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Abstract: The paper presents two methods of solving the Poisson equation. One is based on the

multiple reciprocity method. An analytical form of the basic solution obtained by means of inverse

operation technique enabled assessing the method’s error. The other is based on source function

expansion into a series according to polyharmonic functions. Further polyharmonic functions have

been obtained through inverse operations (with the ∆−1 operator) applied to polyharmonic functions.

Numerical results have confirmed perfect efficiency of both methods.
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1. Introduction

The use of a fundamental solution to eliminate the domain integral over the

adjoint operator is a cornerstone of the boundary element method [1]. Application

of the multiple reciprocity method to Poisson’s equation enables approximating

the source function with the required accuracy. The approximation error for such

source function approximation was determined in the present paper. The use of this

procedure was a subject of many papers [2–5]. In [5] the multiple reciprocity boundary

element method (MRBEM) is applied to modeling Photonic Crystal Fiber. MRBEM

converts the Helmholtz equation into an integral equation using a series of higher-order

fundamental solutions of the Laplace equation. This method is much more efficient

in analyzing the dispersion and non-linear properties of Photonic Cristal Fibers than

the conventional direct boundary element method (BEM).

In [2, 3] many cases are considered of solutions of the Poisson equations of

various orders with non-linear source functions dependent on the unknown variable.

These problems have been effectively solved with the use of the multiple reciprocity

method.
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The process of solving an inhomogeneous differential equation, ∆u= f , gives

rise to difficulties related to determining a particular integral ∆−1f and estimating

the error of its approximate calculation. The work presents two ways of approximate

determination of the ∆−1f integral. One consists in representing the f function using

the multiple reciprocity method through the values of the f function and its derivatives

at the Γ boundary of the m range. The other is based on expansion of the f function

into a polyharmonic series [6, 7]. Both methods are meshless.

An analytical form of the fundamental solution of the j th order has enabled

assessing in advance the error of a particular integral. Another important result of the

present work consists in finding a particular integral of the Poisson equation with the

use of polyharmonic functions generated as a result of inverse operations (with the

∆−1 operator) from the harmonic functions. The effectiveness of determining a par-

ticular integral with the help of the multiple reciprocity method and polyharmonic

functions has been tested on examples of functions with many extreme points.

2. Application of the reciprocity principle in representing

the w(x,y,z) function within domain Ω

The paper presents an application of the reciprocity principle to meshless

function approximation in domain Ω delimited with boundary Γ. The Green formula

in the following form has been used as a starting point:
∫

Ω

(u ·∆v−v ·∆u) dΩ =
∮

Γ

(
∂u

∂n
v− ∂v
∂n
u

)
dΓ, (x,y,z)∈Ω. (1)

Substituting u=∆kw, v=∆n−kq, k=0,1,2, .. . ,n, w,q ∈Cm(Ω), (2n<m) yields:
∫

Ω

(
∆kw·∆n+1−kq ·∆n−kq ·∆k+1w

)
dΩ =

∮

Γ

(
∂

∂n
∆kw·∆n−kq− ∂

∂n
∆n−kq ·∆kw

)
dΓ,

(2)

while summing (2) for consecutive k=0,1, .. . ,n gives us:
∫

Ω

(
w ·∆n+1q−q ·∆n+1w

)
dΩ=

n∑

k=0

∮

Γ

(
∂

∂n
∆kw ·∆n−kq− ∂

∂n
∆n−kq ·∆kw

)
dΓ. (3)

The assumption of

∆n+1q (x−ξ,y−η,z−ζ)= δ (x−ξ,y−η,z−ζ), ξ,η,ζ ∈Ω, (4)

leads to the following particular integral:

∆n−kq=∆−(k+1)δ, q=∆−(n+1)δ, (5)

while formula (3) takes the following form:

c ·w(ξ,η,ζ)=
n∑

k=0

∮ [
∂

∂n
∆kw ·∆−(k+1)δ− ∂

∂n
∆−(k+1)δ ·∆kw

]
dΓ+

+

∫

Ω

∆n+1w(x,y,z) ·∆−(n+1)δ(x−ξ,y−η,z−ζ) dΩ.
(6)

An analytical form of the particular integral of Equation (5) will be determined below.
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3. Representation of the w(x,y,z) function

within domain Ω with polyharmonic functions

An important advantage of representing the function in the form of polyhar-

monic functions consists in the ease of determination of the ∆−kw, k ≥1, functions
[8, 7]. Let us consider a finite expansion of the w function into a Taylor series up to

the N th order. This gives us:

∆M+1w̃(x,y,z)= 0, M =

[
N

2

]
. (7)

The application of consecutive inverse operations to the above equation yields:

∆−1
(
∆M+1w̃

)
=∆−1(0)=H0

∆−1
(
∆M w̃

)
=∆−1H0+H1

∆−1
(
∆M−1w̃

)
=∆−2H0+∆

−1H1+H2

∆−1
(
∆M−2w̃

)
=∆−3H0+∆

−2H1+∆
−1H2+H3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

∆M−nw̃=

n∑

k=0

∆−kHn−k

(8)

While for n=M

w̃(x,y,z)=
M∑

k=0

∆−kHM−k(x,y,z)=
M∑

k=0

∞∑

j=0

aM−k,i ·∆−khj(x,y,z), (9)

where functions hj(x,y,z), j = 0,1,2, . .. , are consecutive base harmonic functions.

Further considerations will be carried out for functions of two variables. In this case,

the base harmonic functions are the elements of expansion of the ep(x+iy) function

into a power series with respect to p, i.e.:

ep(x+iy)=

∞∑

n=0

pn
(x+ iy)

n

n!
=

∞∑

n=0

pn [Fn (x,y)+ iGn (x,y)], F0=1, G0=0, (10)

{h}= {F0,G1,F1,G2,F2,. ..}. (11)

Substituting (11) into Equation (9) yields:

w̃(x,y)=
M∑

k=0

∞∑

j

[
AM−k,j ·∆−kFj(x,y)+BM−k,j ·∆−kGj(x,y)

]
. (12)

It has been shown in [8, 9] that:

∆−kFj(x,y)=
1

22k

[
2Gj+k ·Gk+

(
j+2k

k

)
·Fj+2k

]

=
1

22k

[
2Fj+k ·Fk+

(
j+2k

k

)
·Fj+2k

]
,

∆−kGj(x,y)=
1

22k

[
2Gj+k ·Fk−

(
j+2k

k

)
·Gj+2k

]

=
1

22k

[
−2Gj+k ·Fk+

(
j+2k

k

)
·Gj+2k

]
,

(13)
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rank∆−kFj =rank∆
−kGj =2k+j. (14)

Taking into account that function (7) is a polynomial of the N th order and the order

of inverse operations determines relationship (14), the summation is carried out only

for those elements for which 2k+j ≤N , i.e. j ≤N−2k. Hence, substitution of (13)
to Equation (12) gives us:

w̃(x,y)=
M∑

k=0

j≤N−2k∑

j=0

[
A∗kj ·Fk+j(x,y)+B∗kj ·Gk+j(x,y)

]
Fk (x,y). (15)

Harmonic functions Fl, Gl will be determined as follows on the basis of Equation (10):

Fk+ i ·Gk =
(x+ iy)k

k!
=
(x+ iy)k−1

(k−1)!
x+ iy

k
=(Fk−1+ iGk−1)

x+ iy

k
, (16)

Fk =
1

k
(xFk−1−yGk−1) , Gk =

1

k
(yFk−1−xGk−1) , k≥ 1. (17)

4. Estimating the integral in the domain according

to the multiple principle of reciprocity

In order to present an approximate function w(x,y,z) in domain Ω by means

of a series of integrals at the Γ boundary, the error caused by the omission of the

following integral:

In=

∫

Ω

∆n+1w(x,y,z) ·∆−(n+1)δ(x−ξ,y−η,z−ζ) dΩ, (18)

occurring in formula (6), should be estimated. As a result of inverse operations [8, 9]

for finding a particular integral of Equation (9), we obtain:

∆−jδ=





1

2

r2j−1

(2j−1)! , r= |x−ξ| for the 1D case,

1

2π

r2(j−1)

(2j−1(j−1)!)2

[
j−1∑

k=1

1

k
− lnr

]
, for the 2D case,

1

4π

r2j−1

(2j)!
, for the 3D case.

(19)

where r=
√
(x−ξ)2+(y−η)2 and r=

√
(x−ξ)2+(y−η)2+(z−ζ)2 for the 2D and

3D case, respectively. Therefore, substituting result (192) to (18) gives us (for r≤ 1):

|In|=

∣∣∣∣∣∣

∫

Ω

∆n+1w(x,y)
1

2π

r2n

22n(n!)2

(
n∑

k=1

1

k
− lnr

)
dΩ

∣∣∣∣∣∣
≤

≤max
∣∣∆n+1w

∣∣ 1

π22n+1(n!)2

1∫

0

r2n+1

(
n∑

k−1

1

k
− lnr

)
dr =

=
max

(
∆n+1w

)

π22n+1(n!)2

(
1

2n+2

n∑

k=1

1

k
+

1

(2n+2)2

)
=

=
max(∆n+1w)

π22(n+1)(n+1)(n!)2

(
1

2(n+1)
+

n∑

k=1

1

k

)
. (20)
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Hence, for a confined function ∆n+1w values of the |In| integral decidedly decrease
with the growing number n of applications of the reciprocity principle.

5. Numerical calculations

Numerical properties related to expressing the source function in terms of the

multiple principle of reciprocity and polyharmonic functions may be demonstarted by

comparing the solutions of Poisson’s equation of the following form:

∆T = q, (21)

in a domain Ω= {(x,y) : 0≤ x≤ 1, 0≤ y≤ 1} with a boundary condition of the first
T
∣∣
Γ
= f .

In order to estimate the solution error, let us assume two relative norms,

a maximal εmax and a mean square εs:

εmax=

max
(xi,yi)

∣∣T −Td
∣∣

max
(xi,yi)

|Td|
, εs=

√
N∑
i=1

N∑
j=1

(
T −Td

)2

N max
(xi,yi)

|Td|
. (22)

Example 1

The source function is defined by formula [10]:

q(x,y)=−2(x+y−x2−y2),

with the following boundary conditions:

f(x,0)= 0, f(1,y)= 0, f(x,1)= 0, f(0,y)= 0.

The following function is the solution of the Poisson equation:

T (x,y)=xy (x−1)(y−1).

Figure 1 shows the form of the source function in the imposed domain,

while Figure 2 presents the solution of the Poisson equation for the source function

represented by repeated application of the reciprocity principle (6). Numerical results

are given in Table 1.N is the number of rows,M – the number of columns. When using

the multiple principle of reciprocity, the rank of the equations system matrix is equal

to N (rankA=N), while with the use of polyharmonic functions the rank is A=M .

Table 1. Numerical results for Example 1

T q
N =400 M

εmax εs εmax εs

MRM 0.682337 ·10−07 0.155272 ·10−07 0.914075 ·10−03 0.163878 ·10−03 400

Polyhar. Func. 0.644623 ·10−17 0.306654 ·10−18 0.759455 ·10−19 0.121920 ·10−19 75
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Figure 1. Source function

for Poisson’s equation
Figure 2. Accurate solution

Figure 3. Multiple Reciprocity Method

(MRM): distribution of source function errors

Figure 4. Multiple Reciprocity Method

(MRM): distribution of solution errors

Example 2

Source function [10]:

q=−6(x+y)−4
[
1− (x−b)

2+(y−b)2
a2

]
e−((x−b)

2+(y−b)2)/a2 .

Boundary conditions:

f(x,0)=−x3+e−((x−b)2+b2)/a2 , f(1,y)=−1−y3+e−((1−b)2+(y−b)2)/a2 ,
f(x,1)=−x3−1+e−((x−b)2+(1−b)2)/a2 , f(0,y)=−y3+e−(b2+(y−b)2)/a2 .

The following function is the solution of the Poisson equation:

T (x,y)=−x3−y3+e−((x−b)2+(y−b)2)/a2 .

Table 2. Numerical results for Example 2

T q
N =400 M

εmax εs εmax εs

MRM 0.508103 ·10−03 0.809722 ·10−04 0.795474 ·10−03 0.123899 ·10−03 400

Polyhar. Func. 0.107744 ·10−13 0.410255 ·10−14 0.211782 ·10−11 0.191817 ·10−12 75
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Figure 5. Source function for Poisson’s

equation
Figure 6. Accurate solution

Figure 7. Multiple Reciprocity Method

(MRM): distribution of source function errors

Figure 8. Multiple Reciprocity Method

(MRM): distribution of solution errors

Example 3

Source function [11]:

q= − 751π
2

144
sin
πx

6
sin
7πx

4
sin
3πy

4
sin
5πy

4
+

+
7π2

12
cos
πx

6
cos
7πx

4
sin
3πy

4
sin
5πy

4
+

+
15π2

8
sin
πx

6
sin
7πx

4
cos
3πy

4
cos
5πy

4
.

Boundary conditions:

f(x,0)=0, f(1,y)=−1
2
sin
3πy

4
sin
5πy

4
, f(x,1)=−

√
2

4
sin
πx

6
sin
7πx

4
, f(0,y)=0.

The following function is the solution of the Poisson equation:

T (x,y)= sin
πx

6
sin
7πx

4
sin
3πy

4
sin
5πy

4
.

Table 3. Numerical results for Example 3

T q
N =400 M

εmax εs εmax εs

MRM 0.152527 ·10−02 0.290300 ·10−03 0.187807 ·10−02 0.372177 ·10−03 400

Polyhar. Func. 0.276120 ·10−10 0.124352 ·10−10 0.137696 ·10−08 0.199642 ·10−09 75
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Figure 9. Source function for Poisson’s

equation
Figure 10. Accurate solution

Figure 11. Multiple Reciprocity Method

(MRM): distribution of source function errors

Figure 12. Multiple Reciprocity Method

(MRM): distribution of solution errors

Figure 13. Polyharmonic functions: distribution of source function errors

Example 4

Source function:

q=sinpx sinsy, p=4π, s=4π.

Boundary conditions:

f(x,0)= 0, f(1,y)= 0, f(x,1)= 0, f(0,y)= 0.

The following function is the solution of the Poisson equation:

T (x,y)=− 1

p2+s2
sinpx sinsy.

The examples presented above indicate that MRM and polyharmonic functions

are highly useful in approximation of continuous and differentiable functions. This,

together with the use of inverse operations, provides an effective method for solving
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Table 4. Numerical results for Example 4

T q
N =400 M

εmax εs εmax εs

MRM 0.219959 ·10−01 0.393477 ·10−02 0.219959 ·10−01 0.393477 ·10−02 400

Polyhar. Func. 0.499032 ·10−04 0.457495 ·10−05 0.966855 ·10−03 0.542302 ·10−04 75

Figure 14. Source function for Poisson’s

equation
Figure 15. Accurate solution

Figure 16. Multiple Reciprocity Method

(MRM): distribution of source function errors

Figure 17. Multiple Reciprocity Method

(MRM): distribution of solution errors

Figure 18. Polyharmonic functions:

distribution of source function errors

Figure 19. Polyharmonic functions:

distribution of solution errors

differential equations (such an approach is presented on the example of Poisson’s

equation).

The examples have been chosen so that the obtained results can be compared

with those of [2]. The computation presented in the paper is related to the approxi-
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mation of any analytical function of two real variables by means of radial and poly-

harmonic functions.

6. Conclusions

The solutions to Poisson’s equation obtained with the MRM method have been

compared with the approach where the source function is approximated by a linear

combination of polyharmonic functions in the sense of relative norms, viz. maximal,

εmax, and average, εs, ones.

The comparison has shown that for smooth source functions the solution may

be better approximated with a polyharmonic function, while for a source function of

considerable variability the Poisson equation may be better solved with MRM.

This due to the fact that solution of the problem consists in computation of an

inverse matrix in order to express the coefficients of the source function’s expansion

as dependent on the function’s node values. For this purpose, an SVD (Singular

Value Decomposition) algorithm was applied in the calculation. Taking into account

that polyharmonic functions become numerically linearly-dependent as their number

increases, the algorithm enables obtaining a pseudo-inverse matrix rather than an

inverse one. Hence, the problem was converted into an approximation of the source

function. For a 400×400 matrix the rank of the matrix was equal to 75. A similar
matrix was generated for the MRM method. An application of the SVD algorithm

caused no change in the matrix rank, which was equal to 400 in this instance. This

is equivalent to an interpolation of the source function. In this case, the results were

not smoothed, which gave us worse properties of the norms but better mapping of

the source function.
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