
3rd National Conference

Databases for Science

INFOBAZY 2002

24–26 June 2002

Gdansk-Sobieszewo, Poland

Selected Papers and Abstracts

guest-edited by Antoni Nowakowski



272 TASK QUARTERLY 7 No 2 (2003)

Database Systems for
Tomorrow: New Challenges
and Research Areas
Krzysztof Goczyła

Department of Applied Informatics, Gdansk University
of Technology, Narutowicza 11/12, 80-952 Gdansk,
Poland, kris@eti.pg.gda.pl

(Received 30 October 2002)

Abstract: Since the mid-80s, considerable progress has

been achieved in relational database technology. The

main achievements have been in high performance, high

reliability and availability, scalability and development

tools. However, the environment for database systems is

rapidly changing. There are new challenges that origin-

ate from the present hardware technology achievements,

as well as from new kinds of data resources that hardly

conform to the well-established relational data model

(e.g. data from the Web). In the paper, we present the

new challenges and research areas, as well as motivations

behind them.

Keywords: database systems, new architectures, Web

technologies, non-relational models, integration

1. Introduction
Contemporary relational database manage-

ment systems (RDBMS) are mature, sophistic-

ated software systems that are supported by ad-

vanced hardware solutions. RDBMSs are com-

monly used in all real-life areas where com-

puters are present. Database systems market is

large – it is estimated that the annual volume

exceeds US$ 10 billion and is expected to grow

steadily, even in the face of the recession that

the world’s economy experiences. This huge

amount of money engaged in the database sys-

tems business has both advantages and disad-

vantages. One apparent advantage is that the

community of database systems users feel com-

fortable with technical support, stability and

their systems maintenance. There is little chance

that the software they purchased (usually quite

expensive) will not be maintained and period-

ically upgraded by its vendor and become an

expensive but useless gadget instead. Another

advantage is that large RDBMS corporations in-

vest enormous funds into research and develop-

ment, resulting recently in remarkable advances

in such database fields as replication and par-

allelism. On the other hand, big corporations

tend to monopolize the database systems mar-

ket, which results in narrowing down the devel-

opment trends into several and quite restricted

“safe” areas and prohibiting development of new

“risky” technologies. A clear example is the way

the object-oriented paradigm [1] is being intro-

duced into the database world. However strange

it is, contemporary database technology is ap-

parently the only area of information techno-

logy where the principles of object orientation

were practically not applied. Of course, some

elements of the object-oriented paradigm do ap-

pear in object-relational database management

systems (ORDBMS) [2], however, they con-

siderably diverge from the full object-oriented

model. The latter is fully implemented in object-

oriented databases management systems (OOD-

BMS) that still remain on the margins of com-

mercial database applications.

It seems, however, that nowadays the data-

base worlds – both the commercial one and the

research one – face completely new challenges

that will force changes in database technology

much deeper than those which occurred at the

end of the previous century. In the nearest fu-

ture, we will face serious changes in computer

systems technology for large database systems.

At the same time, the unstoppable growth of the

Internet and its informational resources accumu-

lated in the ubiquitous World Wide Web create

completely new requirements for functionality of

data repositories and data analysis tools. In the

following sections, we will take a closer look at

these causes and prerequisites, referring them to

research areas that should be explored in order

to cope with these new requirements.

2. The challenges

One may formulate three main reasons for

undertaking new research in the database sys-

tems technologies:

1. As a result of the rapid development of the

Web technology, it has become quite easy and

inexpensive to make information of any kind

and quality available to millions of potential

information “consumers”.

2. Many new applications appear that require

programs to be integrated with voluminous

data of complex and heterogeneous structure.

3. The rapid development of hardware tech-

nology invalidates assumptions that various

techniques currently applied in database sys-

tems are based upon.

2.1. Exploiting information

resources of the Web

The Web can be seen as a large, distrib-

uted (and unmanaged) database. It would be

extremely difficult to estimate its size in bytes

(or terabytes), but certainly the number of Web



3 th National Conference “Databases for Science INFOBAZY 2002” 273

users (i.e. people who have access to worksta-

tions connected to the Internet and at least oc-

casionally make use of it) can be counted in hun-

dreds of millions. The number of Internet hosts

that run Web servers is of course much lower

but, certainly, also large and rapidly growing

into tenths of millions. However, the Web is not

a “normal”, fully functional database – it is not

managed in any uniform way. For this reason,

the Web is a huge storehouse of data rather than

a real database. “Real” DBMSs are present in

this storehouse, but play a secondary, back-end

role: they are repositories of structured data dy-

namically used to fill predefined static HTML

pages used to present information by Web sites.

Although DBMSs are common in such Web ser-

vices as e-commerce sites or informative sites,

still, the majority of information delivered by

Web sites is of static nature, with no explicit or

implicit structure nor schema.

It is expected that in the near future the

proportions will reverse. The majority of inform-

ation delivered by Web sites will be dynam-

ically created, based on the content of back-

end specialised databases. This information will

no longer be presented as HTML pages, but

rather as XML documents [3], that are better

suited for description of data with rich struc-

ture. This in turn requires better integration

of XML and DBMSs. Nowadays some database

systems vendors (IBM, Oracle, Microsoft) offer

extensions to their systems that facilitate stor-

ing and processing XML data. However, there is

no widely accepted standard in this area. Effi-

ciency of XML processing is also not satisfact-

ory, because XML features are implemented as

a layer on top of a relational engine.

There is also another facet of dependency

between the Web and database systems. Data

acquired from the Web, whether created static-

ally or dynamically, must be stored and eventu-

ally processed at client systems, so that they can

be useful for a group of users they are addressed

to (e.g. for businesses of some kind). Taking into

account the possible size and complexity of data,

this creates severe requirements on client tools

for management and analysis of Web data. To

sum up, users seek powerful and friendly tools

for Web data warehousing [4].

2.2. Integration of programs

and data

Traditional database systems used to store

data only. In contemporary database systems,

relational and object-relational, a possibility to

store pieces of program code has been intro-

duced. These code pieces take the form of stored

procedures and triggers. Stored procedures may

be written in a language native to a DBMS,

a language that is a part of an SQL standard [5],

or even in a common programming language like

C or Java. In the latter case, however, a pro-

grammer must tackle with the impedance mis-

match problem, i.e. the problem of data type

conversions and transferring database entities

into host language variables.

In database systems, a program is still

a “second-class citizen”: programs cannot be

queried, outputs from programs cannot be dir-

ectly presented as inputs to SQL queries, pro-

grams do not have their consistent model. In

general, it results from the lack of tight integra-

tion between programs and the data they ma-

nipulate. Such an integration is postulated in

the object-oriented approach to systems devel-

opment: objects can be treated as modules that

encapsulate data and operations. But, as men-

tioned above, object orientation enters the world

of databases rather through the back door, mak-

ing small and shy steps called “extensions”,

“cartridges” or “modules” of some kind.

Making the process of integration more act-

ive is essential for many big organisations that

have at their disposal hundreds, or even thou-

sands, of mission-critical applications that op-

erate in separation, making their interoperabil-

ity awkward. Such applications could be integ-

rated if they had a common platform – a data-

base that could store them together with the

data they consume and produce. Software en-

gineering is another area where the problem of

integration is crucial. In this complex informa-

tion technology area descriptions and specific-

ations of applications being developed (mod-

els, dictionaries, interface definitions, etc.), their

source code and testing data constitute an in-

tegral whole and need efficient environments for

storing and processing programs and data. Com-

puter aided software engineering (CASE) tools

begin to provide such environments and rapid

progress in their functionality and power is ex-

pected.

2.3. Keeping pace with hardware

advances

No one knows where and when the pro-

gress in hardware will stop, or even deceler-

ate. Processors become more productive, disks



274 TASK QUARTERLY 7 No 2 (2003)

become larger, communication media become

faster. Soon we will be faced with computer sys-

tems where the main memory of a terabyte will

serve as a buffer pool for databases of petabytes.

As a result, practically every table of a rela-

tional database will be capable of being kept in

the main memory for faster access and data re-

trieval. This would demand new data structures

and access algorithms, as well as new database

tools that would accommodate the changed ar-

chitecture of computer systems.

Database systems equipped with such an

advanced hardware will also have to be equipped

with advanced, preferably automated, adminis-

tration techniques and tools. They include auto-

matic installation, configuring, tuning, failure

recovery, and even programming. A human will

simply not be able to manage such complicated

systems due to the volume of information to

be interpreted and the extremely fast response

needed to react to rapidly changing workloads.

The progress in hardware efficiency will cre-

ate new demands on scalability and accessibility

of DBMSs. In the near future we will need data-

base systems that will efficiently serve a hundred

of thousands of concurrent users without try-

ing their patience. Such systems will have to be

ready to store and make accessible petabytes of

data, processed in parallel by thousands of pro-

cessors. These figures exceed by two orders of

magnitude the parameters of the contemporary

commercial database systems. Currently used

techniques and technologies do not enable data-

base systems to achieve such dramatic progress.

Another source of workload for database

systems are miscellaneous devices and gadgets

commonly used in everyday life, like mobile

phones, home electronics appliances, magnetic

chip (“smart”) cards, etc. In the nearest future,

most of such popular devices will be equipped

with processors and the appropriate dedicated

software – together referred to as embedded

systems. We will live in intelligent buildings,

drive intelligent cars, shop in intelligent vend-

ing machines, cook in intelligent utensils, and

so on. Billions of such devices will be able to

communicate with their environment via the

Internet (or its successor), which will require

millions of servers for these “gizmos” to op-

erate. Traditional two- and three-tier software

and hardware architectures will certainly not

be able to serve small, but numerous applica-

tions of this kind. Moreover, the devices will

not have a traditional user interface nor any

administration interface – they will have to be

self-managing, self-configuring, self-tuning, self-

identifying, self-protecting, self-repairing, and,

eventually, self-destroying.

3. The research areas
In the following sections we present detailed

insights into the main research areas follow-

ing from the above mentioned problems. These

areas are expected to dominate the efforts of the

database community in the first decade of the

21st century [6].

3.1. Plug and Play database systems

The first reason for development of Plug and

Play DBMSs are computer systems embedded

into everyday life appliances, as discussed above.

The systems will not be parameterised by an ad-

ministrator, so they will have to automatically

adapt to ever-changing work conditions. The

very first step towards this goal is the develop-

ment of self-tuning DBMSs that will be “intelli-

gent” enough to be able to set themselves hun-

dreds of performance parameters that otherwise

would have to be set manually (but they could

not, for the reasons mentioned in Section 2.3)

by database administrators (DBAs). The next

step is automatic choice of physical database

organisation, for instance automatically chan-

ging disk file structures for data storage and in-

dexing. The next, and much more challenging,

problem is automatic design of logical database

schema with appropriate integrity constraints,

followed by automatic binding of these schemas

with – also automatically developed – applica-

tions like report generators or data presentation

tools. One of the measures towards self-tuning

is collecting and analysing parameters of work-

load generated by production environments to-

gether with internal system performance para-

meters. Based on the data collected, the system

could choose appropriate values of configuration

parameters and system settings, select proper

algorithms and data structures, decide on op-

timisation strategy etc.

Another, but equally important, aspect of

Plug and Play DBMSs is the problem of inform-

ation discovery. As has been mentioned earlier,

the Web is a huge storehouse consisting of het-

erogeneous information resources. Some of these

resources are databases and their share in over-

all Web information capacity will grow. Future

database systems, fully integrated with theWeb,



3 th National Conference “Databases for Science INFOBAZY 2002” 275

will have to co-operate with other database sys-

tems in the Web just after installation in a cor-

porate intranet or in the global Internet. They

will have to find the other “friendly” systems,

ready to co-operate across the network. There is

a clear analogy with discovery by an operating

system of new hardware just attached to a com-

puter. To achieve such a high degree of auto-

matic integration, a comprehensive metadata

standard is needed that would cover the struc-

ture and semantics of all the objects managed

by a database system. In other words, data-

bases must have a common language powerful

enough to present their schemas and data to the

outer world and to make them available to their

“friends”.

3.2. Large federated database

systems

Autonomous databases are called federated

if they have agreed to conform to a set of rules

so that they are able to co-operate on behalf

of one application (particularly, of one trans-

action). Nowadays, the Web may be treated as

a huge federated information system, although

the rules governing their components are quite

loose (in practice they consist of a set of simple

protocols like http or ftp). It is expected that

in the near future billions of Web clients will

make use of millions of co-operating database

systems. Such a client (for instance, associated

with an embedded system) will not bother about

which particular database stores data needed

for the device to fulfil its functions. Appropri-

ate data should be reliably delivered by a fed-

erated system, which may possibly have to per-

form a database transaction over thousands of

databases. This would pose quite new challenges

for query optimisers. First, they must take into

account that some of the federated database sys-

tems may not be available due to failure or may

deny co-operation due to security constraints.

Then, data needed for the transaction may be

replicated on many database servers, located in

various remote places of the whole system. Also,

response time for a given query may remarkably

depend on the current workload of the network,

which traditional optimisers usually neglect. As

a result, a cost-based query plan may have to be

dynamically modified, reflecting changes in the

workload of the federated system.

Another challenging problem in the pro-

cessing of federated queries is balance between

the expected accuracy of query results and the

time allowed to perform the query. Let us as-

sume that we need an average salary of a cor-

poration consisting of 1000 departments, each

running its own local database. We probably will

be satisfied if we promptly receive an approxim-

ate value for the average, that can be gradually

refined as time elapses. If we are satisfied with

the current accuracy, we can stop the execution

of the query, or else we can wait for the exact

result (if one exists). In a traditional federated

system we have to wait for the result of a dis-

tributed query until an exact result is produced,

whether this accuracy is really needed or not.

The problem of imprecise, approximated

data is inherent not only to queries addressed

to federated systems, but also in the formulation

of the queries themselves. Let us have another

exemplary federated query: “Find good Italian

restaurants that are located near my home”.

A system to which the query has been submit-

ted must first refine the concepts of “good” and

“near” criteria used in the query. Most probably,

the user will not be happy to have to refine the

criteria by himself/herself, so the system should

be constantly taught by being “fed” with some

kind of knowledge concerning how to interpret

vague or ambiguous queries. The next problem

is how to determine databases that could store

data useful for the query. Under consideration

there may be thematic databases on restaur-

ants or on tourist places, as well as geographical

databases, and others. The problem of integ-

ration surfaces once again: a federated system

may be composed of databases of different kinds,

possibly conforming to different standards and

paradigms.

Another crucial aspect of integrating data-

base systems into large federated systems is

co-operation between applications running in

the federated systems. Let us consider two e-

commerce applications: one runs for a manufac-

turer, the other runs for a warehouse. It is im-

portant that the two applications could under-

stand each other so that they start co-operation

as soon as they have found each other. To this

aim a common language is needed that could be

used on the interfaces of the applications run-

ning in the federated system or in the Web.

This language should be flexible and power-

ful enough for the applications to communic-

ate their functions and to define their data.

A step towards this goal is the Unified Mod-

elling Language (UML) [7], primarily devised



276 TASK QUARTERLY 7 No 2 (2003)

for modelling and developing applications rather

than precise functional specifications. Together

with XML for metadata definition, UML may be

a promising tool for exchange of functions and

data between applications.

3.3. New database system

architectures

The progress in hardware technology, de-

scribed in the previous section, enables de-

velopers to create more and more powerful

database applications. The best performance is

achieved when applications are run within par-

allel systems of a shared-nothing architecture,

where each processor has its own main memory

and own disk memory, and the only shared

resource is a communication medium. We ex-

pect further intensive development of parallel

systems that could co-operate in large high-

performance and high-availability clusters. It is

a great challenge for DBMS software developers.

The tasks that have to be considered are: load

balancing among parallel system nodes, develop-

ing partitioning and replication strategies, and

creating optimal query plans for such complex

working environments.

As has been pointed out before, soon data-

base engines will be able to use main memory

buffers of terabyte capacity. Relational tables

crucial for a given application, together with the

corresponding indices, will reside entirely in the

main memory for a long time. It means, for in-

stance, that traditional access methods based on

B-trees will no longer be adequate. Indeed, B-

trees are not the best index structures for in-

memory access, as they are based on dividing

data into chunks (disk pages), which is inap-

propriate for in-memory data. Other database

mechanisms that require re-thinking are trans-

action handling, recovery, concurrency and all

the other techniques that make use of main

memory buffers.

The development of disk storage technology

manifests itself in rapid growth of disk capacities

and transfer rates. As a result, the seek time (i.e.

the time needed to move disk arms to a disk

cylinder needed) becomes the bottleneck of disk

storage throughput. This requires development

of new storage organisations and new access

strategies (e.g. access requests scheduling) that

would minimize disk arms activity.

Many database applications, in particular in

the fields that much rely on visualisation tech-

niques, require large volumes of data. Soon these

volumes will attain hundreds of petabytes. This

will come to reality when disks have achieved at

a reasonable price so large capacities that ma-

nipulating such voluminous data will be feas-

ible in the traditional 2-level storage architec-

ture. Another possibility is the introduction of

new storage media (e.g. based on holography)

that would be mature enough to be applied in

commercially available computer systems. These

new media could be used as a third, the slowest

but the most capacious, level of database stor-

age. It is clear that the advent of 3-level stor-

age of exabyte capacity offers novel capabilities

in archiving and replication methods, thus in-

creasing reliability and availability of database

systems. This can lead directly to “never-fail”

systems that, from the user’s perspective, are

always up and running and never lose data.

In this context, it is worth mentioning the

steady interest of vendors and developers in

3-tier architectures of database applications,

where only one program (DBMS) runs on the

server and only one program (application server)

runs in the middle tier. Both programs will have

to be capable of serving thousands of concur-

rent client connections. The problem of scalab-

ility of such architectures is a serious challenge

for researchers and developers in the informa-

tion technology industry.

3.4. Unifying applications and data

in databases

There are several important aspects of the

necessity to uniformly handle data and applica-

tions in database systems. Firstly, we need uni-

form, universal and flexible application models

similar to data models used in software engin-

eering and databases. One possibility is to de-

scribe each application as a set of business rules

and their flows. The flows can be formulated and

visualised in the form of flow diagrams, as we

formulate and visualise relational data as tables.

Presently, there are some systems that support

workflows. We can imagine that data from these

systems are interpreted and compiled into data-

base triggers to be defined in an active database

schema. Executing triggers by a database engine

is much more efficient than executing them out-

side the system, so we can expect considerable

gains in performance and flexibility of applica-

tions. However, to this end, we need to define

thousands of triggers in one database, which for

now is not feasible. It is estimated that scalabil-

ity of three orders of magnitude is required, but



3 th National Conference “Databases for Science INFOBAZY 2002” 277

job appears to be worth the while: for each data

item we could define a trigger that would ex-

ecute a (probably tiny) action for an application

running over a federated system. Let us imagine

for instance a stock application that promptly

informs stakeholders of any change in the quo-

tation of a given set of shares.

Secondly, it is of crucial importance for soft-

ware engineering that the component-based ap-

proach for application development should be

integrated with databases. It would be desir-

able if we could build any database application

(maybe not only a database application) from

ready-to-use components stored in a database.

Obviously, such applications would be easily

and efficiently stored and executed on demand

within a database system. Presently, there is no

widely accepted uniform and consistent model

of software components. Different vendors pro-

mote their own component systems: CORBA,

OLE, COM, DCOM, EJB, JINI etc., so main-

taining them in one database, although theor-

etically possible, does not seem neither reas-

onable nor comfortable for use. One, but far

from satisfactory, currently available solution is

the possibility of defining User-Defined Types

(UDT), postulated in the SQL-99 standard. Ac-

tually, UDTs correspond to classes in the object-

oriented paradigm. However, the standard does

not treat UDTs as active components for dif-

ferent applications, but rather as mere types of

data to be stored in a database. Another pos-

sibility stemming from the SQL-99 standard is

coding software components in a database pro-

cedural language like SQL/PSM [5], primarily

aimed at coding stored procedures. It seems

that further development and refinement of lan-

guages of this class could be fruitful, particularly

if it is accompanied by efforts towards optimisa-

tion of execution, similar to the optimisation of

SQL queries.

One consequence of realizing a component-

based model of database application develop-

ment will be a need for new application devel-

opment tools. The tools should be able to help

a user to find necessary components, to integ-

rate them into an application, to test the result

in a testing environment and finally to move it

into a production environment. It seems that the

first step – finding an appropriate component –

is the most difficult one, as it requires a user

to specify his/her needs. This in turn requires

a standard, precise component specification lan-

guage, unless we want to make a user browse

through numerous descriptions of components

that might be useful (but almost always are

not). We hope that such environments will ap-

pear together with more mature and advanced

object-relational systems.

3.5. Integrating structured

and semi-structured data

Traditional database systems, as well as the

“next generation” systems [2], store data that

have a well-defined structure known a priori,

called a database schema. Data of this kind are

structured data. The uncontrolled growth of the

Web causes that more and more information re-

sources (useful anyway) contain data that are

irregular, incomplete or of complexity that can

hardly be described by relational or even much

richer object-oriented data models [8]. Data of

this kind are called semi-structured data. A con-

venient tool for the description of such data is

eXtensible Markup Language (XML), that al-

lows for alternatives, optional constructs, mul-

tivalued attributes and other means that go

beyond classical database constructs. As a con-

sequence, contemporary advanced database sys-

tems are capable of storing XML data and

querying them in a way similar to querying

structured data (i.e. using a declarative query

language).

It is expected that the Web content coded

in XML will soon prevail the content produced

in HTML. This will allow for automatic ana-

lysis of Web pages, including extraction of se-

mantics from Web data, which is hardly at-

tainable in the case of unstructured, HTML

data. Additionally, XML documents can be self-

descriptive in the sense that they may be accom-

panied by metadata formulated as Data Type

Definitions (DTD) that actually play the role of

database schemas. The Document Object Model

(DOM) [9] attemps to standardize the form of

XML published documents.

Presently, commercial DBMSs handle XML

data via middle layers that translate them into

a relational form. There is, however, no standard

for processing XML data, although XPath [10]

language is a good step in this direction. Ac-

tually, there is no clear vision of how to integ-

rate XML Web resources and database techno-

logy. There are also a lot of important prob-

lems to be attacked in this area, like efficient

processing of deeply nested hierarchical objects,



278 TASK QUARTERLY 7 No 2 (2003)

typical for XML documents, the development

of appropriate transaction models, devising new

access methods (including methods of updating

XML data), versioning and configuration man-

agement.

4. Conclusions

The amount of information we have at hand

grows exponentially. The information is of vary-

ing quality and structure – from highly struc-

tured, “clean” data, appropriate for controlling

devices or managing big enterprises, to irregu-

lar, imprecise and inconsistent data, distributed

via Web sites of varied origin. Such situation cre-

ates new challenges for database systems, whose

main task has always been to organize, store

and make available data in a way most adequate

for a given application. The main challenge can

be formulated as follows: The priority is to de-

velop database systems that would be able to

collect, organize, store, analyse and make avail-

able all information resources of humankind in

such a way that the information could be used

on-line by anyone.

It is clear that this general goal is strongly

related to Web technologies. Firstly, in the

nearest future, most of our knowledge will be di-

gitised (in the form of digital libraries) and made

available globally through the Web. Secondly,

the number of Internet users grows so fast that

very soon most of the Earth’s citizens (at least

in the more developed areas) will become con-

sumers of this knowledge, and consequently,

clients of the knowledge repositories. Many of

them will also become producers of knowledge,

which will also require access to knowledge re-

positories. An ideal database system that we aim

at should be able not only to respond to any

queries formulated by any user of the global net-

work, but also to anticipate users’ queries and

actively present useful information. As a mat-

ter of fact, we should strive to transform the

huge storehouse of data called the Web into an

integrated, intelligent, global information sys-

tem based on an advanced and mature database

technology.

References

[1] Cattell R G G and Barry D K (Eds) 2000 The Ob-

ject Data Standard: ODMG 3.0, Morgan Kaufmann

Pub.

[2] Stonebraker M and Brown P 1999 Object-Relational

DBMSs: Tracking the Next Great Wave, Morgan

Kaufmann Pub.

[3] Extensible Markup Language (XML) 1.0, Second

Edition, W3C Recommendation, October 2000,

www.w3.org

[4] Hackathorn R D 1999 Web Farming for the Data

Warehouse, Morgan Kaufmann Pub. Inc.

[5] Gulutzan P and Pelzer T 1999 SQL-99 Complete,

Really, R&D Books

[6] Bernstein P, Brodie M, Ceri S, De Witt D,

Franklin M, Garcia-Molina H, Gray J, Held J,

Hellerstein J, Jagadish H V, Lesk M, Maier D,

Naughton J, Pirahesh H, Stonebraker M and Ull-

man J 2000 The Asilomar Report on Database Re-

search, www.acm.org/sigmod/record

[7] OMG Unified Modeling Language Specification,

Version 1.4, September 2001, www.omg.org

[8] Florescu D, Levy A and Mendelzon A 1998 ACM

SIGMOD Record 27 (3) 59

[9] Document Object Model (DOM) Level 2 Specifica-

tions, November 2000, www.w3.org

[10] XML Path Language (XPath) Version 1.0, W3C

Recommendation, November 1999, www.w3.org

Provision of Databases
in the Poznan Supercomput-
ing
and Networking Center
Sławomir Niwiński1, Iwona Pujanek2

and Maciej Stroiński1

1Poznan Supercomputing and Networking Center,
Noskowskiego 10, 61-704 Poznan, Poland,
{niwinski,stroins}@man.poznan.pl
2Poznan University of Technology, Main Library, Plac
Skłodowskiej-Curie 5, 60-965 Poznan, Poland,
iwona@ml.put.poznan.pl

(Received 16 October 2002; revised manuscript

received 13 January 2003)

Abstract: The article presents a concise report on the

experience gained in the last three years in the scope of

network provision of bibliographic databases by the In-

stitute for Scientific Information (ISI) and full-text hu-

manities and medical databases by EBSCO Publishing.

The authors emphasise the importance and impact of

the programme and the databases, co-financed by the

State Committee for Scientific Research, on the initiation

and continuation of organisational activities and efficient

database access management. The paper contains a short

review of the information resources presently available,

including the titles of bibliographic and full-text data-

bases, the scope of licences, subscription periods, and the

volumes of archival resources. It provides statistics illus-

trating the distribution and extent of the bibliographic

database usage by the scientific community, including,

active institutional and individual, users and discusses

the hardware and software used to provide the network

database access services, the availability conditions, as

well as the rules of license renewal and co-financing by

the interested institutions. The report also deals with

the access conditions and access abilities to the electronic

versions of humanities, economics and medical databases

offered by EBSCO Publishing. It is vital to show the


