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Abstract: A non-ergodic probabilistic seismic hazard analysis (PSHA) utilizing the physics-ba-
sed ground motion prediction was proposed in this study to minimize the increasing uncertainties 
in the use of empirical equations. The City of L’Aquila in Italy was used for illustrative purposes 
due to the availability of data and the historical seismicity of the site. A total of 28 seismic so-
urces were identified in this study located within a 100 km radius from the city. Fault properties 
such as geometry and location were obtained from the literature, while the fault occurrence rates 
were obtained using the FiSH Code. A modified t ime-weakening f riction l aw was p roposed to 
model the seismic energy released by an earthquake. Uncertainties in different rupture scenarios 
were characterized through the Guttenberg-Richter Relations and the Characteristic Brownian 
Time Passage. Uncertainties in distances were characterized through probability mass functions, 
which were used to calculate the ground motion exceedance probabilities. The 1D elastodyna-
mic equation coupled with the Hooke’s law was used to predict the peak ground acceleration 
(PGA), a measure of the ground shaking level. A hazard curve, which is a plot of PGA and its
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recurrence, was constructed and compared with the results of the study of Valentini, et al., AGU 
100: Advancing Earth and Space Science (2019). The method proposed in this study predicts 
a higher hazard rates for PGAs less than 0.70 g, which implies that the ground motion was 
overestimated for very far sources. In contrast, lower hazard curves were observed for PGAs 
greater than 0.70g which can be attributed to fewer seismic sources considered in this study.
Keywords: non-ergodic probabilistic seismic hazard analysis, physics-based ground motion 
prediction, modified t ime-weakening f riction l aw, p eak g round a cceleration, h azard c urve, City 
of L’Aquila
DOI: https://doi.org/10.34808/tq2020/24.2/a_part1

1. Introduction
Upon the failure of rocks in a causative fault, an earthquake is produced 

due to the sudden release of energy built on the Earth’s crust through seismic 
waves [1, 2]. As a result, severe earthquakes worldwide have claimed thousands of 
lives and billions of euros in damages.

On April 6𝑡ℎ, 2009 the City of L’Aquila was devastated by an 𝑀𝑤 6.3 
earthquake claiming 300 deaths, around 1500 injured, and approximately € 25 
billion in damages [3]. The hypocentral depth is about 8.8 to 9 km with a normal 
style of faulting with a dip of around 43 degrees. The population nearby the 
epicenter is around 100,000 making the city very seismically vulnerable [3, 4]. This 
earthquake is deemed to have had the highest death toll and the highest economic 
loss in the EU. Figure 1 shows the rubbles of some structures in L’Aquila that 
collapsed during the earthquake in April 2009.

Earthquakes do not kill, but it is the secondary or seismic hazards that they 
trigger [5, 1]. According to Kramer [1], these hazards include ground shaking, 
structural hazards, liquefaction, landslides, retaining structural failures, lifeline 
hazards, tsunamis and seiches. For the purpose of discussion, this study will be 
focused on the ground shaking hazard only, while the other above mentioned 
seismic hazards will not be covered by it the scope.

The occurrence of earthquakes cannot be fully predicted as to when and 
where they can occur, but the secondary hazards can be mitigated through pro-
per coordination of seismologists, engineers, social scientists, and policy-making 
bodies in an area. Hence, there is a need to estimate the underlying seismic hazard 
in terms of ground shaking levels on site required for engineers to be considered 
in their design and retrofit structures which can collapse during an earthquake.

1.1. Seismic Hazard Analysis
The Seismic Hazard Analysis (SHA) is a method of estimating the feasible 

ground shaking levels on a site [1]. At the present time, there are two existing 
ways of estimating ground shaking levels: either deterministic or probabilistic. The 
Deterministic Seismic Hazard Analysis (DSHA) aims to determine exactly the 
maximum controlling earthquake coming from a certain seismic source that can 
affect the site on a  worst-case scenario basis. On the other hand, the Probabilistic 
Seismic Hazard Analysis (PSHA) is a methodology that estimates the ground
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Figure 1. Structural Damage during the Mw 6.3 Abruzzo Earthquake in 2009
Source: https://www.britannica.com/event/LAquila-earthquake-of-2009

shaking hazard in a given place assuming the chances of exceeding a certain level
of ground shaking that occurred in the past within a specified period interval of
validity.

To further understand these two methods, the outcomes offered by these
methods should be considered:

Deterministic
“The peak ground acceleration (PGA) on the site is 0.65g resulting from an
earthquake of a magnitude of 6.3 on the Paganica Fault at a distance of 12km
from the site”

Probabilistic
“The PGA on the site is 0.45 g with a 10% probability of being exceeded in a
50-year period”
Both these methods use the same information such as past earthquakes, fault
geometries, geology, etc. to be discussed later in this paper, however, the PSHA
incorporates uncertainties in such data since the occurrence of an earthquake
is random by nature. The PSHA can be viewed as a series of deterministic
approaches with consideration of uncertainties. The expected output in the PSHA
is a hazard curve, which describes the hazard level with respect to the ground
shaking level on a site [1].

1.1.1. Deterministic Approach
Kramer [1] summarized the DSHA into four steps as shown in Figure 2.

Step 1. In DSHA, all types of seismic sources within a certain distance which
can greatly affect a site must be considered. These include point sources (such as
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volcanoes), fault lines, or fault planes. These kinds of sources will be discussed in
a later part of this paper.

Step 2. The shortest distance from the seismic source to the site, also known as
the source-to-site distance, is calculated.

Step 3. Using some ground motion prediction equations (GMPE) which relate
the distance and magnitude of the earthquake to a ground motion parameter,
say the PGA, the existing seismic hazard can be determined “exactly”. Hence,
the controlling earthquake that will produce the strongest shaking effect will be
selected.

Step 4. Lastly, the values of different ground shaking parameters are reported
for the site with the corresponding source-to-site distance and magnitude of the
earthquake.

Figure 2. Steps in DSHA
Source: Kramer, 1996 [1]

Based on this framework, the contributor of the overall seismic hazard on a site
will be one controlling earthquake only. It is worth noting that other data such
as fault geometries, paleoseismology, site properties (the type of soil on the site)
are also needed to fully describe the seismic hazard on a site [1, 5].

The problem with the deterministic approach is that the information keeps
changing from time to time, hence, it is not proper to say that the seismic hazard
is “determined” exactly, but what happens is that the seismic hazard changes
from time to time.
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1.1.2. Probabilistic Approach

The PSHA will be discussed later in a separate Section. A glimpse of
the PSHA is shown here for illustrative purposes and to compare it with the
deterministic approach.
Hutchings and Viegas [6] summarized the PSHA dividing it into four steps as
shown in Figure 3.

Figure 3. Steps in PSHA
Source: Hutchings and Viegas, 2012 [6]

Step 1 (Zonation). Similarly to the DSHA, all seismic sources that are found
at a certain distance which may contribute to the seismic hazard are considered.
However, the uncertainties in the source-to-site distances for all seismic sources
are formulated through the probability density functions (PDF).

Step 2 (Recurrence). Earthquake occurrence in all sources is modeled by a
recurrence law. The frequency of earthquakes as a function of the earthquake size
(or magnitude) is established, and the recurrence parameters are calculated to be
used later in hazard calculations.

Step 3 (Attenuation). GMPEs are used just like in the DSHA, but with
consideration given to uncertainties. Due to the development of the PSHA
Methodology, the ground motion parameter can be predicted by the existing
physical laws on rupture dynamics [7] with uncertainties being taken into account
considering a sufficient number of the ground motion predictions [8].
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Step 4 (Seismic Hazard Curve Calculation). A hazard rate is calculated in
terms of the probability of exceedance or hazard rates, as a function of the ground
motion parameter calculated in Step 3.
Based on the probabilistic approach, all kinds of possible earthquake occurrences
coming from all possible seismic sources are incorporated into the seismic hazard
on a site. As mentioned above, the PSHA is just a series of deterministic
approaches with a defined probability of exceedance [9].
The PSHA has a concept of a return period, just like strong winds or flooding [10]
which is good, as information keeps on changing from time to time. Therefore, it
is much better to conduct a PSHA than a DSHA. Many engineers are shifting to
the probabilistic approach and tend to abandon the deterministic approach.

1.1.3. Risk Engineering Decisions
The major difference between the two methods is based on what type

of decisions the policy-making body must make [9]. Table 1 shows the how
McGuire presents the approach to be taken by the engineer and risk mitigation
agencies depending on the decision to be made. According to the building code,
it is recommended that a structure must withstand a reference peak ground
acceleration (PGA) which corresponds to a reference probability of exceedance
of 10

Table 1. The predominant approach for several engineering decisions
Source: McGuire, 2001 [9]

DECISION QUANTITATIVE
ASPECTS OF DECISION

PREDOMINANT
APPROACH

Seismic design Highly quantitative Probabilistic
Retrofit design Highly quantitative Probabilistic

Insurance/Reinsurance Highly quantitative Probabilistic
Design of redundant

industrial systems
Quantitative or

Qualitative
Both

Training and plans for
emergency purposes

Mostly qualitative Deterministic

Plans for
post-earthquake recovery

Mostly qualitative Deterministic

Plans for
long-term recovery, local

Mostly qualitative Deterministic

Plans for
long-term recovery, regional

Mostly quantitative Probabilistic

Both methods are applicable for the design of complex structures such as indu-
strial power plants depending on the seismic environment of the site. If the site
has many surrounding faults, then, it is desirable to choose the PSHA. If lifelines
are to be installed on a site where an active fault is crossed, then the DSHA can
be employed instead [9]. This is because the site itself is subjected to the fault
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movement and a maximum credible earthquake must be determined to design the
lifelines seismically.

Planning for recovery from earthquake losses, whether immediately or in a
long term, is a very tedious process where multiple earthquake scenarios cannot be
considered, hence, it will be more effective, if only a single scenario earthquake is
to be considered for risk mitigation practices and emergency plans. However, for
a regional long-term recovery, it is advisable to use the probabilistic approach
considering many seismic sources that are present in an entire region, or a
country [9].

1.2. Evolution of PSHA Methodology
According to McGuire [11], two different efforts, working independently,

ushered a new era of a probabilistic approach whose works combined in 1966.
Carl Allin Cornell from the Standford University produced his PhD Dissertation in
1964 entitled Stochastic Processes in Civil Engineering, ocused on factors affecting
the engineering decisions through probability distributions. Then, Universidad
Nacional Autonoma de Mexico (UNAM) conducted several studies on earthquake
ground motions and their dependence on the magnitude and distance, and
frequencies of ground motions and earthquake occurrences for the engineering
design of structures, which were pioneered by the then PhD student Luis Esteva,
Prof. Emilio Rosenblueth, and their colleagues.

On 1966, the “probabilistic seismic hazard” was derived from among the
relationships of earthquake magnitudes and their respective occurrence rates,
earthquake locations, and the resulting ground motions on the site. It was Cornell,
who once taught at UNAM, who talked to Esteva and convinced him and his
colleagues at UNAM to formalize the concept of the probabilistic approach.

1.2.1. First Formulation
Cornell [10] published a paper which became the first PSHA formulation.

Assuming a Poisson process of the occurrence of earthquakes, he formulated the
probability that zero earthquakes having a minimum Modified Mercalli Intensity
(MMI) level would be exceeded for a certain time period considering a minimum
magnitude of interest 𝑚0:

𝐹𝐼𝑚𝑎𝑥
(𝑖) = exp[−𝜈𝐶𝐺exp(−𝛽𝑖

𝑐2
)], 𝑖 ≥ 𝑖′ (1)

where 𝐹𝐼𝑚𝑎𝑥
is the probability of occurrence that an annual maximum intensity

𝐼𝑚𝑎𝑥 will occur (usually for 𝑡 = 1 year), 𝜈 is the rate of occurrence of a fault,
𝐶, 𝐺 and 𝑐2 are constants related to the ground motion parameters depending
on the magnitude of the earthquake and the geometry of the fault, 𝛽 = 𝑏 ln10
with 𝑏 being the Guttenburg-Richter (G-R) slope from the statistical regression
of earthquakes, and 𝑖′ is some lower limit of the MMI Intensity. In his paper,
faults can be a point, a line, or a plane. He also pointed out that in the case
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Figure 4. Pioneers of the PSHA Methodology. Cornell C. Allin (1938 – 2007), and Esteva
Luis (1935 – ).

Source: McGuire, 2007 [11]

of many seismic sources, the probability of exceedance was a sum of individual
contributions of all faults.
1.2.2. Second Formulation

In 1970, the PSHA was generalized using the concept of the total probability
theorem [11]:

𝑃(𝑌 > 𝑦) ≈
𝑁

∑
𝑖=1

𝜈𝑖 ∫∫𝑃[𝑌 > 𝑦|𝑀,𝑅]𝑓(𝑚,𝑟)𝑑𝑚 𝑑𝑟] (2)

where 𝑌 and 𝑦 are ground motion parameters, 𝜈 is the occurrence rate of
each seismic source 𝑖, 𝑃[𝑌 > 𝑦|𝑀,𝑅] is the conditional probability that Y will
exceed a certain value of y given a magnitude 𝑀 and the source-to-site distance
𝑅, and 𝑓(𝑚,𝑟) is the PDF of magnitude 𝑚 and distance 𝑟. Future research
regarding the formulation (2) is the treatment of uncertainties which is not
included in (1) which is incorporated in the conditional probability. Usually,
this probability takes after normal distribution, which assumes that the ground
motion parameter 𝑌 is lognormally distributed, and the standard deviation in the
Z-transform is composed of aleatory (due to the randomness of the ground motion)
and epistemic (due to the lack of data and knowledge) uncertainties [12, 13].
Next, the contribution to the overall seismic hazard is not assessed until the
disaggregation [14] or deaggregation is formulated by McGuire in 1995 [15].

1.2.3. Third Formulation
In 1985, (2) was reformulated by McGuire [15] by introducing uncertainties

in the number of standard deviations used in the Ground Motion Prediction
Equations (GMPEs):

𝜆(𝑌 > 𝑦) =
𝑁

∑
𝑖=1

= 𝜈𝑖 ∫∫𝑃[𝑌 > 𝑦|𝑀,𝑅,𝜀]𝑓𝑀(𝑚)𝑓𝑅𝑓𝜀(𝜀)𝑑𝑚 𝑑𝑟 𝑑𝜀 (3)
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where 𝜆(𝑌 > 𝑦) is the hazard rate corresponding to exceedance of the ground
motion parameter 𝑦, 𝑃[𝑌 > 𝑦|𝑀,𝑅,𝜀] is the Heaviside step function:

𝑃 [𝑌 > 𝑦|𝑀,𝑅,𝜀] = 𝐻 [ln𝑌 (𝑀,𝑅,𝜀)− ln𝑦] (4)

which is zero, if ln𝑌 (𝑀,𝑅,𝜀) is less than ln𝑦 or a given magnitude-distance-stan-
dard deviation triple (𝑀,𝑅,𝜀), and one otherwise; 𝑓𝑀(𝑚) is the PDF of magnitude
𝑚, 𝑓𝑅(𝑟) is the PDF of the source-to-site distance, and 𝑓𝜀(𝜀) is the PDF of the
number of standard deviations 𝜀 which is normally distributed. The difference
in the PDF expressed in (2) assumes in (3) that 𝑓(𝑚,𝑟) can be expressed as a
product of PDFs of the magnitude and distance, and so the ground motion depen-
dence on magnitude and distance is incorporated into GMPEs which are based
on the regression of ground motions over a certain region [1, 14]:

ln𝑦 = 𝑓(𝑀,𝑅,𝜃)+𝜀 𝜎ln𝑦 (5)

where 𝜃 is the parameter related to the style of faulting or the kinematic of the
fault source and/or soil type, and 𝜎ln𝑦 is the standard deviation of the natural
logarithm of the ground motion parameter 𝑦.

1.2.4. Non-Ergodic PSHA
In 1999, Anderson and Brune [12] introduced the concept of the Non-Ergo-

dic PSHA, which abandons the ergodic assumption of PSHA in the use of GMPEs.
The ergodic assumption implies that the ground motion parameters in space are
treated in the PSHA as the uncertainty over time at a single point. Regions wi-
thout a strong ground motion database use GMPEs developed for some other
regions, and some engineers tend to abuse them without knowing their appli-
cability in those regions. Hence, uncertainties tend to mount, thus affecting the
seismic hazard level. They mentioned that the ergodic assumption tended to ove-
restimate the ground motion parameter 𝑌 due to increased uncertainties in the
standard deviation in (5) especially for longer return periods of earthquakes.

In their paper, Anderson and Brune [12] have mentioned that the ergodic
assumption means that the aleatory uncertainty is present in the PSHA, particu-
larly in the GMPEs. Hence, the objective of their study is to eliminate or minimize
the aleatory uncertainties in the analysis, and epistemic uncertainties will remain.
The seismic hazard will not be overestimated with the availability of more data
and knowledge about the earthquake processes in a certain site.

Landwehr et al. [13] made a non-ergodic GMPE, through a Varying Coef-
ficients Model (VCM) applicable in California. They allowed the coefficients of
the GMPE to vary spatially to incorporate effects of source, site, and path varia-
tions in the equation. Thus, the epistemic uncertainties are suppressed per site,
while the aleatory uncertainty is modeled for the whole of California. As a result,
the GMPE produces a reduction of 40% in the aleatory uncertainty which can
significantly affect the seismic hazard. Also, it was observed that the epistemic
uncertainty was smaller on sites where events or stations were close, and large
where there was little data.



106 J. J. Aguirre, B. Rubino, M. Vassallo, G. Di Giulio and F. Visini

Another work on the Non-Ergodic perspective is the study of Kotha, Bindi
and Cotton [16] which improved the GMPEs in Europe and in the Middle East
towards a Non-Ergodic PSHA. Using the strong ground motion data sets from
the Reference Database for the Seismic Ground-Motion in Europe (RESOURCE),
they established region-specific for Europe and Middle East, and site-specific
GMPEs for Italy and Turkey. The results of their shift from the ergodic to
non-ergodic PSHA reveal a change of 25% in the hazard values in region-specific,
while larger changes as much as 50% in site-specific GMPEs.

It is shown in these works that the seismic hazard can be lowered significan-
tly with the improvement in the ground motion prediction schemes by minimizing
the aleatory uncertainty. Also, if there is an advance in knowledge of faulting and
the available data, the epistemic uncertainties can be eliminated [12, 15].

1.2.5. Non-Ergodic PSHA by Physics-Based Ground Motion
Prediction

While some researchers such as Landwehr et al. [13] tried to minimize
the aleatory uncertainties in the GMPE, others tried to use a physical model
rather than a regression model since more data is available to explain the
physics behind earthquake occurrences from the failure of rocks in a seismic
source. The Southern California Earthquake Center (SCEC) recommended that
a physics-based approach of the ground motion prediction was more suitable in
minimizing the aleatory uncertainties than using regression-based GMPEs, since
the earthquake occurrence was far more complex than what statistics could offer,
which was later endorsed by the National Research Council on 2003 in the US, as
mentioned by Hutchings and Viegas [6].

The rupture of faults and ground displacements are governed by the
Elastodynamic Equation with the proper equations related to material properties
of the fault such as the Hooke’s Law [17]. Such a model will be thoroughly
discussed in Section 2 of this paper.

This approach started when Hutchings et al [18] used the deterministic
approach of solving the 3D elastodynamic equation with rupture dynamics using
empirical Green Functions, which is a representation function of the ground
displacement. Computing all the scenarios for all faults in an area, and with
their corresponding earthquake recurrence properties, hazard rates can be assessed
in the same way as before as given in (2). In this approach, the probability
term is obtained by creating a library of synthetic ground motions by employing
uncertainties in fault parameters such as Asperities (strongest fault zone), Rise
Time, Rupture Roughness, Rupture Velocity, Healing Velocity, Stress Drop,
Hypocenter depth, and Energy released during an earthquake, allowing them to
simulate different rupture scenarios for earthquakes.

Hutchings and Viegas [6] suggested a new way of conducting the PSHA,
which was also employed in the work of Hutchings et al. [18] in the simulation of
the 1999 Athens Earthquake with a moment magnitude of 6.0. Figure 5 illustrates
how to perform the Physics-Based PSHA.
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Figure 5. Steps in Physics-Based PSHA
Source: Hutchings and Viegas, 2012 [6]

Step 1 (Zonation). Fault sources are identified for earthquake rupture scenarios.
Fault geometries are characterized for simulation of earthquakes. Uncertainties in
the distance are not modeled any longer, but the distances are determined for
wave propagation purposes.

Step 2 (Recurrence). Just like the conventional PSHA in Figure 3, magnitude
occurrences are modeled to determine the recurrence parameters to predict a
seismic hazard.

Step 3 (Synthesis). This is the difference with the conventional PSHA where
the wave propagation from the fault rupture is simulated to create synthetic
seismograms instead of the usual GMPEs. The fault rupture parameters such
as fracture energy, stress drop, and rupture velocity to predict the ground motion
are calculated.

Step 4 (Seismic Hazard Curve Calculations). This is similar to the conven-
tional PSHA, where the predicted ground motion is paired up with the recurrence
parameters that are linked to the magnitude occurrence, allowing the hazard ana-
lyst to construct the hazard curve.

Recent approaches by Tarbali et al. [19] and Tarbali et al. [20] make use of
the software Cybershake for New Zealand which uses finite-fault rupture models
by solving the 3D elastodynamic equation through a finite element method, and
computing the hazard rate given by:

𝜆ℑ(ℑ) =
𝑁𝑟𝑢𝑝

∑
𝑛=1

𝑃ℑ∨𝑅𝑢𝑝 (ℑ∨𝑟𝑢 𝑝𝑛)𝜆𝑅𝑢𝑝 (𝑟𝑢 𝑝𝑛) (6)
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where 𝜆𝑅𝑢𝑝(𝑟𝑢 𝑝𝑛) is the hazard rate of a certain rupture scenario, and
𝑃ℑ∨𝑅𝑢𝑝 (ℑ∨𝑟𝑢 𝑝𝑛) is the probability of ℑ > ℑ given 𝑟𝑢 𝑝𝑛. This formulation does
not need the uncertainty in the magnitude occurrence, but only the hazard rate
obtained from the recurrence of earthquakes, such as the Guttenberg-Richter Law
or Characteristic Earthquake models to be discussed in Section 4 of this paper.
This formula is based on the probability of exceedance formulations of Field, Jor-
dan, and Cornell [21] which abandons the integration of the seismic hazard rate
from (2) with respect to the distance, magnitude, and sometimes the number of
standard deviations when using (3).

1.3. Application to L’Aquila, Italy
For engineering applications such as the seismic design and retrofit of

structures, it is of utmost importance to know the effects of the earthquake
occurrence by estimating the seismic hazard in an area. As mentioned in the review
of the seismic hazard zonation of Italy and other European countries in building
codes for the seismic design, the reference peak ground acceleration (PGA) must
conform to the 10% probability of being exceeded in 50 years of the design life of
most structures [22].

According to Monaco et al. [3], the city of L’Aquila sustained a PGA of
0.65g both for horizontal and vertical components. Wald et al. [23] formulated
a relationship between the Modified Mercalli Intensity (MMI) Scale and PGA,
and this PGA of 0.65g may bring severe to violent ground shaking to the area
which may bring moderate to heavy damage in an area. As shown in Figure 1,
L’Aquila was devastated severely by this earthquake in 2009 and the city still has
to recuperate from this as the city center is still under reconstruction.

The PSHA can estimate the underlying hazard in an area such as L’Aquila
so that future earthquakes can be withstood by the structures to be constructed
in the future, and the existing structures can be retrofitted. As per the previous
PSHA in Central Italy by Valentini et al. [24], the PGA of L’Aquila corresponding
to the 10% and 2% probability of exceedance in 50 years ranges between 0.225g
to 0.275g and 0.60g to 0.70g, respectively. This agrees with the PGA mentioned
by Monaco et al. [3], making 0.65g having a probability of exceedance of 2% in 50
years, or a return period of 2475 years. Their work is an improvement of another
PSHA for the entire Italy of 2017 by Valentini, Visini, and Pace by considering the
sequence of earthquakes during the 2016 Central Italy Earthquake the epicenter
of which was located at Amatrice.

Hence, for the PSHA in L’Aquila, a non-ergodic assumption was employed
for this paper since these two papers made use of the GMPEs from Italy and
abroad, thus exhibiting the ergodic assumption. In general, this study aims
to develop a PSHA Methodology by employing the non-ergodic assumption
by solving the 1D elastodynamic equation to predict the PGA in L’Aquila.
Specifically, this study aims to:

1. delineate all the seismic sources within 100 km from L’Aquila from the
literature that can significantly contribute to the overall seismic hazard;
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2. characterize all the seismic sources identified in this study in terms of
their geometry, slip rates, style of faulting, activity rates, and location for
earthquake rupture scenarios;

3. calculate distances to determine wave propagation lengths;
4. predict the PGA in all possible magnitude-distance pairs in all seismic

sources by solving the 1D elastodynamic equation using staggered-grid finite
differences;

5. calculate the hazard rates using the formulation of the seismic hazard (6);
and

6. obtain the PGA values with a 10% and 2% probability of being exceeded
in 50 years.

The assumptions of this study were as follows:
1. The PGA was assumed to occur at the bedrock level since this ground mo-

tion parameter could be modified by the type of soil (i.e. local amplification)
which is beyond the scope of this paper;

2. The active fault sources described in these two papers were used extensively
in this study by way of exchanging correspondence with Francesco Visini
from INGV Pisa, one of the authors of both papers;

3. The active faults considered in this study were those located within a 100 km
radius from the city of L’Aquila which could significantly contribute to the
overall seismic hazard;

4. Seismic moment rates, mean the recurrence time, and some activity rates
were obtained also from Francesco Visini;

5. The fault lines and coordinates were viewed using ArcGIS Pro. Also, the
calculation of distances and the division of fault planes into equal areas were
performed using ArcGIS Pro;

6. The minimum magnitude of occurrence considered in this study was 5.5
while the maximum was the 𝑀𝑚𝑎𝑥 for each fault except for characteristic
earthquake models where the minimum and maximum considered were
𝑀𝑚𝑎𝑥± one standard deviation;

7. The distributed sources were not considered since the objective of this paper
was to demonstrate the use of the Physics-based Ground Motion Prediction
as smaller magnitudes were not considered in this study;

8. The Logic Tree Models to account for the epistemic uncertainty were not
employed here since the fault parameters were available and GMPEs were
not used, which was the advantage of studying L’Aquila as a site of interest;

9. For more conservative results, epicentral distances were obtained instead of
hypocentral distances, assuming that the faults were found on the surface
and not at a certain depth;

10. The body forces in the 1D elastodynamic equation were not considered;
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11. A homogeneous medium was considered for the wave propagation from the
source to the site;

12. The point-source approximation was employed as an implication of solving
the 1D Elastodynamic Equation since only the PGA was important in the
analysis of the ground motion and not the entire response as a function of
time and space; and,

13. Hazard calculations were based on Tarbali et al. [19] and Tarbali et al. [20]
being rupture-based scenarios, which for this study was the magnitude
occurrence in the fault source. The probability of exceedances was computed
based on the frequencies of the predicted PGA as a function of the distance
given a magnitude of occurrence.

2. Engineering Seismology
In this Section some principles and theories will be discussed to describe

the mechanism of the earthquake occurrence. Therefore, the basic notions of
seismology relevant to engineering applications will be explained.

2.1. Seismic Waves and Earthquakes
Seismology is the study of earthquakes and movements of seismic waves in

Earth’s internal structure. When a geologic fault ruptures, an earthquake occurs
and elastic strain energy is released through seismic waves which may affect ten
to hundreds of kilometers. Seismic waves can be classified into two main types,
namely body waves and �surface waves [1].

Body waves are waves which can travel in the Earth’s interior. The two
main types of body waves are p-waves and s-waves. P-waves cause compression
and rarefaction in the material along their axis when they pass through it. S-waves
cause shearing in the material as they pass through it. While P-waves move
parallel to the direction of travel, S-waves move perpendicular to the direction
of travel. S-waves can be divided into two component waves, namely SH (pure
horizontal motion) and SV (pure vertical motion) waves. Rocks are stiffest in
compression, therefore, P-waves travel faster than S-waves, which reach the site
faster [1]. The distinction between P-waves and S-waves for illustration is shown
in Figure 6

Surface waves are formed when body waves interact with the uppermost
layer of the earth. They travel along the surface of the earth, hence the name.
There are two types of surface waves, namely Rayleigh waves and Love waves.
Rayleigh waves are created when an SV wave interacts with a P-wave, while Love
waves are created when an SH wave interacts with a soft layer of the Earth’s
surficial layer [1]. Figure 7 shows a comparison between Rayleigh and Love waves.

2.2. Faults
According to the Theory of Plate Tectonics, the surface of the Earth, which

is composed of large, dense blocks floating over the viscous mantle which are
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constantly moving with respect to each other [1]. This motion of plates causes
deformation along boundaries, which produces earthquakes. This movement can
be explained by convection in the mantle, which imposes shear stresses at the
bottom of the plates. Due to these movements, new geologic structures are formed
which are called faults or geologic faults in the form of cracks or discontinuities in
the crust.

Figure 6. Material deformation caused by (a) P-wave (b) S-wave.
Source: Kramer, 1996 [1]

Faults can have a length ranging from several meters up to hundreds or
thousands of kilometers, as in the case of the San Andreas Fault in the US. The
presence of faults does not imply that an earthquake will occur in the future.
For the purposes of a seismic hazard analysis, a fault must be active, which
shows evidence of the fault activity in the late Quaternary or has evidence of the
potential to be reactivated in the future [25]. The fault activity is characterized
by recent slip displacements or slip rates in the past [1, 25].
2.2.1. Seismic source models

Generally, seismic sources can be modeled as a point, line, plane, or
volume [26, 10, 27]. Usually, faults are area sources, which can be modeled as
rectangular sources with length (𝐿) along the ground surface or located at a
certain depth (𝑑1) and width (𝑊) which plunges beneath the earth surface. Refer
to Figure 8 for visualization of a planar fault (or seismogenic box) as illustrated
by Valentini, Visini, and Pace [25]. If a fault is too short in length and is too far
from a site, it can be modeled as a point source. If the fault is near but it is short,
it can be modeled as a line [1].
2.2.2. Fault Geometry

A fault can be described by the directions of its movement, namely the
strike and the dip. The strike of a fault is the line which forms with the fault
plane intersecting the horizontal plane. The azimuth of the strike (𝑆) is the angle
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Figure 7. Material deformation caused by (a) Rayleigh wave (b) Love wave.
Source: Kramer, 1996 [1]

of this line relative to the North, usually measured from 0 to 360 degrees. The dip
angle (𝜃) is the angle of the fault plane with the horizontal perpendicular to the
strike. The geometric notation of faults is shown in Figure 8 [25] and Figure 9 [1].

Active faults are characterized by their sense of slip, or style of faulting [1].
Faults can be classified into strike-slip or dip-slip faults. If the dip angle of the
fault is 90 degrees, then it is strike-slip. Otherwise, it is dip-slip. Furthermore,
dip-slip faults are classified as normal or reverse. Normal faulting occurs when a
hanging wall moves downward relative to the footwall. On the other hand, reverse
faulting occurs when the hanging wall moves upward relative to the footwall [1].
In Italy, the majority of faults have this kind of style of faulting [25, 24].

Figure 8. Geometric properties of a fault
Source: Valentini, Visini, and Pace, 2017 [25]
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2.2.3. Geometric Notation of Earthquakes
In relation to the faults for which the seismic waves originate, the location

of earthquakes is reported in terms of their distances from a seismic monitoring
station. Figure 10 shows the different distances of an earthquake that can be
described. The epicentral distance is the distance of the observer to the point
on the ground surface projected above from the source of the tremor, which is
called the epicenter. The source of the quake is called the focus or the hypocenter
located along the fault plane. The distance of the observer to the focus is called
the hypocentral distance [1].

Figure 9. Geometric notation for fault orientation
Source: Kramer, 1996 [1]

2.3. Size of Earthquakes
The size of an earthquake refers to how small or big the impact of an

earthquake is. This is important in any SHA as this parameter gives the audience
what kind of earthquake to anticipate.

Intensity refers to the qualitative description of the an earthquake which
differs from one place to another. This is subjective depending on the extent
of the damage an earthquake does at a certain place. The Modified Mercalli
Intensity (MMI) Scale is used to quantify the damage caused by an earthquake [1].
Cornell [10] pioneered the PSHA using the MMI Scale as the earthquake size, but
changes have been made as intensity is qualitative only.

Magnitude is the size of an earthquake based on the amount of energy it
has released. There are four main types of magnitude scales used: local (Richter),
body-wave, surface-wave, and moment magnitude [1, 2, 28]. The first three scales
mentioned above are obsolete nowadays for advanced countries, but these scales
are still used, especially for developing countries. This is because these magnitude
scales exhibit the saturation effect [28, 2, 1], or the inability of the scale to measure
magnitudes beyond a certain value.
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Nowadays, the moment magnitude scale is used to represent the size of an
earthquake, especially in conducting a PSHA. This scale is based on the seismic
moment of an earthquake when a geologic fault ruptures [29, 30]. The seismic
moment 𝑀0 (in dyne-cm) is given by:

Figure 10. Geometric Notation of Earthquakes
Source: Kramer, 1996 [1]

𝑀0 = 𝜇𝐴𝐷 (7)
where 𝜇 is the shear modulus of rigidity of the rock equal to 3.3×1010N/m2, 𝐴 is
the ruptured area of the fault (in square meters) and 𝐷 is the average slip rate in
the long run (in cm/yr). One may refer to Figure 8 to calculate the rupture area
of the fault given the dip angle and the seismogenic thickness (or depth) of the
fault. The moment magnitude 𝑀𝑤 of an earthquake is given by [30]:

𝑀𝑤 = 2
3

log𝑀0 −10.7 (8)

If the seismic moment is expressed in Newton-meters (N-m), the moment magni-
tude is given by [29].

𝑀𝑤 = 2
3

(log𝑀0 −9.1) (9)
Since the moment magnitude scale is based on the seismic moment, it is

a very good measurement of the size of an earthquake [1, 28, 2]. Therefore, the
moment magnitude scale is typically the magnitude scale used in conducting a
PSHA.

Other relations are correlated by Causse, Dalguer, and Mai [31] to relate
the seismic moment (in N-m) to the dynamic stress drop (△𝜎𝑑) and the fracture
energy (𝐺) during earthquakes are given by:

log△𝜎𝑑 = 0.21 log𝑀0 −3.0
log𝐺 = 0.60 log𝑀0 −10.6

(10)

The stress drop is the decrease in shear stresses in rocks after a fault ruptures,
while the fracture energy is the energy required to initiate fracture in rocks [32].
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Given these relationships between the seismic moment, the moment magnitude,
the dynamic stress drop and the fracture energy, an earthquake for the seismic
hazard analysis can be simulated.

2.4. Elastic Rebound Theory
As plates move toward each other, elastic strain energy builds up along

the edges of the two plates in motion. This energy continues to build up until
such time that the shear strength of rocks is exceeded, and thus rupture occurs
(and subsequently, the earthquake occurs) and the energy is released. The nature
of failure of rocks depends on the type of material of the rock. If the rock is
brittle and strong, it is expected to have a sudden release of energy which can be
transformed into some heat and some shear waves. If the rock is ductile and weak,
only small energy is released and therefore faults move slowly and will not cause
a massive earthquake [1]. This process of building up the elastic strain energy and
releasing the energy to the rock next to the fault is called the Elastic Rebound
Theory. Figure 11 shows the two possible failure modes of rocks along the fault
line.

Not all earthquakes reported by a seismic monitoring station result from a
sudden release of strain energy in rocks. These earthquakes can be classified as
foreshocks, main shocks, or aftershocks. The elastic rebound theory can explain
the difference between these three shocks. The energy stored and the strength
distributed along the fault are not the same, meaning that certain portions of
rocks are relatively weaker. In cases where a weaker portion ruptures, a foreshock
will occur. These kinds of earthquakes will occur until the strongest part of the
fault, also known as asperity, ruptures, and this will trigger the occurrence of the
main shock. Then, after some time, some remaining stronger portions of the fault
will have their shear strengths exceeded upon a continuous movement of the crust,
and this will trigger the occurrence of aftershocks [1].

As mentioned by Kramer [1], the elastic rebound theory states that the
occurrence of earthquakes will de-stress the fault until new elastic energy builds
up again. This implies that all the earthquakes attributed to a ruptured fault are
not random and dependent on each other. The knowledge of this concept is very
important in the PSHA particularly in modeling the occurrence of earthquakes.

2.5. Seismograms
The ground motion on a certain site during an earthquake excitation is

measured by instruments called seismographs or accelerographs and the recordings
are plotted on seismograms or accelerograms, or which shows the variation of
displacement, velocity, or acceleration as a function of time [1]. Figure 12 shows
an example of a typical seismogram.

Seismograms are used in creating response spectra by taking the Fourier
Transform of the displacement, velocity, or acceleration to produce a plot of
maximum response values of ground motion parameters (displacement, velocity,
or acceleration) of structures and soils as a function of natural period, a property
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Figure 11. Failure modes of rocks along the fault: (a) ductile (b) brittle
Source: Kramer, 1996 [1]

of a structure or soil which is the time that it takes for the structure or soil to
complete an oscillation [1]. This is a very important application of seismograms
for engineering purposes.

Seismograms are also used to characterize an earthquake in terms of its
peak ground acceleration (PGA), peak ground velocity (PGV), or peak ground
displacement (PGD). As mentioned before, PGA is important for building code
applications [22, 1].

For seismic hazard applications, a seismogram can be created synthetically
by performing a numerical simulation of the earthquake mechanism if the style of
faulting, the magnitude, and the rock properties are known [18, 6, 33].

2.6. Ground Motion Prediction Equations
It is indeed a vital part for any seismic hazard analysis to model the beha-

vior of seismic waves as they travel from one place to another. Predictive relations
that relate the ground motion to the magnitude, distance and other parameters
are called Ground Motion Prediction Equations (GMPE) or Attenuation Relation-
ships [2, 10, 14, 1, 27]. Usually, a GMPE takes the form of the expression shown
in (5).

2.6.1. Statistical Approach
According to Kramer [1], the function must reflect the mechanics of the

ground motion as exactly as possible, hence, the available strong ground motion
data in the form of time histories is used to correlate the ground motion
parameters and the magnitude and distance of the occurrence, considering the
soil type and the style of faulting. Usually, GMPEs are expressed in terms of
the natural logarithm of the ground motion parameter since the logarithms of the
ground motion parameter are normally distributed, as shown in (5). Equation (11)
elaborates the expressions of a GMPE used in the study of Landwehr, et al. [13]:
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Figure 12. An accelerogram obtained from Gilroy Site, with velocity and displacement time
histories integrated using the Trapezoidal Rule.

Source: Kramer, 1996 [1]

𝑦 = 𝛽0 +𝛽1𝑀 +𝛽2𝑀2 (𝛽3 +𝛽4𝑀)ln√𝑅2
𝐽𝐵 +ℎ2+

+𝛽5𝑅𝐽𝐵 +𝛽6 ln𝑉𝑆30 +𝛽7𝐹𝑅 +𝛽8𝐹𝑁𝑀 +𝜖
(11)

where 𝑦 = 𝑦(𝑀,𝑅𝐽𝐵,𝑉𝑆30,𝐹) is the ground motion parameter of interest, 𝛽𝑖 are
the coefficients to be determined, 𝑀 is the magnitude, 𝑅𝐽𝐵 is the nearest distance
from the source to the site projected vertically upward, 𝑉𝑆30 is the shear wave
velocity in the uppermost 30 m height of soil on the site, 𝐹 takes account of the
style of faulting (reverse or normal fault), ℎ is a constant and 𝜖 s a residual term.
These coefficients are to be determined given a strong ground motion data set.

Since the equation is a result of regression, an error term also known
as the uncertainty in the ground motion parameter is always present, usually
expressed as a standard deviation of the natural logarithm of the ground motion
parameter. This uncertainty makes the use of GMPEs to be an ergodic approach,
which assumes that data measurements that are spatially varying are the same
as sampling as a function of time at a single point in space [12]. For a PSHA
to have fewer uncertainties, the new focus of studies is currently a non-ergodic
assumption which deals with improvement of GMPEs.

According to Anderson and Brune [12] and Landwehr et al. [13], this
uncertainty in the GMPEs can be broken down into two main components:
the aleatory uncertainty (or variability), which represents the randomness in
the ground motion and is inherent to the ground motion; and the epistemic
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uncertainty, which accounts for the lack of knowledge in the process of the
earthquake occurrence and the lack of data.

Landwehr et al. [13] tried to minimize the aleatory variability in their studies
by considering the repeatability of measurements to account for the epistemic
uncertainties in the path, source, and site of interest, making these uncertainties
distributed into multiple points across California. These resulted in a decrease in
the aleatory variability by 40% and a decrease in the epistemic uncertainty in
areas with more data, but an increase in areas with scarce data.

Kotha, Bindi, and Cotton [16] shifted their PSHA from an ergodic assump-
tion to a regional and site specific PSHA, minimizing the overall hazard as much as
25% in a regional PSHA and as high as 50% change in a site specific environment.

2.6.2. Physics-Based Approach
The problem in the ergodic assumption in the PSHA is the treatment of

both the aleatory and epistemic uncertainties. Using this approach, a correlation
between the ground motion and the specific source, path is lost which results in
building the uncertainties [18, 6]. In this regard, there is a need for more data
regarding historical earthquakes to be more certain of an earthquake process.
Thus, employing an actual physical model with physical parameters of the fault
can be used to characterize the actual ground motion itself, while keeping the
original characteristics of the seismic source that produced that earthquake. The
aim of the physics-based approach is to produce a library of ground motions which
are site-specific and source-specific, which is also done in a normal DSHA or PSHA
by classifying the site and seismic sources for the GMPE to be utilized. In this way,
too much uncertainty in the ground motion can be avoided to be incorporated into
the seismic hazard. Incorporating this deterministic approach into a probabilistic
framework not only justifies using a model of an actual earthquake, but it also
gives meaning to the inherent randomness of an actual process.

The wave propagation from a seismic source is governed by the Elastody-
namic Equation which is given by [17]:

𝜌�̈�𝑖 = 𝑓𝑖 +𝜏𝑖𝑗,𝑗 (12)

where 𝜌 (assumed constant) is the volumetric mass density of the deforming
body, u = (𝑢1,𝑢2,𝑢3) ∈ IR3 is the displacement vector, f = (𝑓1,𝑓2,𝑓3) ∈ IR3 is
the body force vector, and 𝜏𝑖𝑗,𝑗 ∈ IR3 is the Cauchy Stress tensor, with 𝑗 subscript
indicating a spatial derivative with respect to coordinate 𝑗, and the dot represents
the time derivative. The result of solving the elastodynamic equation is a synthetic
seismogram, which can be used to predict the ground motion [34, 17, 33].

Equation (11) is a partial differential equation in time and space, which
requires another relationship from the properties of the material to solve it,
provided that the initial and boundary conditions are satisfied. This equation
will be derived in the next Section.
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2.7. Derivation of Elastodynamic Equation
The derivation from Aki and Richards [17] will be discussed here. There are

two ways to fully express kinematics and kinetics in a continuum. The Lagrangian
coordinates are used to study a particle of interest with the known starting position
at a given time frame, and the Eulerian coordinates are used to study any particle
moving along in any time and space. For seismology applications, it is better to
describe the motion of particles in Lagrangian coordinates since seismograms are
site-specific and are studied at a given location and time.

In this paper, the Cartesian Coordinate system will be used, and the tensors
are also Cartesian. Let u = u(x,𝑡) be the displacement as a function of position
x ∈ IR3 and time 𝑡 ∈ [0,𝑇 ], where 𝑇 is the duration of an earthquake. Let this
position be taken at a certain reference time 𝑡 = 0. Denote the particle velocity
as ̇u = 𝜕u/𝜕𝑡 and the particle acceleration as ̈u = 𝜕2u/𝜕2𝑡. Hence, the regularity
required for u is 𝐶2 in time. It must be assumed also for now that u is 𝐶1 in
space.

If a particle with initial position 𝑥 traveled to a point with new position
x+u, then u ≡ u(x) is the displacement field. Let 𝛿x be a deformation introduced
on a portion of a medium the position of which is x such that the particle
position is initially at x + 𝛿x. Then, the new position of the particle becomes
x + 𝛿x + u(x+𝛿x). Any deformation is responsible for changing the relative
position of the endpoints of line-element 𝛿x. If the change is 𝛿u, then the new
vector line-element corresponds to 𝛿x+𝛿u which is equivalent to:

𝛿x+𝛿u = x+𝛿x+u(x+𝛿x)−(x+u(x)) (13)

For |𝛿x| very small u(x+𝛿x) can be approximated by the first order Taylor Series
expansion as

u(x+𝛿x) ≈ u(x)+(𝛿x ⋅∇)u(x)+𝑂(|𝛿x|2) (14)

By inspection, it follows that

𝛿u = (𝛿x ⋅∇)u or 𝛿𝑢𝑖 = 𝜕𝑢𝑖
𝜕𝑥𝑖

𝛿𝑥𝑗 (15)

First, let the spatial derivative be denoted by 𝑢𝑖,𝑗 = 𝜕𝑢𝑖/𝜕𝑥𝑖 and let the Kronecker
symbol 𝛿𝑖,𝑗 and the alternating tensor with components 𝜀𝑖𝑗𝑘 be denoted as:

𝛿𝑖𝑗 = {1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗 𝜀𝑖𝑗𝑘 =

⎧{
⎨{⎩

1 𝑖𝑓 (𝑖,𝑗,𝑘) = (1,2,3),(2,3,1),(3,1,2)
0 𝑖𝑓 𝑖 = 𝑗 = 𝑘
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(16)

Also, the important properties of these notations are

𝑎𝑖 = 𝛿𝑖𝑗𝑎𝑗 and 𝜀𝑖𝑗𝑘𝑎𝑗𝑏𝑘 = (a×b)𝑖 (17)
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and these are also associated with the following properties:

𝜀𝑖𝑗𝑘𝜀𝑖𝑙𝑚 = 𝛿𝑗𝑙𝛿𝑘𝑚 −𝛿𝑗𝑚𝛿𝑘𝑙 and 𝜀𝑖𝑗𝑘𝜀𝑙𝑚𝑛 =

∣
∣
∣
∣
∣

𝛿𝑖𝑙 𝛿𝑗𝑙 𝛿𝑘𝑙

𝛿𝑖𝑚 𝛿𝑗𝑚 𝛿𝑘𝑚

𝛿𝑖𝑛 𝛿𝑗𝑛 𝛿𝑘𝑛

∣
∣
∣
∣
∣

(18)

Since a part of the motion is caused only by an infinitesimal rigid-body
rotation about x, it is not a prerequisite to solve for all the nine independent
components of the tensor 𝑢𝑖,𝑗. Using the properties from (16)- (18) and the
identity (𝑢𝑖,𝑗 −𝑢𝑗,𝑖)𝛿𝑥𝑗 = 𝜀𝑖𝑗𝑘𝜀𝑗𝑙𝑚𝑢𝑚,𝑙𝛿𝑥𝑘, (15) can be rewritten as

𝛿𝑢𝑖 = 1
2

(𝑢𝑖,𝑗 +𝑢𝑗,𝑖)𝛿𝑥𝑗 + 1
2

(curl u×𝛿x)𝑖 (19)

with the rigid-body rotation equal to curl u, and the last term of (19) can be
viewed as rigid-body rotation if and only if |𝑢𝑖,𝑗| ≪ 1. Then, define the strain
tensor with the components

𝑒𝑖𝑗 = 1
2

(𝑢𝑖,𝑗 +𝑢𝑗,𝑖) (20)

the effect of true deformation on any line-element 𝛿𝑥𝑗, making the change to the
relative position to its endpoints by 𝑒𝑖𝑗𝛿𝑥𝑗. Since the rigid-body motion does not
impose deformation, hence, the new length is given by:

|𝛿x+𝛿u| ≈
√

𝛿x ⋅ 𝛿x+2𝛿u ⋅ 𝛿x (neglecting 𝛿u ⋅ 𝛿u)

= √𝛿𝑥𝑖 ⋅ 𝛿𝑥𝑖 +2𝑒𝑖𝑗𝛿𝑥𝑖𝛿𝑥𝑗 (using (19) and since (curl u×𝛿x) ⋅𝛿x = 0)

≈ |𝛿x|(1+𝑒𝑖𝑗𝛾𝑖𝛾𝑗) (binomial approx. to first order, if |𝑒𝑖𝑗| ≪ 1)

where 𝛄 is the unit vector 𝛿x/|𝛿x|. Hence, the extension imposed by deformation
𝛿u is directed towards 𝛄 is equal to 𝑒𝑖𝑗𝛾𝑖𝛾𝑗. This result will be used later for the
material property to solve (12).

Now, the internal forces acting on the particles of the continuum must be
identified, and for that purpose the concepts of traction and stress tensor will be
used. These forces are called surface or contact forces. Traction is the vector of
force per unit area acting on an internal surface 𝑆 with normal n ∈ IR3 on the
continuum as shown in Figure 13a. This force denoted by 𝛿F ∈ IR3 can act as
an angle with respect to n, such that these two vectors are not parallel. This is
possible for solids, for which shear stresses can act. For a given point on 𝑆, traction
T ∈ IR3 is defined as the infinitesimal force 𝛿F acts along the infinitesimal surface
𝛿𝑆, and taking the limit 𝛿F/𝛿𝑆 as 𝛿𝑆 → 0. This traction acts as if the material is
being pulled to the normal points, and so the traction is T = T(n).

Next, the forces existing among the particles and other forces resulting
from some physical phenomenon outside the medium must be taken into account.
These are called body forces such as gravitational and magnetic forces, which can
be denoted by f(x,t) ∈IR3 to indicate the body forces per unit volume at an initial
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position x and a certain initial time frame. Usually, it is preferable to have body
forces to be applied impulsively (or a very large force applied at a very short time)
to a specific particle x = 𝛏 and 𝑡 = 𝑡0. This force, component-wise, is proportional
to the Dirac Delta Function 𝛿(x−𝛏) in space, the Dirac Delta Function 𝛿(𝑡−𝑡0)
in time, and the Kronecker Delta function 𝛿(𝑡−𝑡0), which indicates directionality
that 𝑓𝑖 = 0 fot 𝑖 ≠ 𝑛. Then, combining these assumptions, the body force is given
by:

𝑓𝑖(x,𝑡) = 𝐴𝛿(x−𝛏)𝛿(𝑡−𝑡0)𝛿𝑖𝑛 (21)
where 𝐴 ∈ IR is the strength of the impulse. To analyze the dimension, 𝑓𝑖, 𝛿(x−𝛏),
and 𝛿(𝑡−𝑡0) have the dimensions of force per unit volume, 1/unit volume and
1/unit time, hence, 𝐴 has a dimension of force x time which is the same for an
impulse.

Figure 13. (a) Traction acting on internal surface 𝑆
(b) volume material 𝑉 of the continuum with surface 𝑆

Source: Aki and Richards, 2002 [17]

Consider volume 𝑉 of the material with surface 𝑆 in Figure 13b. By Newton’s
Second Law of Motion, the change in momentum in the entire volume 𝑉 is the
sum of the body forces and the traction. Mathematically, this is given by:

𝜕
𝜕𝑡

∫
𝑉

𝜌𝜕u
𝜕𝑡

𝑑𝑉 = ∫
𝑉

f 𝑑𝑉 +∫
𝑆

T(n)𝑑𝑆 (22)

with 𝑉 and 𝑆 moving along with the particles. Since 𝑉 does not depend on time,
the time derivative can be put inside the integral making (22) equivalent to:

∫
𝑉

𝜌𝜕2u
𝜕𝑡2 𝑑𝑉 = ∫

𝑉

f 𝑑𝑉 +∫
𝑆

T(n)𝑑𝑆 (23)

Now, consider a small tetrahedron (as shown in Figure 14) with three of its faces
lying along the coordinate axes with outward normals ̂𝑥𝑗 (𝑗 = 1,2,3), while the
fourth face has a normal n. To arrive at (11) the first step is to find a good
expression for the traction. To accomplish this, consider a particle 𝑃 within
the medium located in the origin with distance 𝜖 → 0 from the corners of the
tetrahedron. Also, assume that 𝜕2u/𝜕𝑡2, f, T are 𝐶1 functions. Then, it follows
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that |𝑉 | ∼ 𝜖3 and |𝑆| = |𝜕𝑉| ∼ 𝜖2. The expressions in the volume integrals can be
bounded by their maximum values as shown:

∫
𝑉

𝜌𝜕2u
𝜕𝑡2 𝑑𝑉 ≤ 𝜌∣𝜕

2u
𝜕𝑡2 ∣|𝑉 | ∫

𝑉

f 𝑑𝑉 ≤ |f||𝑉 | (24)

It can be observed from (23) that all the terms have the same units of forces, with
the traction terms composed of the traction multiplied by the area. Combining
the terms in (24) in the left-hand side and dividing everything with the measure
of 𝑆, one can obtain:

|𝑉 |
|𝑆|

⎡⎢
⎣

𝜌∣𝜕
2u

𝜕𝑡2 ∣−| f |⎤⎥
⎦

=
∣∫

𝑆
T 𝑑𝑆∣
|𝑆|

(25)

Figure 14. Infinitesimal tetrahedron given the faces
and their respective normal outward vectors.

Source: Aki and Richards, 2002 [17]

Since |𝑉 | has the measure 𝜖3 and |𝑆| has the measure 𝜖2, it follows that
|𝑉 |/|𝑆| ∼ 𝜖 → 0 and thus, the left-hand side of (25) approaches zero, forcing the
right-hand side also to approach zero as 𝜖 → 0 and thus one obtains:

∣∫
𝑆

T 𝑑𝑆∣
|𝑆|

→ 0 (26)

The second step is to consider that 𝑉 is an infinitesimal cylinder with height 𝜖 and
radius 𝜖, whose bases are centered at x, as shown in Figure 15. It is desirable to
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show that T(−n) = −T(n). Then, the integral term in (22) involving the traction
for the cylinder in Figure 15 is given by:

∫
𝑆

T𝑑𝑆 = ∫
𝐵1

T(n(x))𝑑𝑆 +∫
𝐵2

T(−n(x))𝑑𝑆 +∫
𝐵3

T(nB3
(x))𝑑𝑆 (27)

By the mean value theorem for integrals, for some xB1,xB2,xB3 ∈ 𝑉 and T(n)
continuous on 𝑉, one has:

∫
𝑆

T𝑑𝑆 = |𝐵1|∣T(n(xB1
))∣+|𝐵2|∣T(−n(xB2

))∣+|𝐵3|∣T(n(xB3
))∣ (28)

It follows from the cylinder in Figure 15 that |𝑉 | = 𝜋𝜖4 and |S|=23 +2𝜋𝜖2 ≈ 2𝜋𝜖2

and due to (26), dividing (28) by |𝑆| yields:
1

|𝑆|
∫
𝑆

T𝑑𝑆 = |𝐵1|
|𝑆|

∣T(n(xB1
))∣+ |𝐵2|

|𝑆|
∣T(−n(xB2

))∣+ |𝐵3|
|𝑆|

∣T(n(xB3
))∣ (29)

and setting 𝜖 → 0, xB1
,xB2

,xB3
→ x and the cylinder will be squeezed to

xB1
,xB2

,xB3
which results in:

0 = 1
2

T(n(x))+ 1
2

T(−n(x)) (30)

Figure 15. An infinitesimal cylinder centered at x with normal n(x) and −n(x) along
surfaces 𝐵1 and 𝐵2, normal nB3

(x) along surface 𝐵3.

with the third term becomes 𝜖 T(nB3
(x)) → 0 as 𝜖 → 0. And thus, it is shown

that:
T(−n) = −T(n) (31)

The third step is to go back to Figure 14. As a consequence of (26), it is implied
that:

T(n)|𝐴𝐵𝐶|+T(− ̂x1)|𝑂𝐵𝐶|+T(−x̂2)|𝑂𝐶𝐴|+T(−x̂1)|𝑂𝐴𝐵|
|𝐴𝐵𝐶|+|𝑂𝐵𝐶|+|𝑂𝐶𝐴|+|𝑂𝐴𝐵|

→ 0 (32)
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as 𝜖 → 0. Moreover, one can show that the components of the normal vector n are
given by (𝑛1,𝑛2,𝑛3) = (|𝑂𝐵𝐶|,|𝑂𝐶𝐴|,|𝑂𝐴𝐵|)/|𝐴𝐵𝐶|. To show this, the Gauss
Divergence theorem can be used. Assuming that for 𝑛𝑖 > 0, we have:

0 = ∫
𝑉

𝑑𝑖𝑣 ̂xj𝑑𝑉 = ∫
𝐴𝐵𝐶

̂xj ⋅n 𝑑𝑆 −
3

∑
𝑖=1

∫
𝐵1

x̂i ⋅ x̂j 𝑑𝑆 = 𝑛𝑗 |𝐴𝐵𝐶|−|𝐵𝑖|

where 𝐵𝑖 are areas (|𝑂𝐵𝐶|,|𝑂𝐶𝐴|,|𝑂𝐴𝐵|). Hence, from (32) and (31), one can
obtain

T(n) = T( ̂xj) 𝑛𝑗 (33)
Defining the stress tensor with components 𝜏𝑘𝑙 = 𝑇𝑙( ̂𝑥𝑘) so that 𝜏𝑘𝑙 is the 𝑙th
component of the contact stress acting on the plane normal to the 𝑘th axis with the
above material acting upon another material below. Hence, using this definition
one has:

𝑇𝑖 = 𝜏𝑗𝑖𝑛𝑗 (34)
Using Figure 14 and the result from (34), the equation of motion of a general
particle can be studied. Using the Gauss Divergence Theorem, (34) yields,

∫
𝑆

𝑇𝑖𝑑𝑆 = ∫
𝑆

𝜏𝑗𝑖𝑛𝑗𝑑𝑆 = ∫
𝑉

𝜏𝑗𝑖,𝑗𝑑𝑉 (35)

and the volume of the material can be generalized such that from (23), one has

∫
𝑉

(𝜌𝜕2𝑢𝑖
𝜕𝑡2 −𝑓𝑖 −𝜏𝑗𝑖,𝑖)𝑑𝑉 = 0

(36)
which is our desired result. The integral in (36) is zero for any choice of volume
𝑉 with the assumption that the acceleration, body forces, traction are continuous
functions on 𝑉.

For simplicity in solving, only one-dimensional elastodynamic equation was
considered in this study since the fault models used in this study are simple fault
models and the PSHA employed in this study considers the classical approach
of obtaining distances of discretized seismic sources, which is similar to using
GMPEs that require a single distance. Hence, (12) can be simplified for a 1D case
and is given by

𝜌𝜕2𝑢
𝜕𝑡2 = 𝑓 + 𝜕𝜏

𝜕𝑥
(37)

According to Shearer [32], the body force does not dominate in regions of the
earth that are far away from the source, and for the purpose of solving (37), the
body force was not considered in this study and the homogenous equation was
used:

𝜌𝜕2𝑢
𝜕𝑡2 = 𝜕𝜏

𝜕𝑥
(38)

It can be noticed that there are two variables of interest here: the displacement
and the traction. This equation alone cannot be solved even if there are enough
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boundary conditions, hence, a constitutive relation coming from the property of
the medium must be used to solve (37). This property of material involves the
relationship between the stress and the strain in a perfectly elastic medium, which
is called the Hooke’s 𝐿𝑎𝑤1, and is given for one-dimensional case by:

𝜏 = 𝜇𝑒𝑖𝑖 = 𝜇
2

(𝑢𝑖,𝑖 +𝑢𝑖,𝑖) = 𝜇𝜕𝑢
𝜕𝑥

(39)

where 𝑒𝑖𝑖 is the strain tensor for one dimension from (20) and 𝜇 s a Lamè constant
also known as the shear modulus of rigidity. To avoid expressions of a second-order
term in (37), the velocity response can be used instead by introducing 𝜈 = 𝜕𝑢/𝜕𝑡
and taking the time derivative in (38), which yields into a system of two PDEs
given by:

⎧{
⎨{⎩

𝜌 𝜕𝜈
𝜕𝑡 = 𝜕𝜏

𝜕𝑥

𝜕𝜏
𝜕𝑡 = 𝜇 𝜕𝜈

𝜕𝑥

(40)

and this system of PDEs form a second-order linear PDE which will be discussed
further in the next Section.

3. Wave Equation
In this Section, the elastodynamic equation will be treated mathematically

by studying partial differential equations, the well-posedness of the problem, and
numerical solution of the elastodynamic equation.

3.1. Partial Differential Equations
A partial differential equation (PDE) is a type of equation involving an

unknown function of two or more variables [35]. In this Section, all concepts
regarding PDEs will be focused on one-dimension only.

3.1.1. Preliminaries

Definition 1. The PDE that can be expressed as

𝐹(𝐷𝑘(x),𝐷𝑘−1𝑢(x),...,𝐷 𝑢(x),𝑢(x),x) = 0 (x ∈ 𝑉) (41)

is called a k-𝑡ℎ order PDE, where 𝐹:IR𝑛𝑘
× IR𝑛𝑘−1

×...IR𝑛 × IR×𝑉 → IR is given,
while the function 𝑢:𝑉 → IR is the unknown variable and 𝑈 is a vector space with
𝑥 a vector of some dimension 𝑑.

1. For 3-D, Hooke’s Law is expressed as 𝜏𝑖𝑗 = 𝑐𝑖𝑗𝑝𝑞𝑒𝑝𝑞 with 𝑐𝑖𝑗𝑝𝑞 is a fourth-degree tensor
with symmetries 𝑐𝑖𝑗𝑝𝑞 = 𝑐𝑖𝑗𝑝𝑞 and 𝑐𝑖𝑗𝑝𝑞 = 𝑐𝑖𝑗𝑝𝑞 due to 𝜏𝑖𝑗 = 𝜏𝑖𝑗 and 𝑒𝑝𝑞 = 𝑒𝑝𝑞 respectively. See Aki
and Richards [17]
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The notation 𝐷𝑘𝑢 means that the function is differentiated 𝑘 times with
respect to two or more variables, depending on the dimension of 𝑈 . In the usual
partial derivative notation,

𝐷𝑘𝑢 = 𝜕𝑘𝑢
𝜕𝑥𝛼1

1 𝜕𝑥𝛼2
2 ...𝜕𝑥𝛼𝑑

𝑑
= 𝑢𝑥1𝑥1...𝑥1⏟⏟⏟⏟⏟

𝛼1times

𝑥2...𝑥2⏟
𝛼2times

...𝑥𝑑...𝑥𝑑

where ∑𝑖 𝛼𝑖 = 𝑘 and 𝑥𝑖 are components of x = (𝑥1,...,𝑥𝑑).
The PDE (41) is solved if all the possible functions are obtained and found to
satisfy (41) given a number of additional boundary conditions along the boundary
𝜕𝑉. The solution means a simple, straightforward expression that satisfies (41),
or showing the existence of solutions and their properties.

Definition 2. The PDE in (41) is said to be of a linear type if it can be expressed
as

∑
|𝛼|≤𝑘

𝑎𝛼(𝑥)𝐷𝛼𝑢 = 𝑓(𝑥)

for given functions 𝑎𝛼(|𝛼| ≤ 𝑘), 𝑓. Also, this PDE is said to be homogeneous
if 𝑓 ≡ 0. The PDE in (41) is said to be of a semi-linear type, the principal
part only, the one with the highest order, is linear, and the other expressions
of partial derivatives of lower order are nonlinear. The PDE is quasilinear if the
function multiplied to the principal part is nonlinear, but the highest derivative
term remains linear. If none of these three classify as a PDE, then it is nonlinear.

Definition 3. The PDE in the form of

F(𝐷𝑘u(x),𝐷𝑘−1u(x),...,𝐷 u(x),u(x),x) = 0 (x ∈ 𝑈) (42)

is called a k-th order system of PDEs, where F:IR𝑛𝑘
× IR𝑛𝑘−1

×...IR𝑛 × IR×𝑈 →
IR𝑚 given and u:𝑈 → IR𝑚,u = (𝑢1,...,𝑢𝑚) are unknowns.
The number of unknowns here is 𝑚, hence, there are 𝑚 number of scalar PDEs.
In cases of more unknowns than the number of equations, a set of several relations
are required to solve the PDEs which are called constitutive laws [36].

Definition 4. A problem with a PDE model is said to be locally well-posed if the
PDE satisfies the following [35–37]:

I The existence of a solution.
II The uniqueness of the solution.

III The solution depends continuously on the given data.

If a problem is said to satisfy Definition 4, then the problem has a solution which
is very good for modeling applications such as the Ground Motion Prediction. If
the problem does not satisfy all these three conditions, then the problem is called
ill-posed and this calls for remodeling it.

There are two types of data that ensures the uniqueness of the solution
of (41) or (42), and these are initial conditions and boundary conditions [36]. The
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initial conditions are data usually needed for time-dependent problems which gives
the value of the unknown function and/or derivative values at an initial time, say
𝑡 = 0, and is given by:

𝜈(𝑥,0) = 𝑔(𝑥) ̇𝜈(𝑥,0) = ℎ(𝑥)

On the other hand, the boundary conditions are data that is available regarding
the functional values and/or derivative values at some points along the boundary
of the domain, usually at the endpoints of a line domain of length 𝐿𝑝, or corners
of a plane, etc.

Definition 5. Given a PDE either in (41) or (42). The boundary condition is said
to be of the Dirichlet type, if the functional values along the boundary are given
in the problem, such as

𝜈(0,𝑡) = 𝑓1(𝑡) 𝜈(𝐿𝑝,𝑡) = 𝑓2(𝑡)

The boundary condition is said to be of the Neumann type, if the values of the
derivative of the unknown function along the boundary are given, such as

𝜈𝑥(0,𝑡) = 𝑓1(𝑡) 𝜈𝑥 (𝐿𝑝,𝑡) = 𝑓2(𝑡)

It is possible for the two types of boundary conditions to be used depending on
the type of the data present, this is a mixed type, and is given by

𝜈(0,𝑡) = 𝑓1(𝑡) 𝜈𝑥 (𝐿𝑝,𝑡) = 𝑓2(𝑡)

There is another type of a boundary condition called the Robin condition, but it
is never used for an elastodynamic equation. For time-dependent problems, it is
required for the PDE to have initial and boundary conditions to be classified as a
well-posed. This kind of a problem is called an initial-boundary value problem [37].

3.1.2. Second Order Partial Differential Equations
The discussion of this Subsection is obtained from Zachmanoglou and

Thoe [37] for the classification of second order PDEs. Let 𝑥,𝑦 ∈ 𝑉, where 𝑉 ⊂ IR is
open. The unknown function is 𝑢:𝑉 ×𝑉 → IR. The general form of linear second
order, one-dimensional PDE in two independent variables is given by:

𝑎𝑢𝑥𝑥 +2𝑏𝑢𝑥𝑦 +𝑐𝑢𝑦𝑦 +𝑑𝑢𝑥 +𝑒𝑢𝑦 +𝑓𝑢+𝑔 = 0 (43)

where 𝑎,𝑏,𝑐,𝑑,𝑒,𝑓 and 𝑔 are functions of both 𝑥 and 𝑦. For the purpose of
considering the Elastodynamic Equation with the Hooke’s Law, let the functions
𝑎,𝑏, and 𝑐 be constants (or can be of class 𝐶2 in general). It is desirable to
discuss (43) in the domain 𝑉 ⊂ IR2 the discriminant

Δ = 𝑏2 −𝑎𝑐 (44)

to classify (43) according to its sign in 𝑉. The principal part of (43) are those
terms involving the second derivatives, and we wish to simplify these terms by
introducing a new set of coordinates 𝜉 and 𝜂, both are functions of 𝑥,𝑦 ∈ 𝑉. Given
the initial data (𝑥0,𝑦0), there is a neighborhood 𝑈 ⊂ 𝑉 of (𝑥0,𝑦0) for which (44)



128 J. J. Aguirre, B. Rubino, M. Vassallo, G. Di Giulio and F. Visini

can be transformed using new coordinates, and this equation is called a canonical
form in 𝑈. Let 𝜉 and 𝜂 be expressed as the following:

𝜉 = 𝜉(𝑥,𝑦) 𝜂 = 𝜂(𝑥,𝑦) (45)

Let these functions be of class 𝐶2 and have smooth non-singular transformations,
and the Jacobian is not zero,

𝐽 ≡ 𝜕(𝜉,𝜂)
𝜕(𝑥,𝑦)

≡ 𝜉𝑥𝜂𝑦 −𝜉𝑦𝜂𝑥 ≠ 0 (46)

In a neighborhood of any point (𝑥0,𝑦0), in 𝑉 where (46) is satisfied, 𝑥 and 𝑡 can
also be expressed as functions of 𝜉 and 𝜂 (inverse):

𝑥 = 𝑥(𝜉,𝜂) 𝑦 = 𝑦(𝜉,𝜂) (47)

Using the chain rule, one can obtain

𝑢𝑥 = 𝑢𝜉𝜉𝑥 +𝑢𝜂𝜂𝑥 𝑢𝑦 = 𝑢𝜉𝜉𝑦 +𝑢𝜂𝜂𝑦 (48)

and
𝑢𝑥𝑥 = 𝑢𝜉𝜉𝜉2

𝑥 +2𝑢𝜉𝜂𝜉𝑥𝜂𝑥 +𝑢𝜂𝜂𝜂2
𝑥 +...

𝑢𝑥𝑥 = 𝑢𝜉𝜉𝜉𝑥𝜉𝑦 +𝑢𝜉𝜂𝜉𝑥𝜂𝑦 +𝑢𝜉𝜂𝜉𝑦𝜂𝑥 +𝑢𝜂𝜂𝜂𝑥𝜂𝑦 +...
𝑢𝑦𝑦 = 𝑢𝜉𝜉𝜉2

𝑦 +2𝑢𝜉𝜂𝜉𝑦𝜂𝑦 +𝑢𝜂𝜂𝜂2
𝑦 +...

(49)

Lower derivatives from (43) are expressed in the ellipses in (49) since only
expressions of the principal parts matter for this discussion. Substituting (47)
– (49) to (43) yields:

𝐴𝑢𝜉𝜉 +𝐵𝑢𝜉𝜂 +𝐶𝑢𝜂𝜂 +... = 0 (50)
where

𝐴 = 𝑎𝜉2
𝑥 +2𝑏𝜉𝑥𝜂𝑥 +𝑐𝜂2

𝑥 +...
𝐵 = 𝑎𝜉𝑥𝜉𝑦 +𝑏𝜉𝑥𝜂𝑦 +𝑏𝜉𝑦𝜂𝑥 +𝑐𝜂𝑥𝜂𝑦 +...

𝐶 = 𝑎𝜉2
𝑦 +2𝑏𝜉𝑦𝜂𝑦 +𝑐𝜂2

𝑦 +...
(51)

It can be observed that forming the expression

𝐵2 −𝐴𝐶 = (𝑏2 −𝑎𝑐)(𝜉𝑥𝜂𝑦 −𝜉𝑦𝜂𝑥)
2

(52)

where Δ′ = Δ𝐽2 is the modified discriminant in the variables 𝜉 and 𝜂. If this
transformation of coordinates is smooth and non-singular, then the sign of the
discriminant in (44) does not change. Hence, a theorem is proven as a consequence
of this.
Theorem 1. Under a smooth nonsingular transformation of coordinates, the sign
of the discriminant (44) in the PDE in (43) with two independent variables does
not change.
Hence, the discriminant of (43) is an inherent property which is independent of
any coordinate system to be used. The value of this discriminant can be positive,
zero, or negative, which renders three types of a second order linear PDE.

Definition 6. Let from (44) be the discriminant for (43). Then, if:
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a Δ > 0 at at the point (𝑥0,𝑦0), then (43) is a hyperbolic PDE at (𝑥0,𝑦0)
b Δ = 0 at at the point (𝑥0,𝑦0), then (43) is a parabolic PDE at (𝑥0,𝑦0)
c Δ < 0 at at the point (𝑥0,𝑦0), then (43) is a elliptic PDE at (𝑥0,𝑦0)

3.2. Elastodynamic Equation with Hooke’s Law
Now, in light of the discussion in Subsection 3.1, the system of linear PDEs

which is given by (40) from Section 2:

⎧{
⎨{⎩

𝜌 𝜕𝜈
𝜕𝑡 = 𝜕𝜏

𝜕𝑥

𝜕𝜏
𝜕𝑡 = 𝜇 𝜕𝜈

𝜕𝑥

(40)

will be discussed here in this Subsection. It is worth noting that the density 𝜌
and the shear modulus 𝜇 are assumed to be constants, 𝑥 ∈ [0,𝐿𝑝],𝑡 ∈ [0,𝑇 ], and
both |𝜈| ≤ 𝜈𝑚𝑎𝑥, 𝜏 ≤ 𝜏𝑚𝑎𝑥 are bounded, with 𝐿𝑝 being the length of the wave
propagation, or the distance of the source to the site, and 𝑇 being the duration of
the seismogram. By adding the time derivative in the first equation to the space
derivative in the second equation from (39), one can obtain

𝜕2𝜈
𝜕𝑡2 = 𝛽2 𝜕2𝜈

𝜕𝑥2 (53)

which is a homogenous, linear second order PDE also known as the elastic wave
equation with 𝛽 = √𝜇/𝜌 also known as the S-wave velocity [17, 32]. This is also
the propagation speed of an S-wave across the material of the earth, which causes
the shearing action. Since this is only in one-dimension, this only involves the SH
component of an S-wave which is enough for the purpose of finding the PGA on
a given site.

To show that (40) is hyperbolic, the value of the discriminant can be
obtained with 𝐴 = 1, 𝐵 = 0 and 𝐶 = −𝛽2 using (44):

Δ = 02 −(1)(−𝛽2) = 𝛽2 > 0

Wave equations in the form of 𝑢𝑡𝑡 −𝑐2𝑢𝑥𝑥 = 0 are hyperbolic equations which can
be used as models for describing the vibration of a string (in 1D), a membrane
(in 2D), or an elastic solid (in 3D) [35, 36], and acoustic waves on a pipe [37, 32].
Another way to show that (40)is hyperbolic is by writing it in a compact form:

w𝑡 +A(𝑥,𝑡)w𝑥 = 0 (54)

where
w = (𝑣

𝜏) A = ( 0 −1/𝜌
−𝜇 0 )

Definition 7 [36, 37]. If matrix A in the system in (54) has real and distinct
eigenvalues, then(54) is said to be a hyperbolic system in a domain, say (0,𝐿𝑝)×
(0,𝑇 ) for this problem.
The characteristic equation of matrix A is 𝜆2 −𝜇/𝜌 = 0 with roots 𝜆 = ±√𝜇/𝜌 =
±𝛽 which are the eigenvalues that are real and distinct. Hence, (40) is of a
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hyperbolic type. According to Li and Chen [38], (54) is well-posed given the
appropriate initial and boundary conditions, if matrix A has real eigenvalues
and each eigenvalue has a corresponding eigenvector.

3.2.1. Initial and Boundary Conditions
Since (39) was used in predicting the ground motion, the initial and

boundary conditions on velocity and stress were required to solve the problem.
The following data is assumed for velocity:

𝜈(0,𝑡) = 0 𝜈(𝑥,) = 0 (55)

which is appropriate since the velocity at 𝑥 = 𝐿𝑝 is required which represents the
seismogram needed for the ground motion prediction. The interpretation of zero
velocity at the boundary means that the boundary is rigid, but the stress in not
zero. On the other hand, it is assumed that initially, the fault is at rest and so
the system is in equilibrium [33].

For the initial condition, the traction must be zero since the rocks outside
the fault are in equilibrium at time 𝑡 = 0 [33]. For the boundary condition, the
time-weakening friction law [7] was adapted which assumes that in a point source,
the stress variation is due to the stress drop during an earthquake and is governed
by the friction in the fault. For this study, this friction model was modified
considering the time to permit the propagation of cracks during rupture. The
resulting boundary condition is given by

𝜏(0,𝑡) =

⎧{{{
⎨{{{⎩

1
2 (𝜏0 +𝜏1)+ 𝑡

2𝑡𝑟
(𝜏0 −𝜏1), 0 ≤ 𝑡𝑟 ≤ 𝑡

[𝜏0 −(𝜏0 −𝜏1) 𝑡−𝑡𝑟
𝑡1

], 𝑡𝑟 < 𝑡 ≤ 𝑡1

𝜏1, 𝑡 > 𝑡1

(56)

where 𝜏0 and 𝜏1 are the static and dynamic stresses in the fault, 𝑡𝑟 is the rupture
time (or the rise time) which is the total time of propagation of cracks in the fault
zone of length 𝐿 approximately equal to 0.5𝐿/𝜈𝑟 for bilateral rupture [39] and
𝜈𝑟 = 0.9𝛽 is the rupture velocity which is an assumed value [32], 𝑡1 is the time
that it takes to decrease the shear stress from 𝜏0 to 𝜏1. The value of 𝑡𝑟 can be
viewed also as the time it takes for the stress to rise from a certain value of stress,
say 1/2(𝜏0 +𝜏1) to 𝜏0, which assumes that the point source is stressed initially
before the fault moves and releases the energy during the earthquake. This model
assumes that under no earthquake occurrences, the shear stress acting in the fault
is the dynamic shear stress. The profile of stress at all values of time 𝑡 ≥ 0 is shown
in Figure 16.

According to Bizzarri [7], the shaded area in Figure 16 is the fracture energy
𝐺 while the change from static stress to dynamic stress is what is referred to as the
stress drop Δ𝜎 [32], which can be estimated by the formulation obtained from (10)
by Causse, Dalguer, and Mai [31]. To apply the modified friction law for this study,
𝜏1 is assumed to be zero which implies that the fault will be completely relieved of
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the shear stress upon the release of seismic waves. Therefore, the modified friction
law for the boundary condition at the source implies that upon rupture of the
fault, there is an increase in stress at that point from 𝜏0/2 to 𝜏0 = Δ𝜎𝑑 (stress
drop) with duration of 𝑡𝑟, then decreasing the linearly from 𝜏0 to zero, and no
residual stresses will be left in the fault.

Figure 16. Modified time-weakening friction law

3.3. Numerical Solution to Partial Differential Equations
There are many ways to solve PDEs and each of them has its own pros and

cons. Analytical (explicit) solutions can be obtained by representation formulas,
transform methods, or separation of variables. Numerical solutions can be utilized
such as the finite difference method, the finite element method, or meshless
methods, which offer approximations to the exact solutions depending on the
complexity of the PDE for which viable exact solutions cannot be obtained. is is
only the finite difference method will be discussed in this paper, while other types
of finding a solution are not within the scope of this study.

3.3.1. Finite Difference Approximations to Elastodynamic Equation
and Hooke’s Law

In the finite difference method, the function and its derivatives are approxi-
mated using the Taylor expansion. The Taylor expansion for 𝜈(𝑥+ℎ) for a small
increment ℎ is given by:

𝜈(𝑥+ℎ) = 𝜈(𝑥)+ℎ 𝜈′(𝑥)+ ℎ2

2
𝜈″(𝑥)+ ℎ3

6
𝜈‴(𝑥)+𝑂(ℎ3) (57)

Similarly, 𝜈(𝑥+ℎ) is obtained in the same fashion:

𝜈(𝑥−ℎ) = 𝜈(𝑥)−ℎ 𝜈′(𝑥)+ ℎ2

2
𝜈″(𝑥)− ℎ3

6
𝜈‴(𝑥)+𝑂(ℎ3) (58)
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Using (58) and (59), the derivates of the function can be approximated. For the
elastodynamic equation and the Hooke’s Law, it is the first derivatives only that
appear, and hence, these are the only derivatives considered in this study. The first
derivative can be expressed using forward differencing, backward differencing, and
central differencing. Using forward differencing, the first derivative of 𝜈(𝑥) can be
approximated as:

𝜈′(𝑥) = 𝜈(𝑥+ℎ)−𝜈(𝑥)
2ℎ

+𝑂(ℎ) (59)

with a very small step size ℎ. Using backward differencing, the expression for the
derivative is given by:

𝜈′(𝑥) = 𝜈(𝑥)−𝜈(𝑥−ℎ)
2ℎ

+𝑂(ℎ) (60)

Using the central differencing, the derivative can be approximated as:

𝜈′(𝑥) = 𝜈(𝑥+ℎ)−𝜈(𝑥−ℎ)
2ℎ

+𝑂(ℎ2) (61)

which has a double step size. While the first two expressions of the first derivative
are first-order accurate, the last one is a second-order accurate. Virieux [33] used
central differencing to approximate the spatial derivative, with the same step size,
but on a staggered-grid, which results in a more accurate approximation up to
four times smaller than a normal grid. Figure 17 shows how stress and velocity
grids are formulated by Virieux [33]. Using the approach used by Virieux, the first
derivative is given by:

𝜈′(𝑥) = 𝜈(𝑥+ℎ/2)−𝜈(𝑥−ℎ/2)
ℎ

+𝑂(ℎ2) (62)

For simplicity in differencing in space, 𝜈(𝑥+ℎ) is denoted by 𝜈𝑗+1, while 𝜈(𝑥−ℎ) is
denoted by 𝜈𝑗−1; for differencing in time, 𝜈(𝑡+𝑘) is denoted by 𝜈𝑖+1 while 𝜈(𝑡−𝑘)
is denoted by 𝜈𝑖−1.
Now, let the problem involving the ground motion prediction be recalled and given
by (63):

⎧{{{{{
⎨{{{{{⎩

𝜌 𝜕𝜈
𝜕𝑡 − 𝜕𝜏

𝜕𝑥 = 0
(𝑥,𝑡) ∈ [0,𝐿𝑝]×[0,𝑇 ]

𝜕𝜏
𝜕𝑡 −𝜇 𝜕𝜈

𝜕𝑥 = 0

𝜈(𝑥,0) = 0 𝜏(𝑥,0) = 0 𝑥 ∈ [0,𝐿𝑝]

𝜈(0,𝑡) = 0 𝜏(0,𝑡) = 𝑓(𝑡) 𝑡 ∈ [0,𝑇 ]

(63)

where 𝑓(𝑡) is given by (56).
Let the grid spacing Δ𝑥 be chosen arbitrarily and let it be set equal to 𝐿𝑝/𝐽,
where 𝐽 is the number of grid points, and the time step Δ𝑡 be any very small
number for a moment (this will be discussed later in Subsection 3.3.2). Let the
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interior of the computation domain [0,Lp]×[0,T ] ∈ (xj,ti) be discretized in the
following manner:

𝑥𝑗 = 𝑥𝑗−1 +𝑗Δ𝑥 1 ≤ 𝑗 ≤ 𝐽
𝑡𝑖 = 𝑡𝑖−1 +𝑖Δ𝑡 1 ≤ 𝑖 ≤ 1

(64)

Using (61) and (62), (63) can be approximated as [33, 40, 32]:

⎧
{
⎨
{
⎩

𝜈𝑖+1/2
𝑗 = 𝜈𝑖−1/2

𝑗 + Δ𝑡
Δ𝑥

𝜏𝑖
𝑗+1/2−𝜏𝑖

𝑗−1/2
𝜌 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑗 ≤ 𝐽

𝜏 𝑖+1
𝑗+1/2 = 𝜏 𝑖

𝑗+1/2 +𝜇 Δ𝑡
Δ𝑥 [𝜈𝑖+1/2

𝑗+1 −𝜈𝑖+1/2
𝑗 ] (𝑥,𝑡) ∈ (0,𝐿𝑝) ∈ (0,𝑇 )

(65)

where the subscripts indicate differencing in space and the superscripts indicate
differencing in time. In this approach, velocities and stresses are stored in different
points, with a step offset of half in space and time. It is implicit to the numerical
scheme in (65) that the initial conditions required for this problem are obtained
at 𝑡 = −Δ𝑡/2 and at 𝑡 = Δ𝑡/2. Similarly, the boundary conditions are obtained at
𝑥 = −Δ𝑥/2,Δ𝑥/2. The central differencing in time is similar with (61), while that
in space is shown in (62), hence, the staggered grid approach. The velocity and
the pressure are still obtained from the same grid points, but the values required
from the approximation are half-steps to the left and to the right, and up and
down of the grid point, just like a five-point stencil. As mentioned by Shearer [32],
the error in the approximation is four time smaller since the sampling is halved.
For the pressure at the boundary, it is assumed that it is the same in the vicinity
of the fault rupture point within the half of the grid spacing to the left and right,
and zero outside the vicinity of the point.

3.3.2. Consistency, Stability, and Convergence of Finite Difference
Approximations

For the purpose of discussion of the properties of the numerical scheme
in (65), some definitions from Li and Chen [38] were used here to ensure a unique
solution for given initial and boundary data.

Definition 8. The truncation errors of the scheme in (65) are defined as

𝑇 𝐸1(𝑥,𝑡) =
𝜈(𝑥,𝑡+Δ𝑡/2)−𝜈(𝑥,𝑡−Δ𝑡/2)

Δ𝑡
− 1

𝜌
𝜏(𝑥+Δ𝑥/2,𝑡)−𝜏(𝑥−Δ𝑥/2,𝑡)

Δ𝑥

𝑇 𝐸2(𝑥,𝑡) =
𝜏(𝑥,𝑦+Δ𝑡/2)−𝜏(𝑥,𝑡−Δ𝑡/2,)

Δ𝑡
−𝜇

𝜈(𝑥+Δ𝑥/2,𝑡)−𝜈(𝑥−Δ𝑥/2,𝑡)
Δ𝑥

(66)

Definition 9. The scheme in (65) is said to be consistent with the differential
equations in (40), if the truncation errors in (66) approach zero as Δ𝑥, Δ𝑡 → 0
for any (𝑥,𝑡) ∈ (Δ𝑥/2,𝐿𝑝)×(Δ𝑡/2,𝑇 ).
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Figure 17. A staggered grid in which velocities and stresses are stored at different points.
Source: Shearer, 2009 [32]

Definition 10. The scheme in (65) is said to be stable under the norm || ⋅ || for a
time-dependent PDE if there exists a constant 𝑀 such that

∣∣𝑢𝑖∣∣ ≤ 𝑀∣∣𝑢0
𝑖 ∣∣ ∀𝑖 Δ𝑡,≤ 𝑇 (67)

where 𝑀 is independent of Δ𝑥,Δ𝑡 and the initial condition 𝑢0.
Definition 11. Let the exact and numerical solutions to (40) and (65) be denoted
by 𝑈𝑃𝐷𝐸(𝑥,𝑡) and 𝑢𝐹𝐷(𝑥𝑗,𝑡𝑖). The scheme in (67) is said to convergent if

|𝑢𝑃𝐷𝐸 −𝑢𝐹𝐷| → 0 Δ𝑥,Δ𝑡 → 0 (68)

Theorem 2 (Lax-Richtmyer). For the scheme formulated in (65) to be a
well-posed linear time-dependent problem, (65) must be both consistent and stable
for the convergence of the solution.
Clearly, using the above definition, (65) is consistent with (40) as Δ𝑥, Δ𝑡 → 0,
for any (𝑥,𝑡) ∈ (0,𝐿𝑝) ∈ (0,𝑇 ). To prove that (65) is stable, the von Neumann
Stability analysis will be invoked, which is used for the linear constant coefficient
problem [38]. If the formulation in (65) is both consistent and stable, then
Theorem 2 can be invoked to claim that (40) has a unique solution numerically
which depends on the given initial and boundary data.

To use the von Neumann Stability Analysis [40], the solution to (65) is
assumed to be in the form of exponential functions just like what is done in
separation of variables, and then obtaining a Fourier Series for the superposition
of solutions. Assume that 𝜈 and 𝜏 in the form

𝜈𝑛
𝑗 = 𝐴 exp(−𝑖𝜔𝑛 Δ𝑡+𝑖𝑘𝑗 Δ𝑥)

𝜏𝑛
𝑗 = 𝐵 exp(−𝑖𝜔𝑛 Δ𝑡+𝑖𝑘𝑗 Δ𝑥)

(69)
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where 𝜈𝑛
𝑗 , 𝜏𝑛

𝑗 are velocity and traction at 𝑥 = 𝑥𝑗 and 𝑡 = 𝑡𝑛 (to avoid confusion with
the use of index 𝑖 and imaginary unit 𝑖 =

√
−1, 𝑛 is used for showing stability),

𝐴, 𝐵 are constants (or amplitude of the wave), 𝜔,𝑘 are the wave numbers of the
solution. Substituting (68) to the velocity and traction terms in the right-hand
sides of the equations, one obtains:

𝜈𝑛+1/2
𝑗+1 −𝜈𝑛+1/2

𝑗 =
=A exp(−𝑖𝜔(𝑛+1/2)Δ𝑡+𝑖𝑘(𝑗+1)Δ𝑥)−𝐴 exp(−𝑖𝜔(𝑛+1/2)Δ𝑡+𝑖𝑘𝑗Δ𝑥)
=A exp(−𝑖𝜔(𝑛+1/2)(Δ𝑡)+𝑖𝑘𝑗 Δ𝑥/2)[exp(𝑖𝑘 Δ𝑥/2)−exp(−𝑖𝑘Δ𝑥/2)]
= 𝜈𝑛+1/2

𝑗+1/2 [2 𝑖sin 𝑘Δ𝑥
2 ]

𝜏𝑛
𝑗+1/2 −𝜏𝑛

𝑗−1/2 =
=B exp(−𝑖𝜔𝑛 Δ𝑡+𝑖𝑘(𝑗+1/2) Δ𝑥)−𝐵 exp(−𝑖𝜔𝑛 Δ𝑡+𝑖𝑘(𝑗−1/2) Δ𝑥)
=B exp(−𝑖𝜔𝑛 Δ𝑡+𝑖𝑘(𝑗+1/2) Δ𝑥)[exp(𝑖𝑘 Δ𝑥/2)−exp(−𝑖𝑘Δ𝑥/2)]
= 𝜏𝑛

𝑗 [2 𝑖sin 𝑘Δ𝑥
2 ] (70)

Substituting the final expressions of the velocity and traction terms in (65), the
scheme becomes

𝜈𝑛+1/2
𝑗 = 𝜈𝑛−1/2

𝑗 + 1
𝜌

Δ𝑡
Δ𝑥

𝜏𝑛
𝑗 [2 𝑖sin 𝑘Δ𝑥

2
]

𝜏𝑛+1
𝑗+1/2 = 𝜏𝑛

𝑗+1/2 +𝜇 Δ𝑡
Δ𝑥

𝜈𝑛+ 1
2

𝑗+ 1
2

[2 𝑖sin 𝑘Δ𝑥
2

]
(71)

Adjusting the second equation of (71) to be in the same grid point as that of the
first equation, one obtains:

𝜏𝑛+1/2
𝑗 = 𝜏𝑛+1/2

𝑗 +𝜇 Δ𝑡
Δ𝑥

𝜈𝑛
𝑗 [2𝑖sin 𝑘Δ𝑥

2
] (72)

Let Δ = Δ𝑡/Δ𝑥 and ̂𝑆 sin(𝑘Δ𝑥/2). The scheme in (71) with (69) can be rewritten
as

⎧
{
{
{
{
⎨
{
{
{
{
⎩

𝜈𝑛+1/2
𝑗 = 𝜈𝑛−1/2

𝑗 + 2𝑖
𝜌

̂𝑆Δ𝜏𝑛
𝑗

𝜈𝑛
𝑗 = 𝜈𝑛

𝑗

𝜏𝑛+1/2
𝑗 = 𝜏𝑛−1/2

𝑗 +2𝑖𝜇 ̂𝑆Δ𝜈𝑛
𝑗

𝜏𝑛
𝑗 = 𝜏𝑛

𝑗

(73)

which can be expressed in a matrix form

Un+1/2
j = G Un

j (74)
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where

Un+1/2
j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜈𝑛+1/2
𝑗

𝜈𝑛
𝑗

𝜏𝑛+1/2
𝑗

𝜏𝑛
𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

G

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 2𝑖
𝜌 ̂𝑆Δ

0

1 0 0 0

2𝑖𝜇 ̂𝑆Δ 0 0 1

0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Un
j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜈𝑛
𝑗

𝜈𝑛−1/2
𝑗

𝜏𝑛
𝑗

𝜏𝑛+1/2
𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The matrix 𝐺 is called the amplification factor, which does not depend on time
since it is obtained from the constant coefficients of the terms of the linear
PDE [40]. Hence, one can write (74) into

Un+1/2
j = Gm+1U0

j (75)

since G does not depend on time and ∣∣Un
j ∣∣ ≤ ∣∣U0

j ∣∣ from (69), and since

∣∣Un+1/2
j ∣∣ = ∣∣Gm+1Un

j ∣∣ ≤ || G ||
𝑚+1

∣∣U0
j ∣∣

the numerical solution will be bounded if and only if

|| G || ≤ 1 (76)

where ||⋅|| is a matrix norm. It is sufficient for the condition in (75) for the stability
of the numerical scheme in (65). It is required for the maximum of the eigenvalues
of G to have the modulus less than or equal to unity to satisfy the von Neumann
stability.
The characteristic equation for matrix G in (74) is

1−2𝜆2 +4Δ2 ̂𝑆2 𝜇
𝜌

𝜆2 +𝜆4 = 0 (77)

It is then required that the roots of (77) have absolute values smaller than or
equal to one. Letting 𝑧 = 𝜆2 and 𝑎 = Δ2 ̂𝑆2𝜇/𝜌, the equation in (77) becomes

𝑧2 +(4𝑎−2)𝑧 +1 = 0

the roots of which are
𝑧1,2 = −2𝑎+1±2

√
𝑎2 −𝑎 (78)

If 0 < 𝑎 ≤ 1, then |𝑧1,2| ≤ 1 which is the stability condition. Then, it follows that

Δ2 𝜇
𝜌

̂𝑆2 = ( Δ𝑡
Δ𝑥

)
2 𝜇

𝜌
sin2 (𝑘Δ𝑥

2
) ≤ 1 (79)

Hence, the condition for the time and space increments for the staggered grid is
obtained so that the numerical scheme in (65) is stable, and this condition is given
by

Δ𝑡 ≤ Δ𝑥( 𝜌
𝜇

)
1/2

= Δ𝑥
𝛽

(80)

where 𝛽 is the speed of the S-wave propagation from (53). Hence, the scheme
in (65) is conditionally stable.
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Since (65) is consistent and stable given that (79) is satisfied, t hen by 
the Lax-Richtmyer Theorem, the numerical solution to (65) is convergent. The 
condition in (79) or (80) is called the Courant-Friedrich-Levy (CFL) condition [38]. 
To ensure stability, the time step must be a fraction of the ratio of the grid spacing 
and the S-wave velocity. This fraction is called the CFL number, which is equal 
to 𝛽Δ𝑡/Δ𝑥.

The required preliminary concepts for the ground motion prediction and 
how to solve it numerically have been presented so far. The next Section will 
discuss in detail the PSHA Methodology to estimate the feasible ground shaking 
level on a site with relaxation of the ergodic assumption of the Classical PSHA.
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