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Abstract: Satellite-based localization systems like GPS or Galileo are one of the most com-
monly used tools in outdoor navigation. While for most applications, like car navigation or
hiking, the level of precision provided by commercial solutions is satisfactory it is not always
the case for mobile robots. In the case of long-time autonomy and robots that operate in re-
mote areas battery usage and access to synchronization data becomes a problem. In this paper,
a solution providing a real-time onboard clock synchronization is presented. Results achieved
are better than the current state-of-the-art solution in real-time clock bias prediction for most
satellites.
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1. Introduction
The research presented in this paper aims to develop an algorithm that

will predict the bias of GPS satellites onboard atomic clock ensembles bias. An
algorithm must be applicable in an environment with low computation power
available and where battery charge is a highly limited resource.

1.1. Motivation
During the development of an autonomic marine agent, one of the problems

that had to be solved was precise navigation. As robot task is to measure the
quality of water in lakes and small streams it is expected that it will operate
for long periods in regions where services like the cellular network may not be
available. Additionally, plans are to develop a model that will be able to operate
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on open sea and navigation issues that robots face in such conditions are even
more restrictive on algorithms [1]. With that said main localization technique
implemented will be Global Positioning System which in turn bought the issue
of the limited precision of civilian variant of GPS as well as its requirement
for synchronization with a time reference. For that reason, it was decided that
there is a need for an onboard clock bias prediction to limit requirement for
synchronization.

1.2. Contribution
In the following paper, a new approach for GPS clock bias prediction based

on a Long Short Term Memory neural network is presented. For 20 out of 29
satellites that were analyzed in this work, prediction results were better than the
current state of the art and for 6 of them, results were significantly better. Results
of the presented research can be used in an offline GPS receiver as an alternative
for IGU provided products.

2. Clock bias in GNSS
Due to the nature of Global Satellite Navigation Systems (GNSS) precision

time measurement is crucial for accurate localization. In this section information
on a basic explanation of how GNSS services work will be presented as well as a
more in-depth description of clock ensemble implementation and bias modeling.
The current state of the art will be presented as well however no details about
underlying the mathematical model will be shared as this is beyond scope of this
paper.

2.1. Basics of satellite-based localization systems
All GNSS are variants of beacon-based localization systems [2]. Such

systems require information about beacon position and distance between localized
objects and beacons. With that information, it is possible to calculate the position
of an object in the same reference frame as that of beacons. Both of those tasks are
much more difficult in GNSS due to the nature of the beacons. Unlike in the case of
stationary beacons, GNSS satellites move with high speed so their position must
be calculated based on satellite ephemeris CITEVallado2008. Another problem is
distance measurement which without specialized equipment must be done with
a time of arrival (ToA) instead of the angle of arrival (AoA) or received signal
strength (RSS) [3]. When measuring distance by ToA 3 properties of a signal must
be known:

• 𝑡𝑜 the time of origination;
• 𝑡𝑎 the time of arrival;
• 𝑣 the velocity.

In the case of the GNSS, the system signal is an electromagnetic wave,
therefore, its speed is equal to the speed of light 𝑐 ≈ 3 ⋅ 109 m/s. The time of
arrival is recorded when the data frame wavefront reaches the receiver, this means
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that the receiver time is used. The origination time is recorded on the satellite
according to its local clock and included in the data frame. Thanks to that, the
distance can be calculated from the following equation:

𝑑 = 𝑐 ⋅(𝑡𝑎 −𝑡𝑜) (1)

However, 𝑡𝑎 and 𝑡𝑜 use different reference frames, so, should a comparison be
possible, they must be transformed into a common reference frame. This is referred
to as synchronization of the clocks and it is very important, as a desynchronization
at the level of a single nanosecond results in about 30 cm of a positioning error [4].

2.2. Clock modelling
Clocks are devices that provide a reference time by measuring the repetition

of a periodic process. One of the most well-known examples of such a process is the
pendulum, and even before mechanical clocks, humans would use the rotation of
the earth and the resulting sun procession on the sky. Nevertheless, those methods
do not provide measurements that would be precise enough for beacon-based
location, which is why, atomic clock ensembles are used in the case of GPS. In
the case of this research a discreet clock model is used where the clock readout is
described as

𝑡𝑐(𝑖) = 𝑡𝑟(𝑖)+𝑏(𝑖) (2)
where 𝑡𝑐 refers to the time measured by the analyzed clock, 𝑡𝑟 is the time given by
a reference clock which we assume to give perfect readouts and 𝑏 is the clock bias.
Each of those values are indexed by measurement 𝑖 and a value of the bias for each
step must be predicted in order to correct the clock readouts. There are many
approaches to modeling the bias, however, this is beyond the scope of this article,
as the method used here relies on adjusting the arbitrary model to fit the already
recorded bias data. More information about knowledge-driven bias modeling can
be found in the literature related to the frequency stability analysis [5].

2.3. IGU products
The most widely used source of precise clock corrections are products

provided by the International GNSS Service (IGS) [6].

Table 1. Variants of IGS products

Type Accuracy Latency Sample interval
Broadcaster 5ns real time daily

Ultra rapid – predicted 3ns real time 15 min
Ultra rapid – observed 150ps 3-9 hours 15 min

Rapid 75ps 17-41 hours 5 min
Final 75ps 12-18 days 30 s

The values shown in Table 1 refer to the satellite clock bias only, IGS
products provide other information, a full description of which is available at
the online repository. IGS products can be easily divided into two categories:
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• real time consisting of transmitted and ultra-rapid predicted half,
• high latency consisting of ultra-rapid observed half as well as rapid and final

products.
Solutions that have a high latency are not usable in real-time navigation

and as such will not be considered in this work. The observed ultra-rapid types
will be used as a source of the reference time, thus, if a bias prediction error is
equal to zero, it means that it is the same as provided by the ultra-rapid product
observed. As can be seen in Table 1, all real-time solutions provide precision in a
range of nanoseconds. This work aims to show that LSTM networks can provide
better results than those solutions, while still working at a real-time response
latency.

2.4. Data source
This work focuses only on GPS satellites which are divided into the following

blocks: I, II, IIA, IIR ,IIR-M ,IIF, III. Blocks I and II were fully retired before
research described in that paper began and block III satellites were active for a
too-short time to generate enough data. That is why those blocks were not used
at all, on the other hand, a single satellite from block IIA was used in the second
phase of experiments however it was retired in the meantime and a decision was
made to not use it in the next experiments and as such it is not listed in the final
satellite pool. This results in a total of 30 satellite clocks analyzed with almost
all of them are equipped with Rubidium clock ensemble with exception of two
satellites from generation IIF that use Cesium clocks instead. Each satellite have
an assigned space vehicle number (SVN) and pseudo random noise (PRN). In this
work a PRN will be used as a identifier as it is unique for every active satellite,
although it can be used again after said satellite gets retired, and ranges from 1
to 32. Association between satellite PRN, clock and block is shown in Table 2.

Table 2. Bias prediction error in relation to regularization and dropout level

Generation clock type satellites
IIA Rb 18
IIR Rb 2 11 13 14 16 19 20 21 22 23 28

IIR-M Rb 5 7 12 15 17 29
IIF Rb 1 3 6 9 10 25 26 27 30 32
IIF Cs 8 24

For satellites with rubidium based clock ensembles bias have a very distinct
constant drift that makes data appear linear, it can be seen for satellites 01 and 08.
On the other hand in the case of cesium based clock ensembles for which constant
drift is much smaller other sources of bias are visible like seen for satellite 24.
There is also a single satellite for which, during observed period, constant drift was
almost not present. This was satellite 14 and while no official source of information
describes this behaviour.
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Figure 1. Raw clock bias

2.5. Preprocessing
IGU provides raw clock bias, this poses two problems for the approach used

in this work. The first one is that constant clock drift is such a major source
of bias that it overshadows other sources as seen in Figure 1 in visualization
data seems to be linear. Second issue is non-stationary nature of series, this is
a problem as neural networks work best fro stationary data with mean at 0 and
values in between -1 and 1. To solve those problems firs series is Differentiated
which returns data where other noises besides constant drift are visible as seen
on Figure 2.

Figure 2. Differentiated clock bias
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Constant drift is still present as a shift at the y-axis, to remove it a mean
shift must be performed. Finally, data must be scaled so that there will be no
values with an absolute value above one. It is, of course, possible for future
prediction inputs to have absolute value above one however this will not be a
problem as a network can deal with such inputs especially if they appear rarely in
series. Another issue is whether to use the same preprocessing for all satellites
or should each of them have their parameters. Analysis of data on Figure 2
and Figure 3 shows that constant shift, as well as value range for mean, shifted
data can vary radically between satellites. Because of that, separate preprocessing
parameters are used for each satellite.

Figure 3. Comparison of diffed clock bias

3. Neural networks
Machine learning (ML) approaches based on artificial neural networks

(ANN) are well established as efficient pattern detectors [7–10]. They have also
been used in GNSS systems especially since the advent of the deep learning
algorithms [11–13]. One of its uses is the prediction of the clock bias [14, 15],
which, as mentioned in the previous section, is an essential value in positioning
calculations.

3.1. Overview
Like all digital signal processing applications, software neural networks

operate in a discreet time and a discreet amplitude domain. This is the reason
why a time series clock model was chosen. A basic neuron model (neural layer)
was created by McCullough and Pitts in 1943 [16]. This model described the
response of a neural layer to multiple signals with the equation 𝑦 = 𝜒(𝑊 ⋅𝑥+𝑏)
where 𝑦 is the response, 𝑥 the input, 𝑊 the weights and 𝑏 the bias. An algorithm
for automated adjustment of weights in relation to the data was proposed in 1958.
While this model and its successors were inspired by a biological neuron, they were
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much more simplified. One of those simplifications is the lack of a time domain
in a model which means that the response of a layer depends on its current input
only. This is in contrast with biological networks that are sensitive not only to a
signal value but also to its changes over time.

3.2. Long Short Term Memory networks
A simple solution to the problem of the time independence is to concatenate

the response of the neural layer from the previous cycle to its input 𝑥′(𝑡) =
[𝑥(𝑡)|𝑦(𝑡 − 1)]. Such a solution results in the signal propagating through time
and influencing the responses of future cycles, if this is the only modification
to the feed-forward model, such layer is called a simple recurrent unit (SRU).
While this solution makes the model time aware, it has its problems, mainly
the signal vanishing issue. Since the input signal from the cycle, 𝑛 has direct
influence only on a response of this cycle and for each subsequent cycle, it is
the only trough feedback loop. The influence of input 𝑛 on the response of cycle
𝑛+𝑘 grows inverse proportional to 𝑘. This means that in this model, it is only
those regularities that appear over short periods that can be detected. Making the
weights on feedback bigger will not eliminate the problem and instead will replace
it with signal an explosion that causes a response to reach maximum value, if a
strong signal appeared on the input at least once. One of the possible solutions to
this issue is an addition of a long term memory which will regulate the forward
and loop back path influence on the neuron response. Such a solution is used in
the long-short term memory (LSTM) networks [17] as presented on Figure 4.

Figure 4. LSTM layer

3.3. Overfitting
Overfitting takes place when the estimator function is adjusted to training

data to such a high degree that it can no longer function as a general predictor.
For example, if a network that is supposed to recognize cats will be trained on
a set that contains only sphinxes, it may be unable to classify other breeds as
cats. Overfitted networks provide very high-quality results as long as the input
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overlaps with the test set otherwise, the quality of the results drops sharply. In
the case of satellite clocks, the predictor can overfit with regard to the following
parameters:

• clock type,
• location (orbit),
• epoch.

When selecting a solution a decision must be made what level of generali-
zation the model should represent. Limiting the predictions to the same epochs
that were used for training is in contradiction with the network’s main goal, pre-
dicting future biases. However, as satellites use different models of atomic clocks
and are placed on different orbits, attempts at generalization for those proprieties
risk a high precision trade-off. Therefore, a separate network will be used for each
satellite that will be unable to generalize its predictions for others.

4. Experiments
The main aim of the experiments was to determine if a small LSTM network

could achieve results comparable with the IGU rapid predictions considered as
the state of the art. The first tests were made on a single satellite and the
prediction results were compared against the polynomial regression as well as
IGU. As the results had already been better than IGU in the first attempts,
all the following tests were carried out on an almost complete set of satellites.
This set did not include those satellites that were activated or retired during the
experiment period.

4.1. Overview
The experiments were divided into three phases.

1. In the first phase a single satellite was selected and a prediction with
a generic LSTM architecture was made. Then it was compared against
the polynomial regression as well as the IGU rapid predictions. While
achieving results better than the polynomial regression would be considered
acceptable at this stage, the LSTM proved to be better than the IGU
example which was considered the state of the art. For this reason, a decision
was made not to adjust the network model at this stage, as was originally
intended, but move to the next stage with an initial model.

2. In the second phase, the network developed in the first phase was tested
onset of all active satellites and compared against the IGU rapid prediction.
At this phase a comparison against the polynomial regression was dropped,
as achieving results worse than IGU was no longer considered acceptable.
In this phase LSTM achieved better results than IGU for 5 of 31 satellites.

3. As the second phase provided acceptable results only for a small group of
satellites and alternative architectures were tested, more details about them
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will be written in a dedicated section. In this phase results better than IGU
were achieved for 13 of 30 satellites.

4. The final phase was dedicated to tuning the learning meta parameters and
its results are described in more detail in the section dedicated to the
experiments.

4.2. Phase 1 – approach validation
A topology with two hidden LSTM layers and a single dense layer as the

output was used in the research. Most of the parameters as well as a general
topology were set up based on suggestions from [18]. A rectifier (RELU), unipolar
as well as bipolar functions were used as the activation function of the LSTM
layers. A linear activation only was used for the dense (output) so that there
should be no limits on the predicted value. The mean squared error (MSE), the
mean average error (MAE) and the root mean square (RMS) were used as a loss
function. Two optimizers would be tested, the Root Mean Square Propagation
(RMSprop) [19] and the Adaptive Momentum Estimation (Adam) [20].

As the network learning process is stochastic by nature, 10 experiments were
run for each configuration, and then the average results were compared. When
comparing the results, RMSProp proved to be a better optimizer, as shown in
Table 3 and therefore it was used in the following experiments. All the experiments
were run on a dataset obtained on 7.22.2018.

Table 3. Optimizers and loss functions

Parameter Adam Optimizer RMSProp
MAE MSE RMS MAE MSE RMS

Avarage 1.10 1.38 1.15 0.80 0.79 0.87
𝜎 0.23 0.57 0.23 0.19 0.27 0.16

Min 0.82 0.78 0.89 0.48 0.37 0.61
Max 1.55 2.63 1.62 0.99 1.08 1.04

The repeatability of the results was much better in the Adam optimizer,
however, that was due only to the tendency of this algorithm to be stuck in the
same local minimum every time it was run.

In the next experiment a value of the loopback was adjusted, its initial value
for the previous experiments was set to 12 as an educated guess.

As can be seen in Table 4 the best result was achieved for a loopback value
of 32. Finally, a comparison between Adam and RMSProp was made again with
all the other parameters set according to the previous experimental results.

When using the adjusted parameters, average errors become better for all
the configurations and the results of RMSProp become less consistent due to
a higher value of divergence as shown in Table 5. However, RMSProp is still
an overall better solution than Adam, and therefore it will be used in the final
configuration.
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Table 4. Loopback values

Parameter Loopback
1 4 12 32 64 96

Avarage 0.48 0.48 0.51 0.47 0.55 0.50
𝜎 0.01 0.01 0.03 0.01 0.02 0.02

min 0.47 0.46 0.47 0.46 0.52 0.47
max 0.51 0.49 0.55 0.48 0.59 0.54

Table 5. Optimizers and loss functions for adjusted parameters

Parameter Adam Optimizer RMSProp
MAE MSE RMS MAE MSE RMS

Avarage 0.87 0.95 0.94 0.66 0.63 0.76
𝜎 0.29 0.56 0.28 0.23 0.43 0.24

Min 0.44 0.30 0.55 0.43 0.29 0.54
Max 1.38 2.06 1.43 1.12 1.71 1.31

Table 6. Basic network configuration

Parameter Hidden layer
First Second

Neuron count 32 128
Activation function ReLU ReLU

Dropoff 0.2 0.5
Recurrent dropoff 0.2 0.5

Regularization L2 L2
Statefullness NO NO

After running the experiments and comparing the results, a final set of the
network parameters was set as described in a Table 6.

4.2.1. Comparison with other solutions
After preparing an optimal configuration of the prediction network, its pre-

dictions were compared against linear approximation, polynomial approximation
of 2, 4, and 8 degrees as well as against an IGU rapid product predicted half. As
the difference between the results of the polynomial approximation was relatively
insignificant between the polynomials of different degrees, all the results will be
presented as one rounded to two decimal points.

As seen in Table 7 the LSTM network yielded significantly better results
than IGU predicted. What is an interesting observation is that the polynomial
approximation appears to work better than IGU for a prediction period of 24
hours. The next comparison was based on a shorter prediction time and as seen in
Table 8 LSTM gains more advantage over IGU predicted, the longer the prediction
range is. What is more interesting LSTM errors actually drop over time.
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Table 7. Prediction errors for 24h range

Algorithm Error value
MAE MSE RMS

LSTM 0.47 0.36 0.60
IGU-predicted 1.60 2.76 1.66

Linear 1.73 3.21 1.79
Polynomial 1.33 1.87 1.37

Table 8. Prediction errors for 24h range

Algorithm RMS for prediction range
6h 12h 24h

LSTM 1.02 0.76 0.60
IGU-predicted 1.26 1.31 1.66

The LSTM predictions were of a higher accuracy than linear and polynomial
ones as well as IGU Rapid predicted which is recognized as the state of the art.

4.3. Comparison with the state of the art

Over the course of the experiments, multiple network architectures were
tested. In this paper the main focus will be given to experiments from phase
4, where a general architecture was already selected. The final architecture is a
3-layer network with 2 hidden LSTM layers, the first one with a size equal to the
input and the second one double that size. The third layer consists of a single
densely connected neuron that outputs a single prediction step.

Figure 5. Squared error
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As can be observed on the plots presented in Figure 5 there are satellites
for which the results achieved by the LSTM network are significantly better than
the current state of the art and that difference only deepens with the prediction
time. Examples of such a situation are satellites G07, G10 or G30.

Figure 6. Comparition between absolute prediction errors

Figure 7. Comparition between relative prediction errors

Other groups represented by satellites G14, G15, or G17 are those for which
results of LSTM are worse. Another group consists of satellites for which squared
error is smaller for the initial period of prediction however it rises with time
resulting in predictions worse than IGU. Examples of such behavior are visible
in satellites G01 G09 and G29. The last of groups contain satellites for which
prediction quality can vary over time like in the case of G08. As it is shown in
Figure 8 in the case of some satellites period for which LSTM has an advantage
over IGU predicted part is longer than 9 hours. This is an important value as
after that period a synchronization with IGU observed product can be made.
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IGU observed products have picoseconds level precision which is satisfactory for
most robotic implementation.

As superiority over 9 hour period is enough to consider LSTM solution
a preferable one to IGU rapid prediction for experiments in this paper success
was achieved for 68% cases. The difference between LSTM prediction error and
IGU error is visualized in Figure 6 where value represented on y-axis show by
how many nanoseconds the solution proposed in this paper is more precise than
state-of-the-art. The advantage of the LSTM solution is even more clear when
analyzing relative error as in Figure 7. The proposed solution is capable of
providing results comparable or better than state-of-the-art for most satellites.

Figure 8. Comparison between LSTM and IGU predictions

5. Conclusions and future research

Experiments described in this paper have proven that even a relatively
simple LSTM network can handle bias prediction well compared to the state of the
art as shown in Table 9. That indicates the possibility of application of this system
in low power embedded system which was a motivation for this research. While
the proposed network is relatively simple it is still too complex for implementation
in an embedded system. With 86913 parameters and 64-bit float representation,
it takes almost 0.7 MB memory. High memory requirements, as well as a need
for 64-bit architecture, limits the choice of hardware that is why the next step
in this research will be the implementation of a 32-bit trainable LSTM network
dedicated for embedded systems.
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Table 9. Quality of results

Result category satellites
Superior 07 10 12 19 26 30

Superior for acceptable time period 01 03 09 13 23 27 28 29 31
Varied 05 08 24 16

Superior for short time period 11 15
Inferior 02 06 14 17 21 22 25
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