the activity-centric
one. Indeed, according to the criteria defined in [30],
a common feature of the former is that the availability
of specific data objects (instead of the completion of
activities) drives process execution.

Data-driven business process modeling, charac-
terized in [30], involves two notions. One is modeling
of behavior to describe how data values are acquired
by a data object to perform the action, and the other is
modeling of interactions to describe how data objects
communicate with one another during the process
enactment.

Augmenting email with proactive and mobile docu-
ment attachments can create a resource-rich and produc-
tive work environment for exchanging documents by col-
laborating workers, considered in the literature a form of
successful job crafting [31] – when collaborators try to
optimize their current work environment to reduce work-
load and improve work performance. The major contribu-
tion of the paper in this regard has been to demonstrate
that buffering of job demands for email based document
exchange does not require any substantial investment in
the job resources already available in the workplace.

Moreover, the proactive document attachments can
move email systems closer to the ideal of ubiquitous com-
puting in the application domain of business process man-
agement. Arguments to support this claim can be drawn
on five generic principles of ubiquitous systems specified
in the literature, e.g. in [32]:

1. Transparency and openness; the mobility of the
MIND document implied by its migration path and
coordination patterns makes all email exchange
activities required to implement the related busi-

ness process transparent to workers. In turn, its
proactivity allows process originators to make
open implementations, as the MIND document
can dynamically adjust to the physical execution
context provided by its current receiving device
by choosing from all available services. Also, new
components can be easily introduced into the
process by modifying the document migration path
on the fly.

2. Implicit human computer interaction; our SECs can
free workers from specifying every detail of the in-
teraction required to complete each process activity
andmake email-based document exchange intuitive
and integrated with the overall workplace ecology.

3. Context awareness; besides the ability of the MIND
document to actively adapt to the physical execu-
tion contexts mentioned before, its proactivity also
enables it to discover and take advantage of the lo-
cation, time and other characteristics of the individ-
ual worker based on information specified before-
hand in the migration path by the process origina-
tor as well as gathered by the document itself, e.g.
when equipped with the machine learning capabil-
ity.

4. Autonomy and self-governance; the proactive MIND
document agent is autonomous, i.e. it can operate
independently, free from any central authority and
with external dependencies limited to the built-in
workflow that can bemodified during the process in
the self-governance manner implied by the loosely
coupled distributed system of SECs and document-
agents migrating between them.

5. Individual and organizational intelligence; the com-
bination of the embedded, local, and external ser-
vices of MIND documents can make the latter in-
telligent in many ways, depending on the required
behavior of the document-agent when interacting
with the worker during the specific activity, as well
as when interacting with other document-agents.
Just to name a few tested by us: they can negoti-
ate specific attributes of their preferred execution
contexts with their current receiving devices [12],
they can verify the biometric identity of their legiti-
mate recipients [33], as well as being able to initiate
corrective actions in the system if some undesired
events occur [2].
Given the fast evolution of the concept of ubiqui-

tous computing stimulated by recent progress in telecom-
munications technologies (especially 5G) and the grow-
ing need to build a global multi-cloud edge continuum
enabling intelligent connection of people, processes, data
and things – once called by Cisco "the Internet of Every-
thing" or IoE [34]) – the role of proactive intelligent infor-
mation objects like the ones we propose in the paper will

12



be invaluable. The more so because their implementation
will not require users to change their habits, or develop-
ers to create new mechanisms in relation to those already
available in the said IoE ecosystem. As argued before, the
functionality of any MIND object can be freely extended
through its external services implementedwith FaaS. Ben-
efits of that will be threefold [16]:

1. Low latency; due to the possibility of hosting ser-
vices on any server in any location, there is no need
to use the services of global cloud providers; one or
several related knowledge organizations (e.g. local
administration bodies) may use their own servers
to carry out their business processes, closer to the
location of the process participants.

2. Reduced organization costs; serverless applications
do not remain idle between calls, so their server
infrastructure does not need to be active all the
time. In the case of the business processes consid-
ered in the paper, when individual activities are
performed in knowledge organizations by people
(e.g. e-Government systems), such server idle costs
can be significant [35].

3. Ease of implementation; according to the model in-
troduced by Amazon [25] developers just have to
upload their applications to a simple storage service
(buckets); they may be triggered there by events
created by users, such as passing a scheduled time
or receiving API requests from user devices or other
buckets. Owing to this, either a single function or
even an entire chain of functions may be invoked in
the nameless ”lambda function” manner [36], thus
providing all the functionality of the external ser-
vice designed by the developer – but without the
need to design and scale the supporting computing
infrastructure.

Currently, we are continuing our work on proactive doc-
uments to improve various quality characteristics of their
email-based exchange that may be important for specific
types of virtual organizations. One example is improv-
ing reliability of the system – a ”ground control” service
proposed in [2], which introduced the tracing capability
to the system to cope with soft and hard email message
bounces and unexpected user interrupts that may inter-
fere with the regular document flow.

Acknowledgements
The researchwas supported in part by project “Cloud

Artificial Intelligence Service Engineering (CAISE) plat-
form to create universal and smart services for various ap-
plication areas”, No. KPOD.05.10-IW.10-0005/24, as part of
the European IPCEI-CIS program, financed by NRRP (Na-
tional Recovery and Resilience Plan) funds.

References
[1] T. Ogino, S. Kitagami, T. Suganuma, and N. Shiratori, “A multi-

agent based flexible IoT edge computing architecture harmoniz-
ing its control with cloud computing,” International Journal of
Networking and Computing, vol. 8, pp. 218–239, 07 2018.

[2] M. Godlewska, “Reliable document-centric processing and chore-
ography policy in a loosely coupled email-based system,” Interna-
tional Journal on Advances in Intelligent Systems, vol. 9, pp. 1–13,
June 2016.

[3] R. J. Glushko and T. McGrath, Document Engineering - Analyzing
and Designing Documents for Business Informatics and Web Ser-
vices. MIT Press, 2008.

[4] N. Russell, W. M. van der Aalst, and A. H. ter Hofstede,Workflow
Patterns: The Definitive Guide. Cambridge, MA, USA: MIT Press,
2016.

[5] M. Pawlik, P. Banach, andM.Malawski, “Adaptation of workflow
application scheduling algorithm to serverless infrastructure,” in
Euro-Par 2019: Parallel Processing Workshops (U. Schwardmann,
C. Boehme, D. B. Heras, V. Cardellini, E. Jeannot, A. Salis, C. Schi-
fanella, R. R.Manumachu, D. Schwamborn, L. Ricci, O. Sangyoon,
T. Gruber, L. Antonelli, and S. L. Scott, eds.), (Cham), pp. 345–356,
Springer International Publishing, 2020.

[6] M. Godlewska and B.Wiszniewski, “Document coordination pat-
terns,” TASK Quarterly, 2025.

[7] C. B. Sullivan, “Preferences for electronic mail in organizational
communication tasks,” The Journal of Business Communication,
vol. 32, no. 1, pp. 49–64, 1995.

[8] D. D. Dawley and W. P. Anthony, “User perceptions of email at
work,” Journal of Business and Technical Communication, vol. 17,
no. 2, pp. 49–64, 2003.

[9] E. Demerouti, A. B. Bakker, F. Nachreiner, and W. B. Schaufeli,
“The job demands – resources model of burnout,” Journal of Ap-
plied Psychology, vol. 86, no. 3, pp. 499–512, 2001.

[10] V. Bellotti, N. Ducheneaut, M. Howard, I. Smith, and R. E. Grinter,
“Quality versus quantity: E-mail-centric task management and
its relation with overload,” Human–Computer Interaction, vol. 20,
no. 1-2, pp. 89–138, 2005.

[11] D. Derks and A. B. Bakker, “The impact of e-mail communication
on organizational life,” Cyberpsychology: Journal of Psychosocial
Research on Cyberspace, vol. 1, no. 1, p. article 4, 2010.

[12] J. Kaczorek and B. Wiszniewski, “Bilateral multi-issue negotia-
tion of execution contexts by proactive document agents,” Int. J.
Ad Hoc and Ubiquitous Computing, vol. 32, no. 3, pp. 1–17, 2019.

[13] N. Freed and N. S. Borenstein, “Multipurpose Internet Mail Ex-
tensions (MIME) Part One: Format of Internet Message Bodies,
Internet Engineering Task Force RFC 2045.” http://www.ietf.
org/rfc/rfc2045.txt, 1996.

[14] WfMC, Process Definition Interface – XML Process Definition Lan-
guage. Workflow Management Coalition, version 2.2 ed., August
30 2012.

[15] M. P. Singh and M. N. Huhns, Service-Oriented Computing: Se-
mantics, Processes, Agents. Wiley, Jan 2005.

[16] H. B. Hassan, S. A. Barakat, and Q. I. Sarhan, “Survey on server-
less computing,” J. Cloud Comput., vol. 10, July 2021.

[17] P. Dourish, W. K. Edwards, A. LaMarca, J. Lamping, K. Petersen,
M. Salisbury, D. B. Terry, and J. Thornton, “Extending document
management systems with user-specific active properties,” ACM
Trans. Inf. Syst., vol. 18, pp. 140–170, Apr 2000.

[18] I. Satoh, “Mobile agent-based compound documents,” in Proc.
2001 ACM Symposium on Document engineering, DocEng ’01,
(New York, NY, USA), pp. 76–84, ACM, 2001.

13

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt


[19] C. Savaglio, G. Fortino, and M. Zhou, “Towards interoperable,
cognitive and autonomic IoT systems: An agent-based approach,”
in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT),
pp. 58–63, 2016.

[20] K. Kravari and N. Bassiliades, “A survey of agent platforms,” Jour-
nal of Artificial Societies and Social Simulation, vol. 18, no. 1, p. 11,
2015.

[21] D. Šišlák, M. Rehák, M. Pěchouček, and D. Pavlíček, “Deploy-
ment of a-globe multi-agent platform,” in Proc. 5th International
Joint Conf. on Autonomous Agents and Multiagent Systems, AA-
MAS ’06, (New York, NY, USA), pp. 1447–1448, ACM, 2006.

[22] M. Oey, S. van Splunter, E. Ogston, M. Warnier, and F. M. T. Bra-
zier, “A framework for developing agent-based distributed appli-
cations,” in 2010 IEEE/WIC/ACM International Conf. on Web Intel-
ligence and Intelligent Agent Technology, vol. 2, pp. 470–474, Aug
2010.

[23] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-
Agent Systems with JADE. Wiley, 2007.

[24] X. Niu, D. Kumanov, L.-H. Hung, W. Lloyd, and K. Y. Yeung,
“Leveraging serverless computing to improve performance for
sequence comparison,” in Proceedings of the 10th ACM Interna-
tional Conference on Bioinformatics, Computational Biology and
Health Informatics, BCB ’19, (New York, NY, USA), p. 683–687,
Association for Computing Machinery, 2019.

[25] G. Adzic and R. Chatley, “Serverless computing: economic and
architectural impact,” in Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering, ESEC/FSE 2017, (New
York, NY, USA), p. 884–889, Association for Computing Machin-
ery, 2017.

[26] D. Barcelona-Pons, P. García-López, A. Ruiz, A. Gómez-Gómez,
G. París, and M. Sánchez-Artigas, “Faas orchestration of parallel
workloads,” in Proceedings of the 5th International Workshop on
Serverless Computing, WOSC ’19, (New York, NY, USA), p. 25–30,
Association for Computing Machinery, 2019.

[27] P. Dalmaris, E. Tsui, B. Hall, and B. Smith, “A framework for the
improvement of knowledge-intensive business processes,” Busi-
ness Proc. Manag. Journal, vol. 13, no. 2, pp. 279–305, 2007.

[28] R. Vaculin, R. Hull, T. Heath, C. Cochran, A. Nigam, and
P. Sukaviriya, “Declarative business artifact centric modeling of
decision and knowledge intensive business processes,” in 2011
IEEE 15th International Enterprise Distributed Object Computing
Conference (EDOC 2011), pp. 151–160, Aug 2011.

[29] C. D. Ciccio, A. Marrella, and A. Russo, “Knowledge-intensive
processes: Characteristics, requirements and analysis of contem-
porary approaches,” Journal on Data Semantics, vol. 4, pp. 29–57,
2014.

[30] S. Steinau, A. Marrella, K. Andrews, F. Leotta, M. Mecella, and
M. Reichert, “DALEC: A framework for the systematic evalu-
ation of data-centric approaches to process management soft-
ware,” Software & Systems Modeling, September 2019.

[31] M. Tims, A. B. Bakker, and D. Derks, “The impact of job craft-
ing on job demands, job resources, and well-being.,” Journal of
Occupational Health Psychology, vol. 18, no. 2, pp. 230–40, 2013.

[32] S. Poslad, Ubiquitous Computing: Smart Devices, Environments
and Interactions. Wiley Publishing, 2009.

[33] M. Smiatacz and B. Wiszniewski, “Just look at to open it up:
A biometric verification facility for password autofill to pro-
tect electronic documents,” Multimedia Tools Appl., vol. 80,
p. 20089–20124, May 2021.

[34] V. C. Farias da Costa, L. Oliveira, and J. de Souza, “Internet of
everything (ioe) taxonomies: A survey and a novel knowledge-
based taxonomy,” Sensors, vol. 21, no. 2, 2021.

[35] A. Poth, N. Schubert, and A. Riel, Sustainability Efficiency Chal-

lenges of Modern IT Architectures – A Quality Model for Serverless
Energy Footprint, pp. 289–301. 08 2020.

[36] P. M. Kelly, P. D. Coddington, and A. L. Wendelborn, “Lambda
calculus as a workflow model,” Concurr. Comput.: Pract. Exper.,
vol. 21, p. 1999–2017, Nov. 2009.

14


	Introduction
	Process enactment based on email
	Job Demands and Resources

	Proactive Document Agents
	The MIND Model
	Hub Document
	Smart Email Client

	Experiments
	Class Roster Case Study
	Prototypes of Clients

	Related work
	Active documents
	Mobile agent platforms
	Serverless platforms

	Conclusion

