
TASK Quarterly Journal is a peer-reviewed open access journal. © 2022 The Author(s). This is an open-access article
distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

GPU IMPLEMENTATION OF ATOMIC FLUID MD
SIMULATION
Aleksander Dawid
Department of Transport and Computer Science,

The University of Dąbrowa Górnicza,
1c Cieplaka St., 41-300 Dąbrowa Górnicza, Poland

ABSTRACT

A computer simulabon of an atomic fluid on a GPU was implemented using the CUDA architecture. It
was shown that the programming model for efficient numerical compubng applicabons was changing
with the development of the CUDA architecture. The introducbon of the L2 cache decreased the latency
between the global GPU memory and the registers. The performed MD simulabon using the global
memory and registers showed that the average accelerabon relabve to the CPU reached 80 bmes for
single-precision calculabons. Usually, the shared block memory gives much be4er results for this kind of
calculabon. We have found that using the shared memory gives accelerabon over 116 bmes in
comparison to the CPU. It is about 49% faster than using the global memory and registers. It is shown
here that the performance of generally available graphics cards for double-precision calculabons is
significantly lower than for single-precision calculabons. The recorded double-precision accelerabon
relabve to the CPU in our experiment averaged 6 and 7 bmes for the global and shared memory,
respecbvely. We performed these calculabons on two different CUDA enable device systems.

DOI: https://doi.org/10.17466/tq2022/26.1/b

Keywords: MD simulabon, GPU; atomic fluid, MD parallel algorithm

TASK Quarterly 26 (1) 2022

25

1. Introduc9on

Fluid dynamics in closed tanks has been

intensively researched in recent years due to its

potenbal applicabons as nanoelectronic devices,

nanoscale parbcle sensors [1] and gas storage

devices [2,3]. The most frequently used tool for

conducbng preliminary research in this field are

classical computer simulabons using the

molecular dynamics method. There are many

studies invesbgabng the properbes of atomic

fluids with this method in small clusters [4–6]

and bulk atomic systems [7–9]. There are many

studies in the field of computer simulabons

examining atomic fluids in narrow graphene or

graphite gaps, where such an atomic fluid

exhibits a two-dimensional structure. These

solubons are used in the search for materials

with low thermal permeability [10–12] and

be4er lubricity [13]. Another area of research

where computer simulabons of atomic fluids are

of parbcular importance due to the costs of real

experiments are studies of the interacbon of

atomic fluids with carbon nanotubes. The

movement of atoms inside a carbon nanotube is

heavily limited by its geometry. In extreme

cases, a one-dimensional array of atoms can

form inside a nanotube. Invesbgabng the

dynamics of such a series of atoms, e.g. noble

metals, may give an answer to whether such a

series of atoms can be a good conductor of

electricity. Currently, there are many

publicabons on the interacbon of thin atomic

layers with carbon nanotubes [14–17]. The most

promising in terms of applicabons for the

construcbon of memory elements are studies

on nanotubes filled with fullerenes with

potassium ion inclusion. [18,19]. Such a system

can be controlled by an electric or magnebc

field by changing its state by shi&ing the doped

fullerene, which corresponds to 1 or 0 in a

binary system. Due to the small size of such

systems, as well as the possibility of building

structures in three dimensions, they can be

widely used in the construcbon of capacious

memory systems. The difficulty level of carrying

out classical computer simulabons increases

with the number of atoms and their chemical

bonds. Classically, i.e. using Newtonian

dynamics, it requires the use of complex

empirical potenbals modeling the structure and

dynamics of atomic systems. Currently, most

computer simulabons are performed using the

so-called force field. A good example is the

publicabon examining the properbes of

fullerenols in an aqueous solubon. The atomic

force field is sufficient to determine whether the

fullerenol is hydrophilic or hydrophobic [20]. All

these molecular dynamics simulabons are

computabonally intensive. Accelerabng them

even twice on the GPU is already a big

qualitabve leap. Speed is especially important

when simulabon is to be interacbve. What does

it mean? Let us assume that we want to check

how an atomic fluid will behave in a container

with various obstacles. This kind of calculabon is

very expensive on CPU processing. We probably

need a few hours to see what will happen in a

few seconds. It is impossible to interact in real-

bme with the simulabon. At high compubng

speeds, we can create an interacbve simulabon

program where the user can change the

obstacles in the container and observe in real-

bme how the fluid flows. This allows observing

changes in the behavior of an atomic fluid on a

computer screen. Such a solubon can

significantly speed up the design of tanks and

installabons for storing atomic gases in the

liquid state. The graphics card is a device that

helps in achieving the required compubng

speed for computer simulabons. Many solubons

in the form of parallel MD algorithms for the use

on the GPU have already been developed [21–

26

24]. The purpose of this paper is to present a

simple example of replacing the serial algorithm

used previously on the CPU with the concurrent

algorithm for the GPU. The code was wri4en for

the NVIDIA CUDA architecture [25]. All the

algorithms presented in the paper are wri4en in

C++ and presented in the form of easy-to-use

lisbngs. This paper addresses the quesbon of

how to move from serial CPU compubng to

parallel compubng in molecular dynamics

simulabons. Experimental simulabons of the

fluid of argon atoms show the advantage of

calculabons on modern graphics systems over

calculabons performed on the central

processing unit.

2. Fi:ng the problem to the
mul9-threaded GPU model

The CUDA programming model requires the

problem to be broken down into mulbple

threads, whose idenbfiers usually number a

certain iterabon of a given problem. If we look

at the serial code of a typical MD simulabon, we

nobce that the processing stream is

concentrated around a single parbcle. The task

of the simulabon is to determine the posibon of

a given parbcle in the next bme step. This new

posibon, in principle, will depend mainly on the

force field that acts on this parbcle. If we now

connect the thread with the dynamics of a

single parbcle, we will get a system of

dependent threads. This relabonship will only

manifest itself in the case of calculabng the

forces or accelerabons acbng on a given

parbcle. Here, a global thread synchronizabon

will be needed before refreshing the posibon of

any parbcle. Microscopic quanbbes such as the

posibon, velocity and, accelerabon will be found

in arrays of three-dimensional vectors allocated

in the global memory.

2.1 Alloca9on of resources in the GPU

The example of fluid dynamics presented here

assumes that the atoms are located at the

nodes of a simple cubic (SC) lacce (Fig. 1). Such

a network is characterized by three parameters

defining the network size (Nx, Ny, Nz) and one

parameter defining the distance from the

nearest neighbors denoted as d. The last

parameter is also referred to as the lacce

constant in the case of the SC lacce. The

constants Nx, Ny, and Nz define the number of

bmes the network is duplicated in a given

direcbon. The procedure that is used in this

example assumes that the center of such a

crystal will be at the origin of the coordinate

system.

Figure 1. Simple cubic lacce.

In order to create such a crystal, we need an

appropriate size table to store the posibons of

the atoms. The size of such an array is calculated

as the product of all the three dimensions N =

Nx*Ny*Nz, where Nx = 1,2,…,i, Ny = 1,2,…,j , Nz =

1,2,…,k. The microscopic descripbon of atoms

requires the storage of data in the form of

vector quanbbes of posibons and its successive

derivabves. We have created a special Vector

class for this purpose with the property fields

labeled x, y, and z with a floabng-point type, it

describes the three-dimensional (3D) Euclidean

space. We have also defined in this class all

operators that operate on 3D vectors. Now we

27

can create an array of r = new Vector[N] objects

in which the posibons of the atoms will be

stored. To build a simple cubic lacce, we can

use an algorithm wri4en in C++ :

 Lis9ng 1

 1. void SC_laIce(double d, int Nx, int Ny, int Nz)

 2. {

 3. for (int i = 0; i < Nx; i++)

 4. {

 5. for (int j = 0; j < Ny; j++)

 6. {

 7. for (int k = 0; k < Nz; k++)

 8. {

 9. int n = i * Nz * Ny + j * Nz + k;

 10. r[n].x = d * i;

 11. r[n].y = d * j;

 12. r[n].z = d * k;

 13. }

 14. }

 15. }

 16. }

To perform MD simulabons, we also need

Vector object arrays that store velocibes v = new

Vector[N] and accelerabons a = new Vector[N].

Equivalents of these tables must also be created

for the GPU memory. Then, we must copy such

data from the host to the device memory. We

assume that the inibal velocity and accelerabon

of the atoms are zero. We pracbcally do not

need to take any extra acbon to set the values

here, because the the Vector constructor always

sets the variables to zero. Now, it is sufficient to

copy this zeroed v and a tables to the device

memory. Now, the GPU buffers are ready to

perform the calculabons related to solving the

equabons of mobon.

2.2 Kernel for concurrent compu9ng

An algorithm that performs the MD simulabon

with the velocity Verlet method [26] requires

three steps. We have enclosed all of these steps

in one CUDA kernel roubne. The input

parameters for this roubne are the posibons,

velocibes, and accelerabons of the atoms

grouped in arrays of the structure (AOS) located

in the global GPU memory. The first step of the

roubne does a half refresh of posibons and

velocibes (Eq.1).

(1)

The most important element of this procedure,

in the case of CUDA programming, is the index i

that enumerates atoms. This is the basis of

choosing the number of threads involved in the

calculabon. In this work, we have a4ached one

thread to one atom to solve its trajectory

evolubon. To start the calculabons we need to

copy the data from the global memory to local

registers. The calculabons themselves are

performed on local registers, which gives the

opbmal bme of their execubon. The next

procedure is to update the accelerabons of each

atom. We have to calculate the net force on

each parbcle. In general, the problem is of O(n2)

complexity. The cribcal part of the effecbve

execubon of MD simulabons is the formula of

the net force calculabon (Eq. 2).

 (2)

The simplest approach to this problem is to

work directly on global tables from the level of

the computabonal kernel. It is about reading

directly from the GPU buffer. It is known from

Newton's second law of mobon that

accelerabon is proporbonal to the force acbng

between the atoms. Usually, we add the forces

acbng on one atom, but we can also add up the

accelerabons, especially when the masses of

the individual atoms are the same. The inputs to

this procedure are AOS describing posibons. The

output from this procedure is the accelerabon

of each atom. As one can see, the procedure

loops through all n atoms in the system. We

know that this can be simplified by using a

truncabon radius or a Verlet list [26]. Here,

28

however, we give up these solubons for both

the CPU and the GPU to show the full

calculabons. In this computabonal kernel, we

only use fast local variables to perform

calculabons. The loop through all the atoms is

broken into two parts to eliminate the condibon

that checks whether the atom somebmes does

not interact with itself. We calculate the force as

a negabve potenbal gradient.

(3)

The basis for calculabng the force in our work is

the Lennard-Jones potenbal [27].

 (4)

We calculated the forces from the potenbal

analybcally, and then we applied it to the

computabonal roubne. In the CPU algorithm we

took the general assumpbon from the 3rd

Newton’s law that it reduces the iterabon of the

calculabon by half. The same trick is hard to

apply in the CUDA architecture. Precalculabons

of individual pairs will take extra bme, especially

if we need (n-1)2/2 extra threads. In addibon,

two dimensional-arrays are needed to access

these values. Our solubon is more straight. Each

thread calculates the net force acbng on the i-th

atom. We named this method GLOBAL.

According to the Nvidia CUDA documentabon

[28], the global GPU memory is marked as the

slowest. The overall performance of this

memory improves in the new GPU architecture,

the L2 cache memory. It works on the hardware

level and does not need any extra acbons from

the programmer. Nevertheless, the good

pracbce of the CUDA programming encourages

us to use the block shared memory. This type of

memory is much faster than the global memory

but slower than registers. The main problem of

this memory is its range, reduced to a single

block. We cannot access the shared memory

from another block. The size of this memory is

usually between 32 and 64 kB. The block size is

expressed by the number of threads that it can

contain. The flow diagram of the algorithm that

calculates the net force on i-th atom using the

shared memory is shown in Figure 2. We named

this version of the algorithm SHARED. We start

processing by filling up the shared memory by

the porbon of posibons data from the global

memory equal to the block size. A&er this step,

we have to synchronize all calculabon threads

before we go to the next step. The

synchronizabon prevents the calculabon of an

old set of data. Next, we can calculate a parbal

force acbng on the i-th atom. A&er that step, we

must again synchronize the threads to obtain

correct results. We repeat the process of

copying data from the global memory and

calculabng the parbal net force unbl the data

runs out. The procedure is based on the

assumpbon that, despite the limited cache, the

forces in the chunks that fit in this cache can be

added up. The last step in Verlet’s algorithm is

to update the velocibes in the t+1 bme step.

 (5)

The formula for updabng velocibes (Eq. 5) is

exactly the same as the formula from Equabon

1. Now, we can go to the detailed CUDA

implementabon of the algorithms and discuss

the bo4lenecks of these solubons.

We start our implementabon with the

accelerabon calculabons. In Lisbng 2 we have

the procedure with the shared memory. The

extern __shared__ Vector rPos[]; statement

specifies a buffer in the shared memory the size

of which is determined before the given

compute kernel is started.

29

 Lis9ng 2

 1. __global__ void Accel(Vector *R, Vector *A)

 2. {

 3. extern __shared__ Vector rPos[];

 4.

 5. unsigned int gid = threadIdx.x + blockDim.x*blockIdx.x;

 6. if (gid>gN) return;

 7.

 8. int i, porHon;

 9. Vector mPos,f;

 10. mPos = R[gid];

 11.

 12. for (i = 0, porHon = 0; i < gN; i += blockDim.x, porHon++)

 13. {

 14. int bli = porcja * blockDim.x;

 15. int idx = bli + threadIdx.x;

 16. rPos[threadIdx.x] = R[idx]; //copy to block

 17. __syncthreads();

 18. f = CalcForcePart(bli, gid, mPos, f);

 19. __syncthreads();

 20. }

 21. A[gid] = f;

 22. }

The for loop in this procedure is limited by the

number of atoms but also changes by the enbre

block size because the force is calculated for the

enbre block (Lisbng 2). The condibon inside the

block loop prevents the atom from interacbng

with itself. The same procedure as before is

used to calculate the forces acbng on the

selected atom. Variables beginning with g in the

procedures described above represent variables

of type __constant__. They are used to store

constant informabon that does not change

during the simulabon.

 Lis9ng 3

 1. inline __device__ Vector CalcForcePart(int bli, unsigned int gbli,

Vector r, Vector a)

 2. {

 3. int i;

 4. extern __shared__ Vector rPos[];

 5. for (i = 0; i<blockDim.x; i++) {

 6. if (bli + i != gbli) {

 7. a = LJ_Pairs(r, rPos[i], a);

 8. }

 9. }

 10. return a;

 11. }

The main intensive algebraic operabon is

present in the funcbon LJ_Pairs(). If we look at

the code below, we can find the most

computabonal expensive line of this code: Yes,

it is reciprocal of the distance square

calculabons in line 6. If we replace this line with

a well-opbmized CUDA library funcbon

Rijs2=__fdivdef(1.0f,Rij2) we can speed up our

calculabon significantly. If we eliminate a mix of

single-precision and double-precision numbers

we can again speed up our calculabons. For

example, number 2.0 is treated internally as a

Figure 2. Single threaded force calculabon using the shared memory.

30

double-precision number.

 Lis9ng 4

 1. inline __device__ Vector LJ_Pairs(Vector ri, Vector rj, Vector a) {

 2. real Rij2, Rijs2, Rijap, Rijrp, PZ;

 3. Vector Rij, Fij;

 4. Rij = ri - rj;

 5. Rij2 = Rij.x*Rij.x + Rij.y*Rij.y + Rij.z*Rij.z;

 6. Rijs2 = 1.0 / Rij2;

 7. Rijap = Rijs2*Rijs2*Rijs2*g_Sigma6;

 8. Rijrp = 2.0 * Rijap*Rijap;

 9. PZ = g_ALJ*(Rijrp - Rijap)*Rijs2;

 10. Fij = Rij*PZ;

 11. a += Fij;

 12. return a;

 13. }

How can we start the MD simulabon using the

computabonal kernels? In the beginning, two

important parameters must be defined. First,

the size of the block, i.e. how many threads the

block will contain. In the case of the reference

device used in this work, it is best to choose the

number of threads equal to the number of

threads processed at a bme in a single

mulbprocessor. We set the number of threads

in the block in variable threadsPerBlock. Now

we need to determine how many blocks we

need to accommodate this given N number of

atoms. The algorithm for calculabng the

number of blocks based on the variables N and

threadsPerBlock will look as follows.

 Lis9ng 5

 1. test = N % threadsPerBlock;

 2. if (test == 0) {

 3. blocksPerGrid = N / threadsPerBlock;

 4. }

 5. else {

 6. blocksPerGrid = N / threadsPerBlock + 1;

 7. }

A&er secng the variables threadsPerBlock and

blocksPerGrid, we can call computabonal

kernels for molecular dynamics simulabon. First,

let us see what the computabon will look like

without shared memory declarabon:

 Lis9ng 6

 1. for(unsigned int step=0; step<max_step; step++){

 2. VerletHalf<<<blocksPerGrid, threadsPerBlock>>>(dev_r, dev_v,

dev_a);

 3. GlobalAccel <<<blocksPerGrid, threadsPerBlock>>>(dev_r,

dev_a);

 4. VerletAll <<<blocksPerGrid, threadsPerBlock >>>(dev_v,

dev_a);

 5. }

To use the shared memory in a block, we need

to define its size. It will be related to the data

type that we will use in this memory. In the case

of simulabon, this is the posibon informabon in

the form of a Vector class, so we can determine

the cache size from the number of threads in

the block as follows: sharedSize =

threadsPerBlock * sizeof(Vector);

If we take a maximum block size value to be

1024, the shared memory size will be

1024 * 24 = 24576 bytes. This is approximately

39% of the maximum memory per block for the

reference device. The execubon of the

procedures for the simulabon using shared

memory will be as follows:

 Lis9ng 7

 1. for(unsigned int step=0; step<max_step; step++){

 2. VerletHalf <<<blocksPerGrid, threadsPerBlock>>>(dev_r, dev_v,

dev_a);

 3. Accel <<<blocksPerGrid, threadsPerBlock,

sharedSize>>>(dev_r, dev_a);

 4. VerletAll <<<blocksPerGrid, threadsPerBlock>>>(dev_v,

dev_a);

 5. }

In a modern CUDA architecture, we can use

streams technology. We can run not one kernel

but several concurrent kernels. For example, if

we want to use four streams, then our kernel

will look as in Lisbng 8. The variables cuda1,

cuda2, cuda3, cuda4 are the handlers to the

CUDA streams:

31

 Lis9ng 8

 1. int blocks= blocksPerGrid/4;

 2. int chunk = blocks*threadsPerBlock;

 3. for(unsigned int step=0; step<max_step; step++){

 4. MD<<<blocks, threadsPerBlock, sharedSize, cuda1>>>(R, V, A,

0);

 5. MD<<<blocks, threadsPerBlock, sharedSize, cuda2>>>(R, V, A,

chunk);

 6. MD<<<blocks, threadsPerBlock, sharedSize, cuda3>>>(R, V, A,

2*chunk);

 7. MD<<<blocks, threadsPerBlock, sharedSize, cuda4>>>(R, V, A,

3*chunk);

 8. }

2.4 CPU vs GPU precision of calcula9on

A&er the MD simulabon in the GPU is finished,

we need to assert that the result is correct.

Before copying the result, we need to make sure

whether any other threads in the device are not

performing the calculabons. We have to

synchronize the threads again. As the control

parameters, we use the velocibes of all parbcles.

We have to copy the results from the GPU to the

host memory. Copying is performed to a new

table in order to avoid losing data from the

simulabon performed on the main processor.

There are a number of ways to compare the

results between the CPU and the GPU. The

solubon used here is to determine the sum of

the absolute values from the difference

between the speed vectors calculated in the

GPU and the CPU (Eq. 6).

(6)

3. Results

Graphics cards are mainly focused on quick

calculabons related to the processing of polygon

graphics. The accuracy of these calculabons is

o&en of secondary importance. The only thing

that ma4ers is that the objects are properly

transformed into 3D spaces and that there are

no gross irregularibes in their matching. The

race to increase the frame rate in computer

games has recently resulted in the introducbon

of half-precision calculabons, where a floabng-

point number is described on 2 bytes. However,

in serious scienbfic applicabons, even a 4-byte

descripbon of a floabng-point number is not

enough. These are the topics of computer

simulabons of molecular systems. Let us

illustrate this with an example. Two atoms come

closer to each other. There is no such thing as

an infinitesimally small shi& in computer

calculabons using floabng-point numbers. The

precision of floabng-point numbers is significant

in MD simulabons. If the calculabons are not

too precise, they may cause an increase in the

kinebc energy of the system, although no

external forces act on the system. The research

done here focuses on determining the GPU

accelerabon provided by both single and

double-precision calculabons.

In our experiment, the calculabons were made

on two different GPU devices. The first unit is an

HP Omen laptop with the CPU: Intel i5-6300HQ

clocked with a clock frequency of 2.3 GHz and

the GPU: Nvidia Geforce GTX 960M (processor

GM-107A) clocked with a clock frequency of

1.176 GHz. This GPU is for mobile computers.

The second unit is Jetson Nano with the CPU:

Quad-core ARM Cortex-A57 MPCore processor

and the GPU: NVIDIA Maxwell architecture with

128 NVIDIA CUDA® cores. This class of the

devices belongs to single-board computers. Our

simulabons were performed on Linux UBUNTU

18.04 systems. We compiled our source code

with the CUDA toolkit 11.4 (HP Omen) and

CUDA toolkit 10.3 (Jetson Nano). In both cases,

we switched on the O2 level opbmizabon for

the CPU and the GPU. We ublized switches for

the CUDA 5.0 (HP Omen) and CUDA 5.3 (Jetson

Nano) architectures. In our calculabons, the

number of atoms was the power of two. We

performed the calculabons for lacces of N from

32

210 to 219. We first looked at accelerabng single-

precision calculabons (Fig. 3). The calculabons

were performed using one stream with the force

calculabons in the shared memory.

These calculabons were performed for one MD

simulabon step with different block size values.

The MD step bme is equal dt = 10-15 s. Figure 3

shows the accelerabon saturabon for the

number of atoms greater than 80,000. The

number of atoms in the system directly

corresponds to the number of threads involved

in the calculabon.

Figure 3. Dependence of accelerabon of single-
precision computabon on the number of atoms in the
system.

With low numbers of atoms, from a few to

several thousand, the speed of computabon

increases very quickly. A&er that, this increase

conbnues, but it is much slower. In this first

period, the threads usually fit increasingly be4er

with the graphics processor. A&er the processor

is saturated with threads, they must be queued

for further execubon. However, floabng-point

calculabons are so fast in the graphics system

that we can sbll see an increase in performance.

There are also small differences in performance

for different block sizes. The maximum

accelerabon achieved in this case was 116 bmes

compared to the single CPU core. Let us see

now how the introducbon of the shared

memory improves the MD calculabons in single

precision. In Figure 4 we can see the difference

in performance when using global and shared

memory kernels. If we look closer at this plot,

we can see the maximum of global memory

calculabons for the number of atoms equal to

65536 (216)). It is true for block sizes equal to

both 128 and 256 threads. We cannot observe

any maxima at this point for shared memory

calculabons. In the case of shared memory

calculabons, the plot of 256 threads increases

smoothly unbl saturabon at 262144 simulated

atoms. The situabon is a bit different in the case

of double-precision calculabons (Fig. 5). The

accelerabons of a double-precision calculabon

are smaller than accelerabons of single-

precision. It is only on the order of 7.0 bmes

compared to the one CPU core. It means that for

all processor cores, it can give only a percentage

advantage of the GPU. Moreover, this speed-up

is achieved only above 50,000 atoms. Faster

saturabon may indicate inferior handling of

double-precision floabng-point numbers. Using

direct global memory in the calculabon does not

fix the slow speed-up of calculabons (Fig. 6).

Figure 4. Comparison of global and shared memory
single precision MD calculabons.

We see that use of the global memory is slower

than using the shared memory. In the plot for

both algorithms, we can observe a peak at

65536 atoms for a block size equal to 256

threads. In Table 1, we can see the bmes of

calculabon on two GPU devices. The table label

"Global" means a global memory algorithm, and

the label "Shared" means a shared-memory

33

algorithm. The integer a&er the label named

"Shared" means the number of streams in the

CUDA technology.

Figure 5. Dependence of accelerabon of double-
precision computabon in relabon to one CPU core on
the number of atoms in the system.

The rabo global to the shared memory single-

precision calculabon is equal to 1.49 for

GTX960M and 1.62 for Jetson Nano. Both GPUs

are of the same "Maxwell" architecture.

GTX960M uses CUDA 5.0 and Jetson Nano

CUDA 5.3. It seems that the Jetson Nano GPU is

less cached. Introducing more streams to the

calculabons does not affect the MD simulabon

accelerabon. Based on these results, we can see

that the procedure that uses the shared

memory is faster than the procedures that use

the global memory. The graphics card used for

tesbng is a card typically designed for polygon

processing. GPUs used in compubng centers can

perform both single and double-precision

floabng-point calculabons with equal

speed. However, it was more about showing

accelerabon on popular and cheap to buy

equipment. On the other hand, the thermal

design power (TDP) of GTX960M is 75 W, and

Jetson nano is 10 W. The top gaming card

RTX3090 has a TDP equal to 350 W. According to

the service "TechPowerUp" [29] RTX3090 is over

10 bmes faster than GTX960M. Unfortunately,

we have no access to this graphic card to test

the speed-up of our MD simulabon.

Another issue when it comes to concurrent

compubng is its accuracy and how much it

differs between the CPU and the GPU. The

molecular dynamics method is based on solving

the equabons of mobon. It allows us to follow

the trajectory of a single parbcle. If we assume

that we are dealing with a finite precision of

calculabons, then this trajectory is one of many

possibilibes. An example are the calculabons

performed here.

Figure 6. Comparison of global and shared memory

double precision MD calculabons.

A slight difference in the precision of the

calculabons may result in a completely different

posibon of the parbcle a&er millions of steps.

Does this mean that one trajectory is true

and the other is not? It all depends on the

numerical libraries and the equipment on which

the calculabons will be performed. It turns out

that despite the differences in the posibons of

individual parbcles, macroscopic values, such as

pressure and temperature, are the same in both

Device Precision Global [s] Shared 1 Shared 4 Shared 8

GTX960M
float 21.45 14.31 14.40 14.46

double 244.40 214.28 214.27 214.26

Jetson
nano

float 119.27 73.36 73.21 73.21
double 1579.47 1388.18 1389.10 1389.04

Table 1. Calculabon bmes. The data was taken from our MD simulabon with the 256 thread block size.

34

systems. However, we will be interested in the

microscopic differences between CPU and GPU

compubng. Figure 7 shows the relabonship

between the relabve error of the GPU and the

CPU calculated based on the final values of the

velocity vector in one step and the number of

atoms. It is generally an increasing linear

relabonship. In single-precision calculabons (Fig.

7) the error values are 9 orders higher than for

double-precision calculabons (Fig. 8). The

differences may be due to the rounding applied

to the floabng-point number in the CPU and the

GPU.

Figure 7. Dependence of the relabve velocity error on

the number of atoms for operabons on single

precision numbers.

4. Conclusions

The aim of this study is to indicate the growing

role of concurrent programming in the

construcbon of applicabons based on computer

simulabons using the molecular dynamics

method. The current direcbon of processor

development can be characterized by one

slogan -“mulb-core”. The leader in introducing

the mulb-core technology are graphics

processors, where we are dealing with

thousands of cores. On the other hand, properly

wri4en applicabons are sbll needed to use these

numbers of cores. This study is intended to help

create concurrent so&ware using well-known

computer simulabon algorithms. This work gives

us a brief overview of the techniques used in

molecular dynamics simulabons to increase

their efficiency. The results presented in this

paper show the accelerabon of MD simulabon

calculabons on the GPU.

Figure 8. Dependence of the relabve velocity error on

the number of atoms for operabons on double

precision numbers.

For operabons carried out on single-precision

numbers, the accelerabon reached 116 bmes.

The result for double precision numbers, 7.1

bmes, may be a bit disappoinbng compared

with the previous results. It must be

remembered that these calculabons were

performed on the mobile graphics card version,

where its full potenbal was not unleashed due

to the power consumpbon.

References

1. Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L,

Duan W 2008 Adsorption of Gas Molecules on

Graphene Nanoribbons and Its Implication for

Nanoscale Molecule Sensor J. Phys. Chem. C. 112

pp. 13442-13446

2. Zhang F, Yang F, Huang J, Sumpter B G and Qiao R

2016 Thermodynamics and Kinetics of Gas Storage

in Porous Liquids J Phys. Chem B 120 pp. 7195-

7200

3. Dawid A, Raczyński P and Gburski Z 2014

35

Depolarised Rayleigh light scattering in argon layer

confined between graphite plains: MD simulation

Mol. Phys. pp. 1-6

4. Dawid A and Gburski Z 1997 Dynamical

properties of the argon-krypton clusters: molecular

dynamics calculations J Mol. Struct. 410 pp. 507-

511

5. Blaisten-Barojas E and D. Levesque 1986

Molecular-dynamics simulation of silicon clusters

Phys Rev. B. 34 pp. 3910-3916

6. Dawid A and Gburski Z 1998 Interaction-induced

absorption in argon-krypton mixture clusters:

Molecular-dynamics study Phys Rev. A. 58 pp. 740-

743

7. Sokol M, Dawid A, Dendzik Z and Gburski Z 2004

Structure and dynamics of water - molecular

dynamics study J Mol. Struct. 704 pp. 341-345.

8. Akbarzadeh H, Abroshan H, Taherkhani F,

Izanloo C and Parsafar G 2011 A Size dependence

and effect of potential parameters on properties of

nano-cavities in liquid xenon using molecular

dynamics simulation Chem Phys. 381 pp. 44-48

9. Devarajan D, Liang L, Gu B, Brooks S C, Parks J M

and Smith J C 2022 Molecular Dynamics Simulation

of the Structures, Dynamics, and Aggregation of

Dissolved Organic Matter Environ Sci. Technol. 54

pp. 13527-13537

10. Dawid A and Gburski 2017 Z Molecular

dynamics simulation of collision-induced absorption

spectra of neon-krypton mixture thin layer confined

between graphite walls J Mol. Liq 2017 245 pp. 85-

90

11. Dawid A and Gburski Z 2017 Interaction-

induced light scattering in thin neon film confined

between graphite slabs: MD study J Mol. Liq 245 pp.

71-75

12. Dawid A and Gburski Z 2017 Structural and

Dynamical Properties of Argon-Krypton Binary

Mixture Confined Between Graphite Slabs:

Molecular Dynamics Simulation Interface Stud.

Appl 195

13. Piatek A, Dawid A and Gburski Z 2006 The

existence of a plastic phase and a solid–liquid

dynamical bistability region in small fullerene

cluster (C60)7: molecular dynamics simulation J

Phys. Condens. Matter 18 pp. 8471.

14. Dawid A and Gburski 2007 Z Dielectric

relaxation of 4-cyano-4-n-pentylbiphenyl (5CB) thin

layer adsorbed on carbon nanotube - MD simulation

J Non-Cryst. Solids 353 pp. 4339-4343.

15. Dawid A and Gwizdała W 2009 Dynamical and

structural properties of 4-cyano-4-n-pentylbiphenyl

(5CB) molecules adsorbed on carbon nanotubes of

different chiralities: Computer simulation J Non-

Cryst. Solids 355 pp. 1302-1306.

16. Raczyński P, Dawid A, Piętek A and Gburski Z

2006 Reorienatational dynamics of cholesterol

molecules in thin film surrounded carbon nanotube:

Molecular dynamics simulations J Mol. Struct. 792

pp. 216-220.

17. Raczyński P, Dawid A, Sokoł M and Gburski Z

2007 The influence of the carbon nanotube on the

structural and dynamical properties of cholesterol

cluster Biomol Eng. 24 pp. 572-576.

18. Dawid A, Piątek A, Sokoł M and Gburski Z 2008

Dynamical properties of potassium ion K+ trapped

in a fullerene C60 cage: An MD simulation J Non-

Cryst. Solids 354 pp. 4296-4299.

19. Dawid A and Gorny K 2007 Dynamics of

Endohedral Fullerene K+@C60 inside single walled

carbon nanotube: MD simulation 10

20. Dawid A, Gorny K and Gburski Z 2011 The

structural studies of fullerenol C60(OH)24 and nitric

oxide mixture in water solvent – MD simulation

Nitric Oxide 25 pp. 373-380.

21. Liu W, Schmidt B, Voss G and Muller-Wittig W

2008 Accelerating molecular dynamics simulations

using Graphics Processing Units with CUDA Comput

Phys. Commun. 179 pp. 634-641.

22. Kondratyuk N, Nikolskiy V, Pavlov D and

Stegailov V 2021 GPU-accelerated molecular

dynamics: State-of-art software performance and

porting from Nvidia CUDA to AMD HIP Int J. High

Perform. Comput. Appl. 35 pp. 312-324.

36

Aleksander Dawid Received his M.Sc and Ph.D. degrees in a computer

simulation in molecular physics at the University of Silesia, Poland, in

1995 and 2000, respectively. Worked at the University until 2017. In the

same year, joined the computer science department of the WSB

University in Dąbrowa Górnicza. Currently, Professor at the WSB

University. His research interests include molecular dynamicsimulation,

molecular physics and chemistry, programming, computational

intelligence, parallel processing, machine learning, signal processing, and

brain-computer interface. Published over 50 articles in refereed journals

in the areas of computational physics, algorithms, and signal processing.

23. Dawid A 2019 GPU-Based Parallel Algorithm of

Interaction Induced Light Scattering Simulations in

Fluids TASK Q. 23 5-17

24. Dawid A 2020 GPU Implementation of the

Parallel Ising Model Algorithm Using Object-

Oriented Programming Springer International

Publishing

25. NVIDIA 2013 CUDA Toolkit

26. Rapaport D C 2004 The Art of Molecular

Dynamics Simulation Cambridge University Press

27. Frenkel D and Smit B 2001 Understanding

Molecular Simulation From Algorithms to

Applications Elsevier

28. Cuda C++ Best Practices Guide http://

docs.nvidia.com/cuda/cuda-c-best-practices-guide/

index.html. 2021

29. TechPowerUp Nvidia GeForce Gtx 960m Specs

https://www.techpowerup.com/gpu-specs/geforce-

gtx-960m.c2635

Conflicts of interests

The author(s) declare(s) that there is no conflict of interest.

37

