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ABSTRACT

A computer simulabon of an atomic fluid on a GPU was implemented using the CUDA architecture. It 
was shown that the programming model for efficient numerical compubng applicabons was changing 
with the development of the CUDA architecture. The introducbon of the L2 cache decreased the latency 
between the global GPU memory and the registers. The performed MD simulabon using the global 
memory and registers showed that the average accelerabon relabve to the CPU reached 80 bmes for 
single-precision calculabons. Usually, the shared block memory gives much be4er results for this kind of 
calculabon. We have found that using the shared memory gives accelerabon over 116 bmes in 
comparison to the CPU. It is about 49% faster than using the global memory and registers. It is shown 
here that the performance of generally available graphics cards for double-precision calculabons is 
significantly lower than for single-precision calculabons. The recorded double-precision accelerabon 
relabve to the CPU in our experiment averaged 6 and 7 bmes for the global and shared memory, 
respecbvely. We performed these calculabons on two different CUDA enable device systems.
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1. Introduc9on

Fluid dynamics in closed tanks has been 

intensively researched in recent years due to its 

potenbal applicabons as nanoelectronic devices, 

nanoscale parbcle sensors [1] and gas storage 

devices [2,3]. The most frequently used tool for 

conducbng preliminary research in this field are 

classical computer simulabons using the 

molecular dynamics method. There are many 

studies invesbgabng the properbes of atomic 

fluids with this method in small clusters [4–6] 

and bulk atomic systems [7–9]. There are many 

studies in the field of computer simulabons 

examining atomic fluids in narrow graphene or 

graphite gaps, where such an atomic fluid 

exhibits a two-dimensional structure. These 

solubons are used in the search for materials 

with low thermal permeability [10–12] and 

be4er lubricity [13]. Another area of research 

where computer simulabons of atomic fluids are 

of parbcular importance due to the costs of real 

experiments are studies of the interacbon of 

atomic fluids with carbon nanotubes. The 

movement of atoms inside a carbon nanotube is 

heavily limited by its geometry. In extreme 

cases, a one-dimensional array of atoms can 

form inside a nanotube. Invesbgabng the 

dynamics of such a series of atoms, e.g. noble 

metals, may give an answer to whether such a 

series of atoms can be a good conductor of 

electricity. Currently, there are many 

publicabons on the interacbon of thin atomic 

layers with carbon nanotubes [14–17]. The most 

promising in terms of applicabons for the 

construcbon of memory elements are studies 

on nanotubes filled with fullerenes with 

potassium ion inclusion. [18,19]. Such a system 

can be controlled by an electric or magnebc 

field by changing its state by shi&ing the doped 

fullerene, which corresponds to 1 or 0 in a 

binary system. Due to the small size of such 

systems, as well as the possibility of building 

structures in three dimensions, they can be 

widely used in the construcbon of capacious 

memory systems. The difficulty level of carrying 

out classical computer simulabons increases 

with the number of atoms and their chemical 

bonds. Classically, i.e. using Newtonian 

dynamics, it requires the use of complex 

empirical potenbals modeling the structure and 

dynamics of atomic systems. Currently, most 

computer simulabons are performed using the 

so-called force field. A good example is the 

publicabon examining the properbes of 

fullerenols in an aqueous solubon. The atomic 

force field is sufficient to determine whether the 

fullerenol is hydrophilic or hydrophobic [20]. All 

these molecular dynamics simulabons are 

computabonally intensive. Accelerabng them 

even twice on the GPU is already a big 

qualitabve leap. Speed is especially important 

when simulabon is to be interacbve. What does 

it mean? Let us assume that we want to check 

how an atomic fluid will behave in a container 

with various obstacles. This kind of calculabon is 

very expensive on CPU processing. We probably 

need a few hours to see what will happen in a 

few seconds. It is impossible to interact in real-

bme with the simulabon. At high compubng 

speeds, we can create an interacbve simulabon 

program where the user can change the 

obstacles in the container and observe in real-

bme how the fluid flows. This allows observing 

changes in the behavior of an atomic fluid on a 

computer screen. Such a solubon can 

significantly speed up the design of tanks and 

installabons for storing atomic gases in the 

liquid state. The graphics card is a device that 

helps in achieving the required compubng 

speed for computer simulabons. Many solubons 

in the form of parallel MD algorithms for the use 

on the GPU have already been developed [21–
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24]. The purpose of this paper is to present a 

simple example of replacing the serial algorithm 

used previously on the CPU with the concurrent 

algorithm for the GPU. The code was wri4en for 

the NVIDIA CUDA architecture [25]. All the 

algorithms presented in the paper are wri4en in 

C++ and presented in the form of easy-to-use 

lisbngs. This paper addresses the quesbon of 

how to move from serial CPU compubng to 

parallel compubng in molecular dynamics 

simulabons. Experimental simulabons of the 

fluid of argon atoms show the advantage of 

calculabons on modern graphics systems over 

calculabons performed on the central 

processing unit.

2. Fi:ng the problem to the 
mul9-threaded GPU model

The CUDA programming model requires the 

problem to be broken down into mulbple 

threads, whose idenbfiers usually number a 

certain iterabon of a given problem. If we look 

at the serial code of a typical MD simulabon, we 

nobce that the processing stream is 

concentrated around a single parbcle. The task 

of the simulabon is to determine the posibon of 

a given parbcle in the next bme step. This new 

posibon, in principle, will depend mainly on the 

force field that acts on this parbcle. If we now 

connect the thread with the dynamics of a 

single parbcle, we will get a system of 

dependent threads. This relabonship will only 

manifest itself in the case of calculabng the 

forces or accelerabons acbng on a given 

parbcle. Here, a global thread synchronizabon 

will be needed before refreshing the posibon of 

any parbcle. Microscopic quanbbes such as the 

posibon, velocity and, accelerabon will be found 

in arrays of three-dimensional vectors allocated 

in the global memory. 

2.1 Alloca9on of resources in the GPU

The example of fluid dynamics presented here 

assumes that the atoms are located at the 

nodes of a simple cubic (SC) lacce (Fig. 1). Such 

a network is characterized by three parameters 

defining the network size (Nx, Ny, Nz) and one 

parameter defining the distance from the 

nearest neighbors denoted as d. The last 

parameter is also referred to as the lacce 

constant in the case of the SC lacce. The 

constants Nx, Ny, and Nz define the number of 

bmes the network is duplicated in a given 

direcbon. The procedure that is used in this 

example assumes that the center of such a 

crystal will be at the origin of the coordinate 

system.

Figure 1. Simple cubic lacce.

In order to create such a crystal, we need an 

appropriate size table to store the posibons of 

the atoms. The size of such an array is calculated 

as the product of all the three dimensions N = 

Nx*Ny*Nz, where Nx = 1,2,…,i, Ny = 1,2,…,j , Nz = 

1,2,…,k. The microscopic descripbon of atoms 

requires the storage of data in the form of 

vector quanbbes of posibons and its successive 

derivabves. We have created a special Vector 

class for this purpose with the property fields 

labeled x, y, and z with a floabng-point type, it 

describes the three-dimensional (3D) Euclidean 

space. We have also defined in this class all 

operators that operate on 3D vectors. Now we 
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can create an array of r = new Vector[N] objects 

in which the posibons of the atoms will be 

stored. To build a simple cubic lacce, we can 

use an algorithm wri4en in C++ :

  Lis9ng 1

   1.  void SC_laIce(double d, int Nx, int Ny, int Nz)

    2.    {

    3.       for (int i = 0; i < Nx; i++)

    4. {

    5.   for (int j = 0; j < Ny; j++)

    6.     {

    7.        for (int k = 0; k < Nz; k++)

    8.          {

    9.             int n = i * Nz * Ny + j * Nz + k;

    10.             r[n].x = d * i;

    11.             r[n].y = d * j;

    12.             r[n].z = d * k;

    13.          }

    14.     }

    15. }

    16. }

To perform MD simulabons, we also need 

Vector object arrays that store velocibes v = new 

Vector[N] and accelerabons a = new Vector[N]. 

Equivalents of these tables must also be created 

for the GPU memory. Then, we must copy such 

data from the host to the device memory. We 

assume that the inibal velocity and accelerabon 

of the atoms are zero. We pracbcally do not 

need to take any extra acbon to set the values 

here, because the the Vector constructor always 

sets the variables to zero. Now, it is sufficient to 

copy this zeroed v and a tables to the device 

memory. Now, the GPU buffers are ready to 

perform the calculabons related to solving the 

equabons of mobon.

2.2 Kernel for concurrent compu9ng

An algorithm that performs the MD simulabon 

with the velocity Verlet method [26] requires 

three steps. We have enclosed all of these steps 

in one CUDA kernel roubne. The input 

parameters for this roubne are the posibons, 

velocibes, and accelerabons of the atoms 

grouped in arrays of the structure (AOS) located 

in the global GPU memory. The first step of the 

roubne does a half refresh of posibons and 

velocibes (Eq.1).                                       

(1)

The most important element of this procedure, 

in the case of CUDA programming, is the index i 

that enumerates atoms. This is the basis of 

choosing the number of threads involved in the 

calculabon. In this work, we have a4ached one 

thread to one atom to solve its trajectory 

evolubon. To start the calculabons we need to 

copy the data from the global memory to local 

registers. The calculabons themselves are 

performed on local registers, which gives the 

opbmal bme of their execubon. The next 

procedure is to update the accelerabons of each 

atom. We have to calculate the net force on 

each parbcle. In general, the problem is of O(n2) 

complexity. The cribcal part of the effecbve 

execubon of MD simulabons is the formula of 

the net force calculabon (Eq. 2).

                                      

                                 (2)

The simplest approach to this problem is to 

work directly on global tables from the level of 

the computabonal kernel. It is about reading 

directly from the GPU buffer. It is known from 

Newton's second law of mobon that 

accelerabon is proporbonal to the force acbng 

between the atoms. Usually, we add the forces 

acbng on one atom, but we can also add up the 

accelerabons, especially when the masses of 

the individual atoms are the same. The inputs to 

this procedure are AOS describing posibons. The 

output from this procedure is the accelerabon 

of each atom. As one can see, the procedure 

loops through all n atoms in the system. We 

know that this can be simplified by using a 

truncabon radius or a Verlet list [26]. Here, 
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however, we give up these solubons for both 

the CPU and the GPU to show the full 

calculabons. In this computabonal kernel, we 

only use fast local variables to perform 

calculabons. The loop through all the atoms is 

broken into two parts to eliminate the condibon 

that checks whether the atom somebmes does 

not interact with itself. We calculate the force as 

a negabve potenbal gradient. 

(3)

The basis for calculabng the force in our work is 

the Lennard-Jones potenbal [27]. 

                                                                                  (4)

We calculated the forces from the potenbal 

analybcally, and then we applied it to the 

computabonal roubne. In the CPU algorithm we 

took the general assumpbon from the 3rd 

Newton’s law that it reduces the iterabon of the 

calculabon by half. The same trick is hard to 

apply in the CUDA architecture. Precalculabons 

of individual pairs will take extra bme, especially 

if we need (n-1)2/2 extra threads. In addibon, 

two dimensional-arrays are needed to access 

these values. Our solubon is more straight. Each 

thread calculates the net force acbng on the i-th 

atom. We named this method GLOBAL. 

According to the Nvidia CUDA documentabon 

[28], the global GPU memory is marked as the 

slowest. The overall performance of this 

memory improves in the new GPU architecture, 

the L2 cache memory. It works on the hardware 

level and does not need any extra acbons from 

the programmer. Nevertheless, the good 

pracbce of the CUDA programming encourages 

us to use the block shared memory. This type of 

memory is much faster than the global memory 

but slower than registers. The main problem of 

this memory is its range, reduced to a single 

block. We cannot access the shared memory 

from another block. The size of this memory is 

usually between 32 and 64 kB. The block size is 

expressed by the number of threads that it can 

contain. The flow diagram of the algorithm that 

calculates the net force on i-th atom using the 

shared memory is shown in Figure 2. We named 

this version of the algorithm SHARED. We start 

processing by filling up the shared memory by 

the porbon of posibons data from the global 

memory equal to the block size. A&er this step, 

we have to synchronize all calculabon threads 

before we go to the next step. The 

synchronizabon prevents the calculabon of an 

old set of data. Next, we can calculate a parbal 

force acbng on the i-th atom. A&er that step, we 

must again synchronize the threads to obtain 

correct results. We repeat the process of 

copying data from the global memory and 

calculabng the parbal net force unbl the data 

runs out. The procedure is based on the 

assumpbon that, despite the limited cache, the 

forces in the chunks that fit in this cache can be 

added up. The last step in Verlet’s algorithm is 

to update the velocibes in the t+1 bme step.

   (5)

The formula for updabng velocibes (Eq. 5) is 

exactly the same as the formula from Equabon 

1. Now, we can go to the detailed CUDA 

implementabon of the algorithms and discuss 

the bo4lenecks of these solubons.

We start our implementabon with the 

accelerabon calculabons. In Lisbng 2 we have 

the procedure with the shared memory. The 

extern __shared__ Vector rPos[]; statement 

specifies a buffer in the shared memory the size 

of which is determined before the given 

compute kernel is started.
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  Lis9ng 2 

    1. __global__ void Accel(Vector *R, Vector *A)

    2. {

    3. extern __shared__ Vector rPos[];

    4. 

    5.  unsigned int gid = threadIdx.x + blockDim.x*blockIdx.x;

    6. if (gid>gN) return;

    7. 

    8. int i, porHon;

    9. Vector mPos,f;

    10. mPos = R[gid];

    11. 

    12. for (i = 0, porHon = 0; i < gN; i += blockDim.x, porHon++) 

    13.      {

    14.       int bli = porcja * blockDim.x;

    15.       int idx = bli + threadIdx.x;

    16.       rPos[threadIdx.x] = R[idx]; //copy to block

    17.       __syncthreads();

    18.       f = CalcForcePart(bli, gid, mPos, f);

    19.       __syncthreads();

    20. }

    21. A[gid] = f;

    22. }

The for loop in this procedure is limited by the 

number of atoms but also changes by the enbre 

block size because the force is calculated for the 

enbre block (Lisbng 2). The condibon inside the 

block loop prevents the atom from interacbng 

with itself. The same procedure as before is 

used to calculate the forces acbng on the 

selected atom. Variables beginning with g in the 

procedures described above represent variables 

of type __constant__. They are used to store 

constant informabon that does not change 

during the simulabon.

  Lis9ng 3 

    1. inline __device__ Vector CalcForcePart(int bli, unsigned int gbli, 

Vector r, Vector a)

    2. {

    3. int i;

    4. extern __shared__ Vector rPos[];

    5. for (i = 0; i<blockDim.x; i++) {

    6.      if (bli + i != gbli) {

    7.           a = LJ_Pairs(r, rPos[i], a);

    8.     }

    9. }

    10. return a;

    11. }

The main intensive algebraic operabon is 

present in the funcbon LJ_Pairs(). If we look at 

the code below, we can find the most 

computabonal expensive line of this code:  Yes, 

it is reciprocal of the distance square

calculabons in line 6. If we replace this line with 

a well-opbmized CUDA library funcbon 

Rijs2=__fdivdef(1.0f,Rij2) we can speed up our 

calculabon significantly. If we eliminate a mix of 

single-precision and double-precision numbers 

we can again speed up our calculabons. For 

example, number 2.0 is treated internally as a 

Figure 2. Single threaded force calculabon using the shared memory.
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double-precision number.

  Lis9ng 4 

    1. inline __device__ Vector LJ_Pairs(Vector ri, Vector rj, Vector a) {

    2. real Rij2, Rijs2, Rijap, Rijrp, PZ;

    3. Vector Rij, Fij;

    4.  Rij = ri - rj;

    5. Rij2 = Rij.x*Rij.x + Rij.y*Rij.y + Rij.z*Rij.z;

    6. Rijs2 = 1.0 / Rij2;

    7. Rijap = Rijs2*Rijs2*Rijs2*g_Sigma6;

    8. Rijrp = 2.0 * Rijap*Rijap;

    9. PZ = g_ALJ*(Rijrp - Rijap)*Rijs2; 

    10. Fij = Rij*PZ;

    11. a += Fij;

    12. return a;

    13. }

How can we start the MD simulabon using the 

computabonal kernels? In the beginning, two 

important parameters must be defined. First, 

the size of the block, i.e. how many threads the 

block will contain. In the case of the reference 

device used in this work, it is best to choose the 

number of threads equal to the number of 

threads processed at a bme in a single 

mulbprocessor. We set the number of threads 

in the block in variable threadsPerBlock. Now 

we need to determine how many blocks we 

need to accommodate this given N number of 

atoms. The algorithm for calculabng the 

number of blocks based on the variables N and 

threadsPerBlock will look as follows.

  
   Lis9ng 5 

    1.      test = N % threadsPerBlock;

    2.      if (test == 0) {

    3.          blocksPerGrid = N / threadsPerBlock;

    4.      }

    5.      else {

    6.          blocksPerGrid = N / threadsPerBlock + 1;

    7.      }

A&er secng the variables threadsPerBlock and 

blocksPerGrid, we can call computabonal 

kernels for molecular dynamics simulabon. First, 

let us see what the computabon will look like 

without shared memory declarabon:

   

    Lis9ng 6
 
    1. for(unsigned int step=0; step<max_step; step++){

    2.     VerletHalf<<<blocksPerGrid, threadsPerBlock>>>(dev_r, dev_v, 

dev_a);

   3.     GlobalAccel <<<blocksPerGrid, threadsPerBlock>>>(dev_r, 

dev_a);

    4.     VerletAll <<<blocksPerGrid, threadsPerBlock >>>(dev_v, 

dev_a);

    5. }

To use the shared memory in a block, we need 

to define its size. It will be related to the data 

type that we will use in this memory. In the case 

of simulabon, this is the posibon informabon in 

the form of a Vector class, so we can determine 

the cache size from the number of threads in 

the block as follows: sharedSize = 

threadsPerBlock * sizeof(Vector);

If we take a maximum block size value to be 

1024, the shared memory size will be 

1024 * 24 = 24576 bytes. This is approximately 

39% of the maximum memory per block for the 

reference device. The execubon of the 

procedures for the simulabon using shared 

memory will be as follows:

   Lis9ng 7

    1. for(unsigned int step=0; step<max_step; step++){

    2.     VerletHalf <<<blocksPerGrid, threadsPerBlock>>>(dev_r, dev_v, 

dev_a);

    3.     Accel <<<blocksPerGrid, threadsPerBlock, 

sharedSize>>>(dev_r, dev_a);

    4.     VerletAll <<<blocksPerGrid, threadsPerBlock>>>(dev_v, 

dev_a);

    5. }

In a modern CUDA architecture, we can use 

streams technology. We can run not one kernel 

but several concurrent kernels. For example, if 

we want to use four streams, then our kernel 

will look as in Lisbng 8. The variables cuda1, 

cuda2, cuda3, cuda4 are the handlers to the 

CUDA streams:
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   Lis9ng 8   

    1. int blocks= blocksPerGrid/4;

    2. int chunk =  blocks*threadsPerBlock;

    3. for(unsigned int step=0; step<max_step; step++){

    4.     MD<<<blocks, threadsPerBlock, sharedSize, cuda1>>>(R, V, A, 

0);

    5.     MD<<<blocks, threadsPerBlock, sharedSize, cuda2>>>(R, V, A, 

chunk);

    6.     MD<<<blocks, threadsPerBlock, sharedSize, cuda3>>>(R, V, A, 

2*chunk);

    7.     MD<<<blocks, threadsPerBlock, sharedSize, cuda4>>>(R, V, A, 

3*chunk);

    8. }

2.4 CPU vs GPU precision of calcula9on

A&er the MD simulabon in the GPU is finished, 

we need to assert that the result is correct. 

Before copying the result, we need to make sure 

whether any other threads in the device are not 

performing the calculabons. We have to 

synchronize the threads again. As the control 

parameters, we use the velocibes of all parbcles. 

We have to copy the results from the GPU to the 

host memory. Copying is performed to a new 

table in order to avoid losing data from the 

simulabon performed on the main processor. 

There are a number of ways to compare the 

results between the CPU and the GPU. The 

solubon used here is to determine the sum of 

the absolute values from the difference 

between the speed vectors calculated in the 

GPU and the CPU (Eq. 6).

                                                                                        

(6)

3. Results

Graphics cards are mainly focused on quick 

calculabons related to the processing of polygon 

graphics. The accuracy of these calculabons is 

o&en of secondary importance. The only thing 

that ma4ers is that the objects are properly 

transformed into 3D spaces and that there are 

no gross irregularibes in their matching. The 

race to increase the frame rate in computer 

games has recently resulted in the introducbon 

of half-precision calculabons, where a floabng-

point number is described on 2 bytes. However, 

in serious scienbfic applicabons, even a 4-byte 

descripbon of a floabng-point number is not 

enough. These are the topics of computer 

simulabons of molecular systems. Let us 

illustrate this with an example. Two atoms come 

closer to each other. There is no such thing as 

an infinitesimally small shi& in computer 

calculabons using floabng-point numbers. The 

precision of floabng-point numbers is significant 

in MD simulabons. If the calculabons are not 

too precise, they may cause an increase in the 

kinebc energy of the system, although no 

external forces act on the system. The research 

done here focuses on determining the GPU 

accelerabon provided by both single and 

double-precision calculabons. 

In our experiment, the calculabons were made 

on two different GPU devices. The first unit is an 

HP Omen laptop with the CPU: Intel i5-6300HQ 

clocked with a clock frequency of 2.3 GHz and 

the GPU: Nvidia Geforce GTX 960M (processor 

GM-107A) clocked with a clock frequency of 

1.176 GHz. This GPU is for mobile computers. 

The second unit is Jetson Nano with the CPU: 

Quad-core ARM Cortex-A57 MPCore processor 

and the GPU: NVIDIA Maxwell architecture with 

128 NVIDIA CUDA® cores. This class of the 

devices belongs to single-board computers. Our 

simulabons were performed on Linux UBUNTU 

18.04 systems. We compiled our source code 

with the CUDA toolkit 11.4 (HP Omen) and 

CUDA toolkit 10.3 (Jetson Nano). In both cases, 

we switched on the O2 level opbmizabon for 

the CPU and the GPU. We ublized switches for 

the CUDA 5.0 (HP Omen) and CUDA 5.3 (Jetson 

Nano) architectures. In our calculabons, the 

number of atoms was the power of two. We 

performed the calculabons for lacces of N from 
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210 to 219. We first looked at accelerabng single-

precision calculabons (Fig. 3). The calculabons 

were performed using one stream with the force 

calculabons in the shared memory. 

These calculabons were performed for one MD 

simulabon step with different block size values. 

The MD step bme is equal dt = 10-15 s. Figure 3 

shows the accelerabon saturabon for the 

number of atoms greater than 80,000. The 

number of atoms in the system directly 

corresponds to the number of threads involved 

in the calculabon. 

Figure 3. Dependence of accelerabon of single-
precision computabon on the number of atoms in the 
system.

With low numbers of atoms, from a few to 

several thousand, the speed of computabon 

increases very quickly. A&er that, this increase 

conbnues, but it is much slower. In this first 

period, the threads usually fit increasingly be4er 

with the graphics processor. A&er the processor 

is saturated with threads, they must be queued 

for further execubon. However, floabng-point 

calculabons are so fast in the graphics system 

that we can sbll see an increase in performance. 

There are also small differences in performance 

for different block sizes. The maximum 

accelerabon achieved in this case was 116 bmes 

compared to the single CPU core. Let us see 

now how the introducbon of the shared 

memory improves the MD calculabons in single 

precision. In Figure 4 we can see the difference 

in performance when using global and shared 

memory kernels. If we look closer at this plot, 

we can see the maximum of global memory 

calculabons for the number of atoms equal to 

65536 (216)). It is true for block sizes equal to 

both 128 and 256 threads. We cannot observe 

any maxima at this point for shared memory 

calculabons. In the case of shared memory 

calculabons, the plot of 256 threads increases 

smoothly unbl saturabon at 262144 simulated 

atoms. The situabon is a bit different in the case 

of double-precision calculabons (Fig. 5). The 

accelerabons of a double-precision calculabon 

are smaller than accelerabons of single-

precision. It is only on the order of 7.0 bmes 

compared to the one CPU core. It means that for 

all processor cores, it can give only a percentage 

advantage of the GPU. Moreover, this speed-up 

is achieved only above 50,000 atoms. Faster 

saturabon may indicate inferior handling of 

double-precision floabng-point numbers. Using 

direct global memory in the calculabon does not 

fix the slow speed-up of calculabons (Fig. 6). 

Figure 4. Comparison of global and shared memory 
single precision MD calculabons.

We see that use of the global memory is slower 

than using the shared memory. In the plot for 

both algorithms, we can observe a peak at 

65536 atoms for a block size equal to 256 

threads. In Table 1, we can see the bmes of 

calculabon on two GPU devices. The table label 

"Global" means a global memory algorithm, and 

the label "Shared" means a shared-memory 
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algorithm. The integer a&er the label named 

"Shared" means the number of streams in the 

CUDA technology.

Figure 5. Dependence of accelerabon of double-
precision computabon in relabon to one CPU core on 
the number of atoms in the system.

The rabo global to the shared memory single-

precision calculabon is equal to 1.49 for 

GTX960M and 1.62 for Jetson Nano. Both GPUs 

are of the same "Maxwell" architecture. 

GTX960M uses CUDA 5.0 and Jetson Nano 

CUDA 5.3. It seems that the Jetson Nano GPU is 

less cached. Introducing more streams to the 

calculabons does not affect the MD simulabon 

accelerabon. Based on these results, we can see 

that the procedure that uses the shared 

memory is faster than the procedures that use 

the global memory. The graphics card used for 

tesbng is a card typically designed for polygon 

processing. GPUs used in compubng centers can 

perform both single and double-precision 

floabng-point calculabons with equal

speed. However, it was more about showing 

accelerabon on popular and cheap to buy 

equipment. On the other hand, the thermal 

design power (TDP) of GTX960M is 75 W, and 

Jetson nano is 10 W. The top gaming card 

RTX3090 has a TDP equal to 350 W. According to 

the service "TechPowerUp" [29] RTX3090 is over 

10 bmes faster than GTX960M. Unfortunately, 

we have no access to this graphic card to test 

the speed-up of our MD simulabon.

Another issue when it comes to concurrent 

compubng is its accuracy and how much it 

differs between the CPU and the GPU. The 

molecular dynamics method is based on solving 

the equabons of mobon. It allows us to follow 

the trajectory of a single parbcle. If we assume 

that we are dealing with a finite precision of 

calculabons, then this trajectory is one of many 

possibilibes. An example are the calculabons 

performed here.

Figure 6. Comparison of global and shared memory 

double precision MD calculabons.

A slight difference in the precision of the 

calculabons may result in a completely different 

posibon of the parbcle a&er millions of steps. 

Does this mean that one trajectory is true

and the other is not? It all depends on the 

numerical libraries and the equipment on which 

the calculabons will be performed. It turns out 

that despite the differences in the posibons of 

individual parbcles, macroscopic values, such as 

pressure and temperature, are the same in both 

Device Precision Global [s] Shared 1 Shared 4 Shared 8 

GTX960M
float 21.45 14.31 14.40 14.46

double 244.40 214.28 214.27 214.26

Jetson 
nano

float 119.27 73.36 73.21 73.21
double 1579.47 1388.18 1389.10 1389.04

Table 1. Calculabon bmes. The data was taken from our MD simulabon with the 256 thread block size.
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systems. However, we will be interested in the  

microscopic differences between CPU and GPU 

compubng. Figure 7 shows the relabonship 

between the relabve error of the GPU and the 

CPU calculated based on the final values of the 

velocity vector in one step and the number of 

atoms. It is generally an increasing linear 

relabonship. In single-precision calculabons (Fig. 

7) the error values are 9 orders higher than for 

double-precision calculabons (Fig. 8). The 

differences may be due to the rounding applied 

to the floabng-point number in the CPU and the 

GPU.

Figure 7. Dependence of the relabve velocity error on 

the number of atoms for operabons on single 

precision numbers.

4. Conclusions

The aim of this study is to indicate the growing 

role of concurrent programming in the 

construcbon of applicabons based on computer 

simulabons using the molecular dynamics 

method. The current direcbon of processor 

development can be characterized by one 

slogan -“mulb-core”. The leader in introducing 

the mulb-core technology are graphics  

processors, where we are dealing with 

thousands of cores. On the other hand, properly 

wri4en applicabons are sbll needed to use these 

numbers of cores. This study is intended to help 

create concurrent so&ware using well-known 

computer simulabon algorithms. This work gives 

us a brief overview of the techniques used in 

molecular dynamics simulabons to increase 

their efficiency. The results presented in this 

paper show the accelerabon of MD simulabon 

calculabons on the GPU. 

Figure 8. Dependence of the relabve velocity error on 

the number of atoms for operabons on double 

precision numbers.

For operabons carried out on single-precision 

numbers, the accelerabon reached 116 bmes. 

The result for double precision numbers, 7.1 

bmes, may be a bit disappoinbng compared 

with the previous results. It must be 

remembered that these calculabons were 

performed on the mobile graphics card version, 

where its full potenbal was not unleashed due 

to the power consumpbon.

References

1. Huang B, Li Z, Liu Z, Zhou G, Hao S, Wu J, Gu B L, 

Duan W 2008 Adsorption of Gas Molecules on 

Graphene Nanoribbons and Its Implication for 

Nanoscale Molecule Sensor J. Phys. Chem. C.  112 

pp. 13442-13446

2. Zhang F, Yang F, Huang J, Sumpter B G and Qiao R 

2016 Thermodynamics and Kinetics of Gas Storage 

in Porous Liquids J Phys. Chem B 120 pp. 7195-

7200

3. Dawid A, Raczyński P and Gburski Z 2014 

35



Depolarised Rayleigh light scattering in argon layer 

confined between graphite plains: MD simulation 

Mol. Phys. pp. 1-6

4. Dawid A and Gburski Z 1997 Dynamical 

properties of the argon-krypton clusters: molecular 

dynamics calculations J Mol. Struct. 410 pp. 507-

511

5. Blaisten-Barojas E and D. Levesque 1986 

Molecular-dynamics simulation of silicon clusters 

Phys Rev. B. 34 pp. 3910-3916

6. Dawid A and Gburski Z 1998 Interaction-induced 

absorption in argon-krypton mixture clusters: 

Molecular-dynamics study Phys Rev. A. 58 pp. 740-

743

7. Sokol M, Dawid A, Dendzik Z and Gburski Z 2004 

Structure and dynamics of water - molecular 

dynamics study J Mol. Struct. 704 pp. 341-345.

8. Akbarzadeh H, Abroshan H, Taherkhani F,  

Izanloo C and Parsafar G 2011 A Size dependence 

and effect of potential parameters on properties of 

nano-cavities in liquid xenon using molecular 

dynamics simulation Chem Phys. 381 pp. 44-48

9. Devarajan D, Liang L, Gu B, Brooks S C, Parks J M 

and Smith J C 2022 Molecular Dynamics Simulation 

of the Structures, Dynamics, and Aggregation of 

Dissolved Organic Matter Environ Sci. Technol.  54 

pp. 13527-13537

10. Dawid A and Gburski 2017 Z Molecular 

dynamics simulation of collision-induced absorption 

spectra of neon-krypton mixture thin layer confined 

between graphite walls J Mol. Liq 2017 245 pp. 85-

90

11. Dawid A and Gburski Z 2017 Interaction-

induced light scattering in thin neon film confined 

between graphite slabs: MD study J Mol. Liq 245 pp. 

71-75

12. Dawid A and Gburski Z 2017 Structural and 

Dynamical Properties of Argon-Krypton Binary 

Mixture Confined Between Graphite Slabs: 

Molecular Dynamics Simulation Interface Stud. 

Appl 195

13. Piatek A, Dawid A and Gburski Z 2006 The 

existence of a plastic phase and a solid–liquid 

dynamical bistability region in small fullerene 

cluster (C60)7: molecular dynamics simulation J 

Phys. Condens. Matter 18 pp. 8471.

14. Dawid A and Gburski 2007 Z Dielectric 

relaxation of 4-cyano-4-n-pentylbiphenyl (5CB) thin 

layer adsorbed on carbon nanotube - MD simulation 

J Non-Cryst. Solids 353 pp. 4339-4343.

15. Dawid A and Gwizdała W 2009 Dynamical and 

structural properties of 4-cyano-4-n-pentylbiphenyl 

(5CB) molecules adsorbed on carbon nanotubes of 

different chiralities: Computer simulation J Non-

Cryst. Solids 355 pp. 1302-1306.

16. Raczyński P, Dawid A, Piętek A and Gburski Z 

2006 Reorienatational dynamics of cholesterol 

molecules in thin film surrounded carbon nanotube: 

Molecular dynamics simulations J Mol. Struct. 792 

pp. 216-220.

17. Raczyński P, Dawid A, Sokoł M and Gburski Z 

2007 The influence of the carbon nanotube on the 

structural and dynamical properties of cholesterol 

cluster Biomol Eng. 24 pp. 572-576.

18. Dawid A, Piątek A, Sokoł M and Gburski Z 2008 

Dynamical properties of potassium ion K+ trapped 

in a fullerene C60 cage: An MD simulation J Non-

Cryst. Solids 354 pp. 4296-4299.

19. Dawid A and Gorny K 2007 Dynamics of 

Endohedral Fullerene K+@C60 inside single walled 

carbon nanotube: MD simulation 10

20. Dawid A, Gorny K and Gburski Z 2011 The 

structural studies of fullerenol C60(OH)24 and nitric 

oxide mixture in water solvent – MD simulation 

Nitric Oxide 25 pp. 373-380.

21. Liu W, Schmidt B, Voss G and Muller-Wittig W 

2008 Accelerating molecular dynamics simulations 

using Graphics Processing Units with CUDA  Comput 

Phys. Commun. 179 pp. 634-641.

22. Kondratyuk N, Nikolskiy V, Pavlov D and  

Stegailov V 2021 GPU-accelerated molecular 

dynamics: State-of-art software performance and 

porting from Nvidia CUDA to AMD HIP Int J. High 

Perform. Comput. Appl. 35 pp. 312-324.

36



Aleksander Dawid Received his M.Sc and Ph.D. degrees in a computer 

simulation in molecular physics at the University of Silesia, Poland, in 

1995 and 2000, respectively. Worked at the University until 2017. In the 

same year, joined the computer  science department of the WSB 

University in Dąbrowa Górnicza. Currently, Professor at the WSB 

University. His research interests include molecular dynamicsimulation, 

molecular physics and chemistry, programming, computational 

intelligence, parallel processing, machine learning, signal processing, and 

brain-computer interface. Published over 50 articles in refereed journals 

in the areas of computational physics, algorithms, and signal processing. 

23. Dawid A 2019 GPU-Based Parallel Algorithm of 

Interaction Induced Light Scattering Simulations in 

Fluids TASK Q. 23 5-17

24. Dawid A 2020 GPU Implementation of the 

Parallel Ising Model Algorithm Using Object-

Oriented Programming Springer International 

Publishing 

25. NVIDIA 2013 CUDA Toolkit

26. Rapaport D C 2004 The Art of Molecular 

Dynamics Simulation Cambridge University Press

27. Frenkel D and Smit B 2001 Understanding 

Molecular Simulation From Algorithms to 

Applications Elsevier

28. Cuda C++ Best Practices Guide http://

docs.nvidia.com/cuda/cuda-c-best-practices-guide/

index.html. 2021

29. TechPowerUp Nvidia GeForce Gtx 960m Specs 

https://www.techpowerup.com/gpu-specs/geforce-

gtx-960m.c2635

Conflicts of interests

The author(s) declare(s) that there is no conflict of interest.

37


