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Abstract: The paper is a molecular dynamics (MD) study of the structure of rarefied and densified
lead-silicate glass of the PbSiO3 composition. Simulations have been performed in the constant
volume regime for systems with densities of 3000, 4000, 5000, 5970 (normal density), 7 000 and
8000kg/m3, using a two-body potential (Born-Mayer repulsive forces and Coulomb forces due to full
ionic charges). All the systems were initially prepared as well equilibrated hot melts, and then slowly
cooled down to 300K. The information on short-range correlations was obtained in a conventional
way (from radial and angular distribution functions), while the middle-range order was studied via
cation-anion ring analysis, using our new programme for basal ring determination. The structure
of rarefied and densified glasses is compared with the structure of the same glasses under normal
conditions. Moreover, the present results on PbSiO3 glass are compared with the corresponding data
previously obtained for rarefied and densified PbGeO3 glass (Rybicki et al. 2001 Comput. Met. Sci.
Tech. 7 91–112).

Keywords: oxide glasses, structure of glasses, ring analysis, MD simulations

1. Introduction

Lead-silicate glasses have found many industrial applications, mainly as optical
glasses [1]. They are also used as special materials in electronics and optoelectronics
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(in the production of image plate amplifiers and scintillators [2]). Modified lead-silicate
glasses, containing metallic Pb granules, exhibit a high secondary emission coefficient,
and thus find an application in the production of electron channel multipliers [3].

The atomic structure of lead-silicate glasses, xPbO(1−x)SiO2, has been in-
vestigated for sixty years. Various experimental techniques have been used, such as
IR spectroscopy [4], Raman spectroscopy [4–6], NMR [5, 7, 8], XPS [9], X-ray diffrac-
tion [10, 11], neutron diffraction methods [12, 13], EXAFS (Extended X-ray Absorption
Fine Structure) and XANES (X-ray Absorption Near-Edge Structure) [7, 8, 14–17].
Also extensive molecular dynamics (MD) simulations were performed in the whole
range of glass-formation (0.1≤x≤ 0.9) [17–23].

It is well known that most glasses, depending on the method of preparation, can
have various densities with the same composition. In this respect, silica is probably
the most studied material (e.g. [24–36]). Studies on low- and high-density forms of
many binary silica glasses have also been performed. However, the atomic structure
of rarefied [37] and densified silica glasses containing heavy-metal oxides, as far
as the authors know have not been studied until now, neither experimentally, nor
theoretically.

The present contribution is a molecular dynamics (MD) [38, 39] study of the
structure of rarefied and densified lead-silicate glass of the PbSiO3 composition. In
order to see more clearly the structural features characteristic of low- and high-density
states we have performed our simulations in a wide range of densities, from 3000kg/m3

to 8000kg/m3. As no experimental data on the atomic-level structure of low- or
high-density states of the considered glasses are known, our MD results are predictive
in character. However, the potential used in our simulations has recently been
successfully applied in an extensive MD study of xPbO(1−x)SiO2 glasses in a wide
range of compositions at normal densities [17, 20–23], giving very good agreement
with the available experimental data (see Appendix A). Thus, we have used the same
potential for further MD studies in the belief that it reproduces equally well the
structure of rarefied and densified glasses.

The paper is organised as follows. In Section 2, we describe the applied
simulation technique and the methods of data analysis. The simulation results
are described and discussed in Sections 3 and 4, where we describe in detail the
short-range, and the medium-range order, respectively. In Section 5, we summarise the
presented results on PbSiO3 glasses, and compare them with similar results previously
obtained for PbGeO3. Section 6 contains our conclusions.

2. Simulation technique and methods of data analysis

2.1. MD runs

Our molecular dynamics simulations were performed in the constant volume
regime (an NVE ensemble). The atoms were assumed to interact by the two-body
Born-Mayer-Huggins potential:

Vij(r)=
qiqj
4πε0r

+Aij exp((σij−r)/bij), (1)

containing the Born-Mayer repulsive contribution, and Coulomb interactions, calcu-
lated using the standard Ewald technique. The potential parameters Aij , bij and
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σij , taken from [18], were previously successfully applied in (NpT ) simulations of
xPbO(1−x)SiO2 glasses for 0.1≤x≤ 0.9 [17, 20–23]. We used full ionic charges. The
number of atoms within the cubic simulation box with the usual periodic boundary
conditions was equal to 2500. Depending on the density, the edge of the simulation
box varied from about 30 to about 45Å. We simulated PbSiO3 glass with constant
densities equal to 3000, 4000, 5000, 5970, 7000, and 8000kg/m3. The samples were
initially prepared in a well-equilibrated molten state at 10000K, and then slowly
cooled down to 300K, passing equilibrium states at 8000K, 6000K, 5000K, 4000K,
3000K, 2500K, 2000K, 1500K, 1000K and 600K. Temperature scaling was applied
whenever the rolling average of temperature (calculated over last 100 time steps)
went out from the interval (T −∆T,T +∆T ). At each intermediate temperature, the
system was equilibrated during 30000fs time steps, using ∆T =100K for T ≥1000K,
∆T = 20K for T = 600K, and ∆T = 10K for T = 300K. Equilibrated systems were
sampled during 10000fs time steps. Such a run scheme corresponds to the average
cooling rate of 2 ·1013K/s.

The resulting low- and normal-density structures (3000kg/m3≤ ρ≤ 5970kg/m3)
turned out to be stable: the final 300K-configurations were relaxed at zero external
pressure conditions throughout 50000 time steps, and the volumes of the systems
changed only by several percent (5%–8%). Thus, theMD results obtained in this range
of densities can be considered as ‘true’ (equilibrium) low-density glasses. Note that
in [37] Ar-sputtered lead-silicate coatings of densities in the range from 3100kg/m3 to
4000kg/m3 are reported. However, our MD-simulated densified structures were un-
stable: instead of slight volume relaxation we observed a continuous system expansion
to normal density. Thus, the high-density MD data (ρ >5970kg/m3) are considered
here as corresponding to the PbSiO3 glass under hydrostatic pressure rather than to
stable high-density phases.

2.2. Structure recognition

Structural information on short-range correlations was obtained in a conven-
tional way, mainly from radial and angular distribution functions (RDFs and ADFs, re-
spectively). However, in order to describe the second and further co-ordination shells,
i.e. the medium-range order, one should use more advanced methods of structural
analysis than analysing the RDFs and ADFs. One of the possible approaches consists
in the analysis of properly constructed clusters of edge- and/or face-sharing Voronöı
polyhedra [40–42]. This method, although very efficient in the detection of crystalline
regions of various symmetries [43] works well for close-packed systems only. In open
systems serious problems appear in the construction of the Voronöı network and in
the procedures eliminating short edges and small faces. In such cases, the cation-anion
ring analysis seems to be an ideal tool for characterising the medium-range order. The
medium-range order was studied mainly via cation-anion ring analysis, performed us-
ing a new and highly efficient redundancy-aware algorithm. Since the method is a nov-
elty, we present its main guidelines in Appendix B. The structure of the determined
basal rings was investigated using the ANELLI programme package [44–46].
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3. Short-range order

Figure 1 shows the first Si–O, Pb–O and O–O peaks of radial distribution
functions in PbSiO3 glass for three various densities. Several angular distribution
functions are shown in Figure 2. As can be seen in Figure 1, most of the first RDF
peaks reveal a rather significant asymmetry. As it has been shown in a number of
papers, RDFs in disordered systems can be decomposed in a short-range peak of
a well-defined shape, and a long-range tail [47, 48]. A simple Gaussian shape of the
short-range peak of RDF is usually insufficient to accurately describe the short-range
ordering in highly disordered systems. A useful parameterisation of the first RDF
peak, as shown in [48, 49], has the form:

g(r)=
Np(r)
4πρr2

, (2)

where N is the co-ordination number, ρ is density. The bond length probability
density p(r) is described by a Γ-like distribution. The corresponding formula, valid
for (r−R)β >−2σ, reads as follows:

p(r)=
2

σ · |β| ·Γ(4/β2)
·

(

4
β2
+
2 ·(r−R)
σ ·β

)
4

β2
−1

·exp
[

−

(

4
β2
+
2 ·(r−R)
σ ·β

)]

. (3)

Figure 1. The first peaks of Si–O,
Pb–O, and O–O radial distribution
functions in PbSiO3 glasses of various
densities; the numbers in the figures
indicate the system densities in kg/m3
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Figure 2. Selected angular distribution functions in PbSiO3 glasses of various densities; the
numbers in the figures indicate the system densities in kg/m3
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Here R is the average distance, σ2 is variance (a Debye-Waller-like parameter), β is
the asymmetry (skewness) parameter, and Γ(x) is Euler’s gamma function, calculated
for x=4/β2. The best-fit parameters R, σ2, β, and N are listed in Tables 1 and 4. The
short-range ordering around the Si4+ and Pb2+ cations is described in Subsections 3.1
and 3.2, respectively.

3.1. Short-range order around silicon ions

3.1.1. Inter-atomic distances

In the density range from 3000kg/m3 to 5000kg/m3, the first Si–O peak can be
excellently approximated by a single Γ-like function. The mean Si–O distance, R, is
density-independent (1.64Å), and the corresponding values of the Debye-Waller-like
parameter, σ2, and the skewness parameter β, are stable and very low in this range of
density. Thus, in our MD-simulated glass the effective Si–O force field exhibits rather
low anharmonicity in rarefied samples.

Table 1. The structural parameters R, σ2, β and N for Si–O, O–O, and Pb–O first peaks
of radial distribution functions in PbSiO3 glasses of various densities

ρ Si–O O–O Pb–O

[kg/m3] R [Å] σ2 [Å2] β N R [Å] σ2 [Å2] β N R [Å] σ2 [Å2] β N

3000 (I) 1.64 0.002 0.21 4.00 (I) 2.67 0.011 0.30 4.05 (I) 2.38 0.017 0.74 3.74

4000 (I) 1.64 0.002 0.20 4.02 (I) 2.67 0.011 0.29 4.05 (I) 2.38 0.018 0.71 3.68

5000 (I) 1.64 0.002 0.21 4.03 (I) 2.67 0.010 0.24 4.06 (I) 2.39 0.016 0.74 3.93

5970 (I) 1.64 0.002 0.53 3.72 (I) 2.68 0.012 0.80 3.70 (I) 2.42 0.021 0.92 4.41
(II) 1.81 0.010 0.65 0.42 (II) 2.49 0.004 0.02 0.60

7000 (I) 1.64 0.002 0.51 2.14 (I) 2.65 0.021 0.83 4.44 (I) 2.40 0.016 0.66 4.12
(II) 1.76 0.012 0.68 2.36 (II) 2.46 0.010 0.01 0.55 (II) 2.76 0.040 0.76 1.61

8000 (I) 1.61 0.002 0.67 0.29 (I) 2.62 0.026 0.91 5.45 (I) 2.40 0.017 0.65 4.52
(II) 1.76 0.012 1.05 4.64 (II) 2.37 0.013 0.10 0.40 (II) 2.75 0.037 0.76 2.14

At normal and higher densities, however, it is impossible to reproduce the first
Si–O RDF peak with a single Γ-like function: the peaks split into two sub-shells (see
Table 1). The first sub-peak (I) has parameters similar to those of the main peak
in rarefied samples, but is significantly lower. The associated mean co-ordination
number decreases from about 3.7 at normal density to 0.3 at 8000kg/m3, which means
that this sub-shell practically disappears in the highest-density sample. The second,
more distant peak II, with R equal to about 1.8Å, is wider and more asymmetric
than sub-peak (I). The associated co-ordination number increases from 0.4 at normal
density to about 4.6 at the highest density, so that the second sub-peak becomes
dominant at high densities. The total co-ordination of the two sub-shells amounts to
about 4.1, 4.5 and 5.0 at 5970, 7000 and 8000kg/m3, respectively.

The mean O–O distance, R, is constant for rarefied glasses and equals 2.67Å,
and decreases by as little as 0.05Å between 5970kg/m3 and 8000kg/m3 (see peak
marked I in Table 1). The decrease in the O–O inter-atomic distances is accompanied
by an increase in peak width and the degree of its asymmetry. The dispersion
parameter, σ2, of the O–O distances is much higher than that of the Si–O distances
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(5–10 times). Simultaneously, the asymmetry degrees for the main Si–O and O–O
peaks are similar. An increase of the σ2 and β parameters with increasing density
is accompanied by an increase of the average co-ordination number: from 4 for
3000kg/m3 to about 6 for 8000kg/m3. Starting from 5970kg/m3, the first O–O
peak, like the Si–O peak, splits into two sub-peaks, shown in Table 1 as peaks I and
II.

3.1.2. Structural unit

Using the data on inter-atomic distances listed in Table 1 and angular distri-
butions from Figure 2, one can conclude that, for ρ <5970kg/m3, the basic struc-
tural units of the silica subsystem are SiO4 tetrahedrons. A detailed analysis of the
atom configurations has shown that, for densities up to 5000kg/m3, over 99% of Si
atoms have a four-fold, tetrahedral oxygen co-ordination. However, at the densities of
5970kg/m3, 7 000kg/m3 and 8000kg/m3, the fraction of tatrahedrally co-ordinated
Si atoms is 87%, 61% and 32% (Table 2), respectively.

Table 2. The occurrence [%] of SiO4, SiO5 and SiO6 groups at various glass densities

SiO4 SiO5 SiO6

3000kg/m3 99.6% 0.4% —
4000kg/m3 100.0% — —
5000kg/m3 98.6% 1.4% —
5970kg/m3 87.2% 12.8% —
7000kg/m3 61.0% 36.4% 2.6%
8000kg/m3 32.4% 57.4% 10.2%

In order to characterise the SiO4 tetrahedra we have introduced tetrahedricity
parameters, T1 [50] and T2 [51]:

T1=

∑

i

(lO−O,i− lO−O)2

l2O−O
, (4)

T2=

∑

i

(lO−O,i− lO−O)2

l2O−O
+

∑

i

(lSi−O,i− lSi−O)2

l2Si−O
, (5)

where lO−O,i are the lengths of the ith tetrahedrons’ O–O edges, lSi−O,i are the
Si–O distance, and lO−O and lSi−O are the average O–O and Si–O distances for
the considered tetrahedron. The T1 parameter estimates only the overall shape
of the tetrahedra, with no reference to the position of the central cation. The
newly-introduced shape estimator (5) additionally takes into account deviations in
the cation’s position. The ideal tetrahedron is characterised by zero values of both
the T1 and T2 estimators. (For a detailed study of the dependence of distributions of
the T1 and T2 values on the degree of tetrahedra deformation see [52]). In definitions
(4) and (5) one could also use global (calculated over all the tetrahedral present in the
simulation box) average O–O and Si–O distances. In the case of considered glasses,
the distributions of the T1 and T2 values, calculated with both estimator definitions,
are practically identical. We prefer using the cation-anion and anion-anion average
distances calculated for individual tetrahedra, since such approach remains equally

tq308u-g/399 4XII2004 BOP s.c., http://www.bop.com.pl



400 G. Bergmański et al.

Figure 3. Density dependence of the T1 and T2 value distributions calculated for SiO4 tetrahedra

correct in application to more complex systems, e.g. with coexisting SiO4 and GeO4
tetrahedra.

In the present simulations, the distributions of values of the tetrahedricity
parameters T1 and T2 are similar for a given density ρ, and both vary in a function of
ρ (Figure 3). The obtained distributions of the T1 and T2 parameter values for glass
densities ρ<5970kg/m3 correspond to the tetrahedra relative deformation degree1 of
about 2%–3%. Thus, SiO4 units can be considered as vibrating regular tetrahedra.
At the same time, the distributions of T1 and T2 parameter values obtained for
densified samples correspond to relative deformation of 6%–10%. Thus, SiO4 units in
compressed samples show rather high degree of structural disorder.

As mentioned above, in the 5970kg/m3, 7 000kg/m3, and 8000kg/m3 glasses,
13%, 39% and 68% of all the Si atoms, respectively, have oxygen co-ordination other
than 4 (Table 2). These are mainly SiO5 groups (13%, 36% and 57% of all Si atoms,
respectively). The SiO5 groups obtained in our simulations may be one of two quite
well defined structures: a square pyramid, with the Si atom close to the middle of the
pyramid base (Figure 4c) or a triangular bi-pyramid (Figure 4e). The appearance of
the peaks at 90̊ and 180̊ in high-density O–Si–O angular distributions (see Figure 2)
is directly related to the geometry of theses SiO5 structures. The occurrence frequency
of the SiO6 groups in densified samples (Table 2), all identified as distorted square
bi-pyramids (Figure 4f), amounts to 3% and 10% at the densities of 7000kg/m3 and
8000kg/m3, respectively.

3.2. Short-range order around lead ions

3.2.1. Pb–O distances

For densities ρ ≤5970kg/m3, the mean Pb–O distances, R, increase with
increasing density, from 2.38Å at 3000kg/m3 to 2.42Å at 5970kg/m3 (Table 1). The
σ2 and β parameters only weakly depend on ρ, whereas the average co-ordination
numbers increase from about 3.75 to 4.4. In densified glasses, however, the first

1. Relative deformation degree means the dispersion of tetraherda vertex positions around their
ideal positions, normalised to the tetrahedron edge [52].
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Figure 4. Structural units detected in the considered glasses;
C – cation (Si4+ or Pb2+), A – anion (O2−)

Pb–O RDF peak can not be described by a single Γ-like function (3), and must be
approximated using at least two such functions. The sub-peak shape parameters are
practically the same for both of the densified samples we have simulated, but the
associated co-ordination numbers are higher in the denser system (see Table 1). The
peak splitting means that the Pb ions have a two-shell neighbourhood. The average
Pb–O distances, R, for the two sub-shells are 2.40Å and 2.75Å.

3.2.2. Structural unit

The O–Pb–O angular distribution functions for several densities are shown in
Figure 2. Although the presence of the 60̊ and 90̊ angles is readily seen, all the angles
from 90̊ to 180̊ also appear in the sample. This suggests that the Pb atoms have
a great variety of neighbourhoods.

The fraction of lead atoms co-ordinated with four oxygen atoms depends on
the system’s density and is significant only for ρ <5970kg/m3 (Table 5). PbO4
groups were identified as regular tetrahedra or square pyramids (Figure 4a and 4d).
PbO4 tetrahedra are dominant (at least 80% of all PbO4 groups). The values of the
tetrahedricity parameters T1 and T2 for PbO4 tetrahedra are about 10 times higher
than for SiO4 tetrahedra. No clear dependence of the distribution of T1 or T2 values
on density could be found. For all the densities, the distribution of T1 and T2 values
correspond to the relative deformation degree, roughly equal to 20%, i.e. the PbO4
tetrahedra are much less regular than the SiO4 ones.

In order to characterise the PbO4 groups of pyramid-like symmetry shown in
Figure 4d (about 20% of all the PbO4 groups), a shape estimator, P , was used [53],
defined as:

P =

∑

i

(lPb−O,i− lPb−O)2

l2Pb−O
+

∑

i

(lO−O,i− lO−O)2

l2O−O
. (6)
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Table 3. The distribution of P -parameter values for PbO4 groups at various glass densities

P parameter 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 > 0.8

3000kg/m3 48% 35% 2% 7% 8%
4000kg/m3 46% 41% 4% 2% 7%
5000kg/m3 58% 30% 3% 3% 6%

5970kg/m3 66% 26% 6% 2% —

Table 4. The structural parameters R, σ2, β and N for Pb–Pb, Pb–Si, and Si–Si first peaks
of radial distribution functions in PbSiO3 glasses of various densities

ρ Pb–Pb Pb–Si Si–Si
[kg/m3] R [Å] σ2 [Å2] β N R [Å] σ2 [Å2] β N R [Å] σ2 [Å2] β N

3000 (I) 3.09 0.011 0.30 0.06 (I) 3.25 0.022 0.94 0.30 (I) 3.15 0.001 0.01 0.06
(II) 3.49 0.032 0.634 1.36 (II) 3.63 0.034 0.02 3.50 (II) 3.28 0.003 0.001 1.99
(III) 4.05 0.082 0.82 1.92

4000 (I) 3.09 0.010 0.01 0.04 (I) 3.30 0.023 0.40 0.51 (I) 3.16 0.001 0.01 0.06
(II) 3.46 0.026 0.28 1.29 (II) 3.67 0.026 0.01 3.23 (II) 3.29 0.003 0.01 2.00
(III) 4.07 0.097 1.02 1.83

5000 (I) 3.43 0.051 0.72 0.81 (I) 3.16 0.001 0.01 0.07
(II) 3.46 0.031 0.10 1.72 (II) 3.65 0.029 0.04 3.21 (II) 3.29 0.003 0.02 2.02
(III) 4.05 0.110 1.07 2.34

5970 (I) 3.38 0.025 0.30 1.82 (I) 3.13 0.005 0.03 0.08
(II) 3.46 0.030 0.10 1.97 (II) 3.71 0.031 0.59 3.07 (II) 3.28 0.005 0.05 2.12
(III) 4.04 0.090 0.92 2.86

7000 (I) 3.36 0.030 0.41 2.73 (I) 2.97 0.008 0.03 0.18
(II) 3.41 0.030 0.11 2.27 (II) 3.76 0.067 0.91 3.48 (II) 3.29 0.011 0.25 2.75
(III) 4.04 0.152 1.20 3.20

8000 (I) 3.28 0.027 0.09 2.81 (I) 2.97 0.012 0.03 0.57
(II) 3.30 0.032 0.19 2.54 (II) 3.70 0.099 0.65 4.16 (II) 3.35 0.024 0.76 3.51
(III) 3.95 0.153 1.25 3.48

Table 5. The occurrence [%] of various PbOn groups in the function of glass density

PbO3 PbO4 PbO5 PbO6 other

3000kg/m3 20.6% 51.6% 23.8% 3.0% 0.2%
4000kg/m3 24.8% 55.4% 18.8% 0.4% —
5000kg/m3 6.0% 62.0% 26.4% 5.2% 0.4%
5970kg/m3 0.2% 31.0% 45.6% 20.2% 2.4%
7000kg/m3 — 6.0% 33.4% 43.6% 16.4%
8000kg/m3 — 0.2% 7.8% 34.4% 57.6%

In Equation (6), lPb−O,i is the length of the ith Pb–O edge, and lPb−O is the average
length of Pb–O edges, and similarly, lO−O,i is the length of the ith O–O edge, and lO−O
is the average length of O–O edges. The distribution of the P values for pyramid-like
PbO4-groups is density-dependent: the pyramids are more regular at higher densities
(see Table 3).

As stated above, only certain fractions of all the Pb atoms have four-fold oxygen
co-ordination. Let us describe in brief other types of neighbourhoods of the lead atom.
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In the low-density range (ρ ≤4000kg/m3), 20%–25% of lead atoms have
three-fold oxygen co-ordination and form roughly triangular pyramids (Figure 4b).
In the same density range, about 20% of Pb atoms have five-fold co-ordination.
Among the PbO5 groups, distorted triangular bi-pyramids (more frequent) and square
pyramids (less frequent) have been detected (Figures 4e and 4c, respectively). Several
PbO5 groups could not be classified.

The fraction of three-fold co-ordinated Pb atoms decreases with increasing
density and is nil for ρ >5000kg/m3. In rarefied glasses (ρ ≤ 5000kg/m3), PbO4
groups dominate. The Pb–O co-ordination number increases with increasing density.
At normal density, five-fold oxygen co-ordinated lead atoms are most frequent, while
PbO6 groups dominate at 7000kg/m3 and 8000kg/m3. All the high-density structural
units, with six-, seven-fold and higher co-ordination show poor symmetry and cannot
be classified unambiguously.

4. Medium-range order

Let us consider in turn the second-neighbour RDFs (Section 4.1) and the
cation-anion ring structure (Sections 4.2 and 4.3). The samples’ homogeneity is briefly
discussed in Section 4.4.

4.1. Si–Si, Pb–Si, and Pb–Pb radial correlations

4.1.1. Si–Si distances

It is impossible to reproduce the first Si–Si peaks with a single Γ-like function,
as the peaks split into two sub-shells (see Table 4).

The first sub-peak (marked I in Table 4) is significant only for ρ=8000kg/m3

(related co-ordination number about 0.6). The R values of the first sub-peak decrease
from 3.15Å to 2.97Å, whereas those of the second sub-peak increase from 3.28Å
to 3.35Å. For ρ <5970kg/m3, the first Si–Si co-ordination number is stable (about
2.05–2.10), and increases from about 2.20 for 5970kg/m3 to about 4 for 8000kg/m3.
The Si–Si distance closes a triangle, in which two edges are of the Si–O distance, and
the Si–O–Si angles correspond to the ADF peak positions (Figure 2). Thus, the first
Si–Si RDF peak is related to corner-sharing SiO4 tetrahedra.

The Si–Si–Si angle distribution for ρ≤5970kg/m3 contains a single peak lying
between 80̊ and 120̊ with its maximum at about 100̊ . At higher densities a rather
sharp peak appears, with the maximum at 60̊ . Its presence is related to the existence
of two-member Si–O–Si–O rings (see Section 4.2), corresponding to edge-sharing SiO4
tetrahedra.

4.1.2. Pb–Pb distances

The first Pb–Pb peak splits into two main sub-peaks (marked II and III in
Table 4), but at low densities a third sub-peak (I in the table) can be distinguished
(see below). The R values of sub-peaks II and III decrease from 3.49Å and 4.05Å
to 3.30Å and 3.95Å, respectively. The III sub-peak is significantly wider and more
asymmetric than the II peak. An interpretation of these two sub-peaks is given in
Section 4.3. The co-ordination numbers associated with the sub-peaks increase from
about 1.4 to about 2.5 for the second peak, and from about 1.9 to about 3.5 for the
third peak. This corresponds to an increase in the total average co-ordination number
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Figure 5. Distributions of the Si–O–Si–O–. . . rings’ lengths
in PbSiO3 glasses of various densities

related to the first RDF maximum (composed of sub-peaks II and III) roughly from
3.3 to 6.

In the low density samples (the 3000kg/m3 and 4000kg/m3 runs), a pre-peak
appears (I in Table 4) with R = 3.09Å and very low related average co-ordination
(about 0.05). Thus, there are very few so close Pb pairs within the simulation box.

The Pb–Pb–Pb angle distribution (Figure 2) contains two peaks, the first at
about 60̊ and the second at about 110̊ for all densities.

4.1.3. Pb–Si distances

The first Pb–Si peak is also composite, and generally splits into two sub-peaks
(Table 4). The first peak (I) has its R-values in the range from 3.25Å to 3.43Å, and
the second peak (II) – in the range from 3.63Å to 3.76Å. The co-ordination numbers
associated with sub-peak (I) increase from 0.3 to 2.8. The density dependence of the
co-ordination numbers associated with sub-peak II is more complicated: they decrease
from 3.5Å for 3000kg/m3 to 3.07Å for the normal density, and then increase to 4.16Å
for 8000kg/m3. This corresponds to an increase in the total co-ordination number
related to the unresolved first RDF’s peak from 3.8 to almost 7.

4.2. Si–O–Si–O– . .. rings

A closed chain of chemically bonded atoms, consisting of N cations and N
anions is called an N -member ring. Below, we discuss the length statistics of linearly
independent (basal) rings that span the full graph representing chemically bonded
atoms. 2-member rings correspond to edge-sharing or face-sharing structural units.
Since rings of lengths equal to 4, 5, 6, and 7 dominate in most of the “well relaxed”
structural models of pure SiO2, the 2-, 3- and 4-member rings are usually referred to
as “strained” rings [54–58].
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Figure 6. Distributions of the Pb–O–Pb–O–. . . rings’ lengths
in PbSiO3 glasses of various densities

The connectivity graphs for Si and O ions have been calculated using an
adjacency criterion with cut-off radii equal to 2.0Å. Figure 5 shows the length
distribution of Si–O–Si–O–.. . rings for all the considered densities.

A small fraction of 2-member rings, corresponding to edge-sharing SiO4 tetra-
hedra, appears only in densified samples: 5% at 7000kg/m3 and 8% at 8000kg/m3.
3-member rings appear at and above the normal density (1% at normal density, 13%
at 7000kg/m3, 23% (dominating) at 8000kg/m3). The share of 4-member rings ranges
from 15% to 30% for the densities of 3000–5970kg/m3, and is about 20%–25% in
densified glasses. Longer rings are present at all densities, and are less frequent than
in pure silica.

4.3. Pb–O–Pb–O– .. . rings

The connectivity graphs for Pb and O ions have been calculated using an ad-
jacency criterion with cut-off radii equal to 3.0Å.

The fraction of 2-member rings weakly depends on the system’s density and
amounts to 60%–65% (Figure 6). In the density range of 3000kg/m3–5000kg/m3 the
fraction of 3-member rings also remains almost constant (10%), while it increases to
about 25% for higher densities. The remaining lead-oxygen rings are widely distributed
at low densities (up to the length of 15). At higher densities, the rings’ length does
not exceed 8.

The Pb–O–Pb and O–Pb–O angles’ distributions along the 2-member rings
have been calculated. The distributions only weakly depend on the system’s density,
and generally become slightly wider with increasing density. Over 80% of all values
of the Pb–O–Pb angles fall into the interval from 80̊ to 100̊ , for ρ ≤5970, and
the distributions are only 20̊ wide. For densified glass, the distribution is peaked
in a slightly narrower interval, between 80̊ and 90̊ . The distribution of O–Pb–O
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angles is more dispersed, but the peak maximum remains in the range from 80̊ to
90̊ , regardless of density. With increasing density the width of the O–Pb–O angular
distribution increases from 70̊ –100̊ at 3000kg/m3 to 50̊ –110̊ at 8000kg/m3. Thus,
for ρ≤ 5970kg/m3, the shape of 2-member lead-oxygen rings does not significantly
depend on system density, and the Pb–O–Pb angles, having narrower distributions,
are stiffer then the O–Pb–O angles.

The angular distributions along 2-member rings, described above, may now be
compared with the corresponding distributions averaged over the whole simulation
box (see Figure 2). The peaks in the range 75̊ –100̊ originate from the internal angles
along 2-member rings, whereas other peaks and humps correspond to O–Pb–O and
Pb–O–Pb angles, in which the oxygen and lead atoms belong to adjacent (node- or
edge-sharing) rings.

In Section 4.1, the complex structure of the first Pb–Pb RDF has been described.
It follows from the analysis of the lead-oxygen rings’ geometry that the shorter Pb–Pb
distances (peak II) originates from diagonal distances in 2-member Pb–O rings. The
corresponding O–O diagonal distances contribute to wide RDFs’ features between
3.3Å and 3.6Å (see Figure 1).

4.4. Sample homogeneity

In order to determinate whether the samples are spatially homogeneous or
non-homogeneous, the standard χ2-test has been used [59]. The whole simulation box
was divided into n3 cubic sub-cells, where n is the number of cells along the edge
of the simulation box. If we mark the theoretical number of atoms in every sub-cell
(i.e. the total number of atoms divided by the number of sub-cell) with N̄ , and the
observed number of atoms in the ith sub-cell – with Ni, then the random variable M ,

M =
∑

i

(Ni−N̄)2

N̄2
, (7)

has an χ2
n3−1 distribution, i.e. chi-square distribution with s = n

3− 1 degrees of
freedom:

χ2s(x)=

x
∫

0

fs(x′)dx′, (8)

where

fs(x)=
x
1

2
(s−2)

2
1

2
s Γ
(

1
2s
)

e−
1

2
x, (9)

and Γ is the Euler function. This implies that, if our sample is spatially homogeneous,
the value ofM has to be, with a fixed probability, less than a certain value q (quantile)
of the χ2

n3−1 distribution. A value ofM superior to q means that the measured values
have not been derived from the theoretical one, or that we have made a mistake with
a probability equal to the so called level of significance α, α=

∫

∞

q
fs(x)dx.

Three kinds of atoms were checked for the uniformity of their distribution: Pb
and Si atoms separately, to obtain information about cation uniformity, and O atoms,
to obtain information on the overall density distribution. Since the oxygen atoms are
always in the first neighbourhood of lead or silicon atoms, it is possible to obtain
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information about the connectivity of the whole simulated structure by performing
the uniformity test for oxygen atoms only.

The results of the statistical tests for the samples’ spatial uniformity can be
summarised as follows. For ρ ≥5000kg/m3, the distribution of all kinds of atoms
in the simulation box is spatially uniform. For ρ =3000kg/m3, with the level of
significance not exceeding 0.01, the distributions of both silicon and lead atoms are
non-uniform. The test for oxygen atoms has yielded almost 100% probability that
the overall structure of PbSiO3 glass is spatially non-uniform. Such a non-uniform
structure also appears for ρ=4000kg/m3, with the level of significance 0.3, but at the
same time the hypothesis of non-uniformity of the spatial distribution of the other
atoms is acceptable only at the level of 0.9.

5. Summary and comparison with the PbGeO3 system

The structural results obtained for the PbSiO3 system can be summarised as
follows:

1. The short range ordering around silicon atoms changes slightly in the density
range 3000–5970kg/m3. Regular SiO4 units dominate in the SiO2 subsystem
for this range. In densified structures some SiO4 pyramid-like structures have
been detected. In the most densified glass (8000kg/m3), SiO5 triangular
bi-pyramids and square pyramids are dominating.

2. The PbO subsystem has a much more complex structure. Among PbO4
structural units (identification cut-off radius of 3.0Å), both regular tetrahedra
(80% of PbO4) and regular square pyramids (20% of PbO4) have been detected.
The tetrahedra are more regular at lower densities. However, with increasing
density the contribution of 4-co-ordinated lead ions decreases, and the fraction
of lead atoms with five- and six-fold oxygen co-ordination becomes significant.
PbO5 groups appear in two quite well-defined forms: square pyramids with the
oxygen atoms in the corners and the Pb atom in the centre of the oxygen basal
square (or slightly above this point), and triangular bi-pyramids (Figures 4c
and 4e). PbO6 and PbO7 groups show poor symmetry and could not be
classified.

3. The medium-range order is subject to remarkable changes. 4-, 5- and 6-member
Si–O rings dominate for ρ≤5970kg/m3. With increasing density, the number
of shorter, strained rings increases significantly. In highly rarefied glasses, in
contradistinction to the normal- and high-density phases, Si–O rings shorter
than 4 are absent.

4. The highly rarefied PbSiO3 glass has a spatially non-uniform (porous) structure.
For ρ=3000kg/m3, with the significance level of about 0.01, distributions of
both silicate and lead atoms are non-uniform.

The results of similar MD simulations of the structure of lead-germanate glass,
PbGeO3, for the same densities, have been described in detail in [23]. Let us now
compare them with the present results for PbSiO3 glasses.

1. The short-range ordering around silicon atoms (SiO4 tetrahedra) remains
unaffected by density variations in the range 3000–5000kg/m3, whereas in
germanate glasses Ge atoms have a stable neighbourhood (GeO4 tetrahedra)
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in a wider density range, 3000–8000kg/m3. In general, the SiO4 tetrahedra
are slightly more regular than the GeO4 ones. In densified silicate glasses,
some SiO5 groups appear. At the highest density simulated (8000kg/m3) such
structural units dominate, while some SiO6 groups appear as well. The latter
have been recognised as square bi-pyramids. In the germanate samples, only
GeO4 tetrahedra were present in the whole density range.

2. The Pb atom neighbourhood in PbGeO3 glasses is structurally very similar to
that described above for PbSiO3 glasses. This is the case in the whole considered
range of densities.

3. In rarefied PbGeO3 samples, the Ge–O rings longer than 8 are absent, but there
exist some short Ge–O rings. In PbSiO3 glass, the situation is quite different:
short rings (shorter than 4) are absent and some very long rings are present.

4. Both PbSiO3 and PbGeO3 have evidently spatially non-uniform (porous)
structure (with the significance level of about 0.01) at ρ=3000kg/m3. However,
the PbGeO3 glass is still pretty non-uniform at ρ =4000kg/m3 (with the
significance level of 0.01), while in the PbSiO3 system the non-uniformity
hypothesis can be accepted only at a significance level of about 0.30. The
hypothesis of non-uniformity of the spatial distribution of the silicon and
lead atoms (for PbSiO3) for ρ=4000kg/m3 is acceptable only at the level of
significance of 0.90, and that of germanium and lead (for PbGeO3) – at the
significance level of about 0.3.

6. Concluding remarks

In this paper, we have presented the results of extensive MD simulations of
PbSiO3 glasses in the density range from 3000kg/m3 to 8000kg/m3. As mentioned in
Section 2 above, the obtained glasses are stable for ρ≤5970kg/m3 (i.e. they maintain
their densities during the zero external pressure simulations). The existence of stable
low-density PbSiO3 glass is documented in [37]. The simulated densified PbSiO3
expand continuously to roughly normal density with the constant volume restriction
removed, so the presented results correspond to non-equilibrium pressure-induced
structures. In order to analyse the short-range order, we have introduced a couple of
new shape estimators of basis structural units. The medium-range order has been
characterised in terms of basal cation-anion rings. In particular, the ring length
statistics and ring geometry have been taken into account (angular distributions along
rings of a given length). We have shown, that our new methods of structural analysis
allow a detailed structural description and can be used to recognise trends in the
structural changes related to variations of glass density.
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Appendix A: Basic structural data at normal density

Table A1. A comparison of the experimental and MD-simulated inter-atomic distances and
co-ordination numbers (in square brackets) for PbSiO3 glass at its normal density
(5970kg/m3); (a) – ref. [60]; (b) – ref. [61]; (c) – ref. [62]; (d) – ref. [63]; (e) – ref. [22]

Glass Atom MD
experiments

composition pair simulations (e)

x=0.3–0.5 Pb–O 2.2–2.3Å, 2.45–2.6Å (a) 2.3Å
x=0.5 Pb–O 2.25Å, 2.45Å (b) 2.3Å
x=0.67 Pb–O 2.35Å [4.3] (c) 2.3Å [4.7]
x=0.33 Si–O 1.615Å [3.92] (d) 1.64Å [4.1]
x=0.5 Si–O 1.625Å [3.92] (d) 1.64Å [4.1]
x=0.67 Si–O 1.62Å (b), 1.6Å [3.8] (c), 1.63Å (d) 1.62Å [4.1]

Appendix B: Outline of the ring perception algorithm

Let us present the ring determination method in more detail. The atomic system is represented
as an undirected, simple graph, with each atom associated with a node and each bond between two
atoms associated with an edge joining the respective nodes. Thus, groups of chemically bonded
atoms in the system correspond to rings (cycles, loops) in the graph. Hence, the problem is reduced
to the rings’ determination. Recently, Balducci and Pearlman [64] have presented an exact and
efficient algorithm for the determination of a minimum basis (the smallest set of smallest rings,
or SSSR) of the ring space of a structure. In [64], a communication network analogy is developed.
“Path-messages” convey information on their way through the network, and propagate by means
of transceivers and communication channels during alternate, synchronous “send” and “receive”
states of the network. The rings’ perception i.e. SSSR identification, is carried out by classifying the
path-messages’ collisions on a common receiver.

Our new approach, called pre-filtering [65, 66], has been designed and implemented to handle
and eliminate redundant information processing when selecting rings to enter an SSSR, i.e. to feed
no duplicated information to the linear independence test on rings, and thus reduce calls to the most
demanding procedure in terms of computational order. The efficiency of a perfect hashing algorithm
is actually met by the pre-filtering method.

Basic definitions

• An edge sequence of length (size) L−1 in a graph is a finite sequence of edges (i1,i2),(i2,i3), . .. ,
(iL−1,iL), wherein each edge is denoted by the pair of nodes it connects; if i1= iL or i1 6= iL,
the edge sequence is closed or open respectively.
• An edge sequence of distinct edges constitutes an edge train.
• An open edge train in which all nodes are distinct is called a path.
• A closed edge train in which all nodes are distinct is called a ring.
• The symmetric difference, or ring sum, or linear combination of two rings, A and B, is defined
as A⊕B=(A∪B)\(A∩B).

Process overview
Graphs considered are simple, finite and undirected; although not strictly necessary, they

are furthermore supposed to be connected, so that they contain R=E−N+1 linearly independent
rings, where E and N are the numbers of edges and nodes, respectively.

Given a graph containing N nodes and E edges, representing the system, two main tasks
are performed: identification of a superset of a minimal basis of rings, and selection of a set of
R=E−N+1 rings to form an SSSR.

The graph is considered as a synchronous communication network associating each node
to a transceiver, each edge to a communication channel, and each path to a “path-message”. All
transceivers, during alternating send/receive cycles, simultaneously propagate path-messages through
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the communication channels linking adjacent nodes in such a way that any message originating from
a node m and received by a node n is forwarded to all nodes connected to n but m.

The entire process is such that, at any stage, all path-messages are of the same length,
this length being increased each time messages are retransmitted, so that rings are identified and
processed in the increasing length order to build up an SSSR.

Basically, the whole process consists of four phases:

1. communication network initialisation;
2. path-messages sending;
3. path-messages receiving;
4. rings selection,

and develops cycling over 2 through 4 until an SSSR is obtained.
Once a ring has been identified, it must undergo a linear independence test against the

elements of the SSSR determined so far in order to be entered or discarded. As clearly follows from
the detailed description of the algorithm given in [64] a ring of length L may, in principle, be built
as many as L times (once per component node). Thus, the same L-sized ring may be submitted up
to L times to the linear independence test.

Balducci and Pearlman proposed to use the well-known “hashing” [67] method to avoid
multiple linear independence tests on the same ring. Assuming the choice a suitable hashing function
and a suitably dimensioned hash table associated with it, the method approaches a perfect hashing
algorithm.

A new method (pre-filtering) is now presented to substitute hashing, ensuring that each ring
is checked for linear independence exactly once.

Let us briefly anticipate how rings are built up from path-messages collisions. Think of
path-messages as messages describing the time evolution of paths through the communication
network and define a collision of paths’ messages as their arrival on the same transceiver at the
same time. As mentioned above, the communication network operations are driven in such a way,
that at any stage all the path-messages are of the same length, be it L.

It is easily seen that the union of two entirely separate (both edge-disjoint and node-disjoint)
path-messages – save for their first edge, traversed in opposite directions – colliding at a node n,
gives a ring of length 2L−1, while the union of two entirely separate path-messages – save their first
node – closing on a node n, gives a ring of length 2L. Paths coupling to form rings will be referred
to as the ring identification process.

Upward selection
The formation of a ring by collision on all of its nodes will be referred to as full formation.

The appearance of full formation in the communication network depends on how paths messages are
propagated.

Full formation suggests how to devise a strategy to send the independence test to no more
than one L-sized ring out of the L possible equal ones.

Using an arbitrary numbering for nodes, let us suppose that full formation is enforced and
all the rings closing on node 1 have been processed. When operating on node 2, all rings closing
on it after passing through node 1 may be safely ignored, since they have already been identified
while processing node 1. Generally, having processed the rings closing on nodes 1, .. . ,n−1, all rings
containing a node m< n can be ignored while processing node n; in other words, only the rings
originating from nodes numbered higher than n are taken into account, thus operating an upward
selection.

Obviously full formation requires all path-messages originating from a common source and
colliding at any node of degree > 2 to be propagated further.

Although sufficient, full formation of all rings is not a necessary requisite for upward selection
since, for rings that can be expressed as a linear combination of the identified elements of the SSSR,
being also identified from collisions at each of their nodes is irrelevant. As a general result, with
regards to upward selection, it is sufficient to propagate just one path-message out of all the distinct
ones sharing a common origin and colliding on the same node of degree > 2 [68].
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Inner-node intersection
Let us define an inner-node intersection of two edge-disjoint paths closing on a common node

as a passage through a common node other than the first, if any, and the last. A union of any two
L-sized inner-node intersecting paths originating from a common node m and closing on a node n is
a linear combination of two or more rings shorter than 2L. Thus, path pairs showing an inner-node
intersection can be safely ignored during the rings identification process.

Inner-edge intersection
Let us define an inner-edge intersection of two paths closing on a common node as an

intersection on an edge other than the first one, if any, traversed in opposite directions. Generally,
a union of any two L-sized inner-edge intersecting paths originating from a common node m and
closing on a node n contains two or more rings shorter than 2L, but is neither a ring nor a linear
combination of rings.

Collapsed path
An edge sequence traversing a node more than once will be referred to as a collapsed path.

A union of two paths of which at least one is collapsed, sharing a common origin and closing on
a common node, determines an inner node-intersection and/or an inner edge-intersection. Path
collapse can easily be prevented while propagating path-messages.

The combined use of upward selection, pairing of paths showing no inner-node/inner-edge
intersection when building rings to send the linear independence test, together with the prevention
of path-message collapse, constitutes pre-filtering: it ensures by its construction that no ring is tested
for linear independence more than once.
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