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Abstract: Non-linear properties of cardiomyocyte membranes are poorly understood. We model

a cell membrane using the Beeler-Reuter model with the Drouhard-Roberge modification (the BRDR

model). Simulations are performed using AC voltage test excitation of 1 or 100kHz frequency and

1 or 10mV RMS. Values of currents flowing through the cell membrane are considered to be the

response. The BRDR response is presented at the fundamental frequency and at its second and third

harmonics. The response is mainly contributed to by the time-independent potassium current (iK1)

during resting membrane potential. The level of currents varies strongly during the period of action

potential. However, the linear response from the membrane capacitance is relatively high. The second

and third harmonics of the 1kHz/10mV probing voltage carry some information about the action

potential. In particular, it may be used to investigate the process of repolarization and its disorders.
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Nomenclature

Vm – transmembrane potential,

iNa – fast sodium current,

iK1 – time-independent potassium current,

ix1 – time-dependent potassium current,

is – slow inward current,

iion – total ionic current,

fx – probing signal frequency,

Cm – specific membrane capacitance,

[Ca]i – intracellular concentration of calcium ions,

∆Vm – disturbance of the transmembrane potential,

m, h, x1, d, f – gating variables defined in the BRDR model,
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424 K. Grzęda et al.

m∞, h∞, x1∞, d∞, f∞ – steady state values of the gating variables,

τm , τh , τx1, τd , τf – time constants associated with the gating variables.

1. Introduction

The electrical impedance of the heart is an important parameter for many me-

dical procedures, both in clinical practice and in research. In particular, it determines

current distribution during electrical defibrillation and heart pacing. At the same time,

it is useful in studies of such cardiac phenomena, as ischemia [1] and hemodynamics [2].

Myocardial impedance depends on many biophysical parameters, including

intra- and extracellular conductance, the ratio of membrane area to tissue volume,

and the electrical properties of cellular membranes. Our present work is dedicated to

the latter.

Non-linear properties of cardiomyocyte membranes have been known for many

years and are described by many mathematical models, starting from the Hodgkin-

Huxley formalism [3], through the Beeler-Reuter model [4] and its Drouhard-Roberge

modification [5] (the BRDR model), a defibrillation version of the BRDR model (that

is the BRDR model adapted by Skouibine et al. to handle large, non-physiological

values of transmembrane potential) [6], to the most accurate Luo-Rudy models [7–9].

However, in simulations related to impedance, the membrane is usually approximated

to a linear, parallel RC circuit. This leads us to the following questions:

1. How large harmonic distortion can be produced by the membrane?

2. How does the action potential influence the membrane’s impedance/admit-

tance? (Describing the membrane using admittance is more convenient since

its value is proportional to the membrane’s area.)

3. What test excitation should be used to detect and measure harmonic distor-

tions?

The goal of this paper is to answer the above questions. Our approach is

focused on considering the membrane as an idealised test circuit, without other factors

affecting actual measurements of myocardial impedance, such as variable geometry,

blood in the heart chambers, etc.

2. Method

2.1. Model

We model a piece of a cellular membrane using the Beeler-Reuter model [4] with

the Drouhard-Roberge modification [5]. Detailed equations of the model are presented

in the appendix. We assume the membrane’s specific capacitance to be 1µF·cm−2.

In the present work, all values related to membrane area are referred to 1µF of its

capacitance.

In the present study, we have decided to model the measurement of membrane

impedance by investigation of current responses (the total ionic current, iion, and its

components: the fast sodium current, iNa, the time-independent potassium current,

iK1, the time-dependent potassium current, ix1, and the slow inward current, is)

of a cellular mebrane resulting from AC voltage excitations. This procedure (viz.

analysing a current response to voltage excitation rather than a voltage response to

current excitation) allows us to analyse each ionic current separately.
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Since we are interested in phenomena occuring in the resting state of the

membrane and in all phases of the action potential, the applied voltage excitation

is composed of an AC probing voltage and a slowly changing voltage related to the

“natural” shape of the action potential. Simulations with such voltage excitation will

be called measurement simulations. To obtain a shape of the action potential, an

additional reference simulation using current excitation is performed.

Thus, we can consider the differences between currents flowing in the measure-

ment and the reference simulation as responses to an AC test voltage:



∆iNa
∆iK1
∆ix1
∆is


=




iNa
iK1
ix1
is




measurement

−




iNa
iK1
ix1
is




reference

, (1)

∆iion=∆iNa+∆iK1+∆ix1+∆is , (2)

where difference signals ∆iion, ∆iNa, ∆iK1, ∆ix1, ∆is are respectively: the difference

total ionic current, the fast sodium current, the time-independent potassium current,

the time-dependent potassium current and the slow inward current.

2.2. Difference signal generation

We perform one reference and a few measurement simulations. The period of

800ms is analysed, corresponding to a typical full cycle of the heart’s activity. All

simulations are performed with a time step of ∆t=0.1µs.

The reference current excitation simulation is performed as shown in Figure 1.

The stimulus current is given as a rectangular pulse of 10ms width and 10µA/µF in

amplitude. The membrane produces an action potential as a response. The stimulus

current and the action potential are shown in Figure 2.

Figure 1. Reference simulation using current excitation: the diagram inside the rectangle

shows the simulated electrical circuit, the arrows outside the rectangle

show the input and output data of the simulation
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Figure 2. Current stimulus and action potential: digits over the upper line denote

phases of the action potential

In the measurement simulation we apply a voltage excitation to the cell

membrane, composed of the previously computed reference transmembrane potential

and test AC voltage (Figure 3). The sum of these two components is passed as input

data to the simulation and is denoted as Vm(t) in the circuit diagram in Figure 3.

The total ionic current, iion, and its components iNa, iK1, ix1, is are taken from the

simulation as the response. We perform four measurement simulations with different

test signals. The frequency, fx , of the sinusoidal test voltage is set at 1kHz or 100kHz

and its RMS value – at 1mV or 10mV.

2.3. Difference signal processing

Each difference signal (1) and (2) is processed in the same way. Three logical

channels (Figure 4 shows the architecture of one channel) are applied, each designed to

detect and calculate the Root Mean Square value (RMS) of the fundamental frequency

and its second and third harmonics.

The core of the channel is a bandpass filter with the middle frequencies of fx ,

2fx and 3fx , in order to detect the basic frequency and its second and third harmonics,

respectively. We use a finite impulse response filter with a kernel of 751 samples in

length. In order to obtain the RMS value of the difference signal, the output of the

filter is squared and then filtered again in the Moving Average Filter of the length
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Figure 3. Measurement simulation using voltage excitation: the diagram inside the rectangle

shows the simulated electrical circuit, the arrows outside

the rectangle show the input and output data of the simulation

Figure 4. Block diagram of a detection channel

equal to the period of the probing voltage. The square root of the moving average is

then used as the RMS value of a particular difference signal.

The difference signal coming from the simulation with 1kHz probing voltage is

decimated (predecimation at the block diagram) by a factor of 100 : 1 before entering

the bandpass filter. This procedure allows us to use exactly the same bandpass filters

(with 0.01, 0.02 and 0.03 middle normalized frequencies) for both probing frequencies.

Just out of the Moving Average Filter, the signal is decimated, if needed

(postdecimation at the block diagram), to the sampling frequency of 100kHz in order

to reduce the data size.

Such design of the detecting channels helps to achieve a compromise between the

filter characteristics, both in the time and the frequency domains. Good performance

in the frequency domain is obviously necessary to separate the fundamental frequency

and the second and third harmonics. At the same time, our design limits the length of

filter response to 7.51ms for the 100kHz sampling frequency. This allows us to detect

rapid changes of the amplitude of the analysed signal.

3. Limitations

There are some limitations of our study. The first comes from the BRDR model

used for modelling the membrane kinetics. Since this model is based mainly on

voltage clamp experiments, its applicability at high frequencies is not well known
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yet. Our results show an important role of the time-independent potassium current in

the non-linear response. Therefore, the Luo-Rudy model [9], describing this current

more accurately, might be preferable. Neverthless, the BRDR model has already been

adapted by Skoubine et al. [6] to large, non-physiological values of transmembrane

potential, which can be used for measurements. However, we do not use this feature

in the present study.

Figure 5. Slowly changing components of all the ionic currents

Another limitation comes from the effect of probing voltage on the slowly

changing component of the iK1 potassium current (see Figure 5). This effect may not

be negligible because of an important role of iK1 in the repolarization and determation

of the resting potential. The influence of probing voltage on the action potential must

be evaluated in vivo.

Unfortunately, measurement of non-linear effects in real experiments is difficult.

The relatively low level of harmonic distortions produced by the cellular membrane

requires a very precise, low-noise measurement equipment with extremely good linea-

rity. The non-linear properties of measurement electrodes can make real measurements

very difficult [10].

Since our calculations are performed with double precision and the input

data have a similar order of magnitude (−100mV to 100mV for the physiological

transmembrane potential and about millivolts for the AC test voltage), we assume

round-off errors to be negligible.

An analysis of the integration errors is more complex. Simulations without AC

performed earlier [11], with an even larger time step, are cosidered to be accurate.

Only computations of the time-independent current are obviously unaffected by the

integration errors.
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It is easy to find that the approximated solution produced in the measurement

simulation for a given transmembrane potential is the exact solution for the input

transmembrane potential affected by a disturbance not exceeding ∆Vm . The values of

∆Vm , which depend on the possible rate of voltage changes, are presented in Table 1.

This limitation of error may be satisfactory for a computation of responses at the

fundamental frequency, but not for the second and the third harmonic frequencies.

Table 1. Input transmembrane potential disturbance

Probing voltage Disturbance ∆Vm

Frequency fx RMS

[kHz] [mV] [mV]

100 10 1

100 1 0.1

1 10 0.05

1 1 0.04

A strict analysis of the errors affecting the time-dependent potassium current,

the fast sodium current and the slow inward current is difficult due to the complexity

of the analytical solution. For instance, for the gating variable m the analytical

solution can be written as:

m(t)=m0 ·e
−ϕm(t)+e−ϕm(t) ·

∫
m∞(t)

τm(t)
·eϕm(t)dt, (3)

where

ϕm(t)=

t∫

0

1

τm(t)
dt (4)

and m0 is a constant. A consideration of measurement simulations in terms of digital

signal processing offers a premise to neglect the integration errors. From a DSP

viewpoint these simulations can be thought of as a system with a Nyquist frequency

of 5MHz, corresponding to ∆t=0.1µs, producing a set of currents as an output from

Vm entering its input. Since the input frequency is at least 50 times smaller than

the Nyquist frequency, we assume the output currents to be computed accurately.

Relatively small levels of harmonic frequencies in the calculated responses confirm

this assumption.

4. Results

The four ionic currents iNa, iK1, ix1 and is are filtered through the Moving

Average Filter of 1ms length and are decimated by a factor of 100 : 1 in order to

obtain the slowly changing component, which is plotted vs time in Figure 5. The thick

lines denote currents recorded from the reference simulation and the thin lines – those

from the measurement simulation using 10mV probing voltage at both frequencies.

The comparison between reference and measurement currents in Figure 5 shows

that the applied 10mV probing voltage affects these currents only slightly during the

action potential. However, there is a significant effect on both the time-independent

and the time-dependent potassium current when the cell is resting.
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Figure 6. AC response at the fundamental frequency for test voltage 1kHz/10mV

Figure 7. AC response at the second harmonic frequency for test voltage 1kHz/10mV
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Figure 8. AC response at the third harmonic frequency for test voltage 1kHz/10mV

In Figures 6, 7 and 8, the RMS values of the total ionic current, iion, and

its components are plotted at the fundamental and its second and third harmonic

frequencies, respectively. We show the results only for the 1kHz/10mV probing

signal, which has produced the largest harmonic distortion among all the calculated

examples. The shape of the total ionic current is similar for all the examined

frequencies. One can distinguish a resting level, a set of positive and negative peaks

associated with phases 0 and 1 of the action potential, and a minimum level at the end

of the repolarization phase. In addition, there is a plateau during the action potential

in the response at the second harmonic frequency.

The responses are at the same level for both probing frequencies. When the

probing voltage is increased from 1 to 10mV, the response at the fundamental

frequency increases about 10 times, about 100 times at the second harmonic frequency

and about 1000 times at the third harmonic frequency, what appears to be reasonable.

The decomposition of the total ionic current into four components shows that

the response is mainly contributed to by the time-independent potassium current

(iK1) when the cell is resting. However, during the action potential, the composition

of the total ionic current is more complex. At the fundamental frequency, for both

probing voltages, and at the third harmonic frequency for the 1mV voltage, the slow

inward current (is) transitory constitutes the largest share of the response. Lastly,

at the end of the repolarization, the fast sodium current produces a relatively large

response, especially for the 1kHz probing frequency.
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The minimum of the total ionic current at the fundamental and the second

harmonic frequency occurs when the transmembrane potential is about −35mV,

approximately 230ms after the action potential began. Only at the third harmonic

frequency for the 10mV test voltage this minimum occurs earlier, approximately

160ms after the action potential began.

For a quantitative description of response variability during the action potential,

we define a ratio between the resting level of the response and its local maximum,

as presented in Figures 6, 7 and 8. (At the second and third harmonic frequencies

the level of plateau or the flexion point is used instead of a local maximum.) The

ratio is about 6.5dB at the fundamental frequency and 22dB at the second harmonic,

independently of the probing signal’s voltage or frequency. At the third harmonic this

ratio is about 13dB for the 1mV probing voltage and 32dB for the 10mV test voltage,

again regardless of the probing signal’s frequency.

5. Discussion and conclusions

A closer look at the charts in Figures 6, 7 and 8 will reveal that the total

ionic current is smaller than its components under some conditions (viz. the second

harmonic response for the 1kHz/10mV test voltage). This can be easily explained by

a negative dynamic resistance in the characteristics of the slow inward current is .

Similarly, the flat region in the current-voltage characteristics of the iK1 current

is responsible for a minimum of the response near the end of repolarization.

We should also mention the response from the fast sodium current at the

termination phase of the action potential. It is relatively high, although the averaged

value of this current is small. Information about the state of fast sodium current

channels may be very important, considering the role of new action potential initiation

during the period of relative refractory in arrhythmogenesis.

The peaks observed at the start of the action potential at all the examined

frequencies must be interpreted very carefully. A signal entering the detection channel

(Figure 4) contains a step of the iK1 current. Therefore, the peaks shown in the AC

response graphs may be treated as artifacts produced by the detection channels.

A comparison of the non-linear (see Figures 6, 7 and 8) and the linear responses

(presented in Table 2) shows that the variability of the non-linear response at

the fundamental frequency is relatively small. Table 2 also shows the admittance

corresponding to the total ionic current (non-linear response) at the fundamental

frequency and the admittance corresponding to the capacitance current (linear

response). As one can see, the admittance related to the ionic current does not depend

on the value of probing voltage used. The value of this admittance is less than 1.3%

of the capacitative admittance, even for the 1kHz frequency. This confirms that non-

linear effects are small and that the approximation of the membrane as a linear,

parallel RC circuit may be sufficient for many applications. Our value of admittance

responsible for the ionic current (0.08mS/µF), corresponding to a 12.5kΩ·cm2 specific

membrane resistance, is similar to the values presented in other papers [12].

Responses at the third harmonic frequency change over 30dB for the 10mV

testing voltage, carrying information about the action potential. The 1kHz/10mV

probing voltage could be the choice for future 3D simulations and real experiments,
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Table 2. RMS of current responses

Probing

voltage

Linear

response

from

membrane

capacitance

Resting level of the non-linear

response at frequency

Harmonic

distortion

level

Admittance

related to

the capacitance

current

Admittance

related to

the ionic

current

fx RMS fx 2fx 3fx

[kHz] [mV] [µA/µF] [µA/µF] [µA/µF] [µA/µF] [%] [mS/µF] [mS/µF]

100 10 6280.00 0.8 0.2 0.02 0.0032 628.00 0.08

100 1 628.00 0.08 0.002 0.00002 0.00032 628.00 0.08

1 10 62.80 0.8 0.2 0.02 0.32 6.28 0.08

1 1 6.28 0.08 0.002 0.00002 0.032 6.28 0.08

producing the largest and the most variable harmonic distortions, though other

probing signals, not tested in the present study, may produce even larger harmonic

distortions.

Reverting to the questions asked in the introduction to this paper, we can

conclude that in our simulations, for all four examined probing signals:

1. The cardiomyocyte membrane can produce harmonic distortions of up to 0.32%.

2. the changes of the membrane’s admittance caused by the action potential do

not exceed 1.3%.

3. The 1kHz/10mV probing voltage yields the highest values of harmonic distor-

tions.

Our software is designed for a more general, three-dimensional simulation of

the electrical activity of the heart. It has been implemented in serial and parallel

versions capable of running on SMP and distributed memory machines using MPI

for interprocess communication. The code is being tested on a 128-processor Intel

Pentium cluster. Achieving good speed-ups allows us to consider a three-dimensional

tissue block instead of merely a piece of a membrane discussed in the present paper.
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Appendix: Model equations

The equations of the BRDR model in its defibrillation version [4–6] are shown below. In this

version of the BRDR model, there are alternative formulas introduced for large absolute values of

the transmembrane potential. The formulas for relatively low absolute values of the transmembrane

potential remain unchanged.

In our study the absolute values of transmembrane potential are relatively low and both

versions of the model are equivalent.

The presented equations are recalled from the literature [4–6].

We skip measurement units in the formulas to present the equations in a compact form. Please

bear in mind that all currents are expressed in microampers per microfarad, potentials – in millivolts,

time – in milliseconds and concetrations – in millimoles per liter.
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A1. Fast sodium current

The fast sodium current is given by the following equation:

iNa(t)=GNam
3(t)h(t)(Vm (t)−ENa), (A1)

where GNa = 15mS/µF is the maximum sodium channel conductance, ENa = 40mV is the sodium

equilibrium potential, and m, h are dimensionless gating variables defined as:

dm

dt
=αm ·(1−m)−βm ·m=

m∞−m

τm
, (A2)

m∞=
αm

αm+βm
, (A3)

τm =
1

αm+βm
, (A4)

dh

dt
=αh ·(1−h)−βh ·h=

h∞−h

τh
, (A5)

h∞=
αh
αh+βh

, (A6)

τh =
1

αh+βh
, (A7)

where the infinity symbol in the subscript denotes the steady state value of a particular gating

variable and the letters τ , α, β denote respectively: the time constant and the opening and the

closing rate of the gate. Both forms (one with the steady-state value and the time constant,

the other with the opening and closing rates) are equivalent. The opening and closing rates are

calculated as:

αm =





890.9437890 ·
exp(0.0486479(Vm−100.0))

1.0+5.93962526 ·exp(0.0486479(Vm−100.0))
for Vm > 100.0,

0.9 ·
Vm+42.65

1.0−exp(−0.22(Vm+42.65))
for Vm ≤ 100.0,

(A8)

βm =





1.437 ·exp(−0.085(Vm+39.75)) for Vm >−85.0,

100.0

1.0+exp(0.2597504(Vm+85.0))
for Vm ≤−85.0,

(A9)

αh =

{
0.1 ·exp(−0.193(Vm+79.65)) for Vm >−90.0,

−12.0662845−0.1422598Vm for Vm ≤−90.0,
(A10)

βh =
1.7

1.0+exp(−0.095(Vm+20.5))
. (A11)

A2. Time-dependent potassium current

The time-dependent potassium current is defined by the following equation:

ix1(t)=x1(t) ·0.8 ·
exp(0.04 ·(Vm+77.0))−1

exp(0.04 ·(Vm+35.0))
, (A12)

where x1 is a dimensionless gating variable:

dx1
dt
=αx1 ·(1−x1)−βx1 ·x1=

x1∞−x1
τx1

, (A13)

x1∞=
αx1

αx1+βx1
, (A14)

τx1=
1

αx1+βx1
, (A15)

where the infinity symbol in the subscript denotes the steady state value of the gating variable and

the letters τ , α, β denote respectively: the time constant, the opening and the closing rate of the
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gate. Both forms (one with the steady-state value and the time constant, the other with the opening

and closing rates) are equivalent. The opening and closing rates are calculated as:

αx1=





151.7994692 ·exp(0.0654679(Vm−400.0))

1.0+151.7994692 ·exp(0.0654679(Vm−400.0))
for Vm > 400.0,

0.0005 ·
exp(0.083(Vm+50.0))

1.0+exp(0.057(Vm+50.0))
for Vm ≤ 400.0,

(A16)

βx1=0.0013 ·
exp(−0.06(Vm+20.0))

1.0+exp(−0.04(Vm+20.0))
. (A17)

A3. Time-independent potassium current

This current depends only on the transmembrane potential and equals:

iK1(t)= 0.35 ·

(
4.0 ·(exp(0.04(Vm+85.0))−1)

exp(0.08(Vm+53.0))+exp(0.04(Vm+53.0))
+

0.2(Vm+23.0)

1−exp(−0.04(Vm+23.0))

)
.

(A18)

A4. Slow inward current

The slow inward current is carried mainly by calcium ions and is given by the following

equation:

is(t)=Gsd(t)f(t)(Vm (t)−Es(t)), (A19)

where Gs = 0.09mS/µF is the maximum channel conductance, Es is the equilibrium potential for

calcium ions, and d, f are dimensionless gating variables. Es is considered as changing in time

because of the changing intracellular concentration of calcium ions:

Es(t)= 7.7−13.0287 · ln([Ca]i(t)), (A20)

where [Ca]i is intracellular concentration of calcium ions, expressed in mmol·dm
−3. This concentra-

tion changes according to the following equation:

d[Ca]i
dt
=

{
0.0 for Vm > 200.0,

0.0001 · is(t)+0.07 ·(0.0001− [Ca]i(t)) for Vm ≤ 200.0.
(A21)

The gating variables are governed by the equations:

dd

dt
=
αd
R
·(1−d)−βd ·d=

d∞−d

τd
, (A22)

d∞=
αd/R

αd/R+βd
, (A23)

τd =
1

αd/R+βd
, (A24)

df

dt
=
αf
R
·(1−f)−βf ·f =

f∞−f

τf
, (A25)

f∞=
αf /R

αf /R+βf
, (A26)

τf =
1

αf /R+βf
, (A27)

where the infinity symbol in the subscript denotes the steady-state value of the gating variable and

the letters τ , α, β denote respectively: the time constant, the opening and the closing rate of the

gate. R is a dimensionless parameter allowing one to model prolongation of the action potential; in

the present study we have assumed R=1. Both forms (one with the steady-state value and the time
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constant, the other with the opening and closing rates) are equivalent. The opening and closing rates

are calculated as:

αd =
0.095 ·exp(−0.01 ·(Vm−5.0))

1.0+exp(−0.072 ·(Vm−5.0))
, (A28)

βd =
0.07 ·exp(−0.017 ·(Vm+44.0))

1.0+exp(0.05 ·(Vm+44.0))
, (A29)

αf =
0.012 ·exp(−0.008 ·(Vm+28.0))

1.0+exp(0.15 ·(Vm+28.0))
, (A30)

βf =
0.0065 ·exp(−0.02 ·(Vm+30.0))

1.0+exp(−0.2 ·(Vm+30.0))
. (A31)

A5. Model implementation

Application of the BRDR model leads to the following set of ordinary differential equations

with Vm , m, h, x1, d, f , [Ca]i as unknowns:





dVm
dt
=
iion+ istim
C0

dm

dt
=αm ·(1−m)−βm ·m=

m∞−m

τm
,

dh

dt
=αh ·(1−h)−βh ·h=

h∞−h

τh
,

dx1
dt
=αx1 ·(1−x1)−βx1 ·x1=

x1∞−x1
τx1

,

dd

dt
=
αd
R
·(1−d)−βd ·d=

d∞−d

τd
,

df

dt
=
αf
R
·(1−f)−βf ·f =

f∞−f

τf
,

d[Ca]i
dt
=

{
0.0 for Vm > 200.0,

0.0001 · is(t)+0.07 ·(0.0001− [Ca]i(t)) for Vm ≤ 200.0,

(A32)

where C0=1µF/µF is a unitary capacitance.

The numerical approximation of the solution is denoted with a tilde over the letter and is

computed from the following:




Ṽm (t+∆t)= Ṽm (t)+∆t ·
ĩion(t)+ ĩstim(t)

C
,

m̃(t+∆t)= m̃(t)+(m̃∞(t)−m̃(t))
(
1−exp

(
−∆t

τ̃m (t)

))
= m̃∞(t)−(m̃∞(t)−m̃(t)) ·exp

(
−∆t

τ̃m (t)

)
,

h̃(t+∆t)= h̃(t)+(h̃∞(t)− h̃(t))
(
1−exp

(
−∆t

τ̃h (t)

))
,

x̃1(t+∆t)= x̃1(t)+(x̃1∞(t)− x̃1(t))
(
1−exp

(
−∆t

τ̃x1(t)

))
,

d̃(t+∆t)= d̃(t)+(d̃∞(t)− d̃(t))
(
1−exp

(
−∆t

τ̃d (t)

))
,

f̃(t+∆t)= f̃(t)+(f̃∞(t)− f̃(t))
(
1−exp

(
−∆t

τ̃f (t)

))
,

[C̃a]i(t+∆t)= [C̃a]i(t)+∆t ·

{
0.0 for Ṽm (t)> 200.0,

0.0001 · ĩs(t)+0.07 ·(0.0001− [C̃a]i(t)) for Ṽm (t)≤ 200.0.

(A33)
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