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Abstract: A novel LASER action nano-hetero-structure of the inter-subband, mid-infrared func-

tionality type is designed on the basis of optically pumped dual resonant tunnelling of conductivity

electrons within an appropriately energetically determined scheme of five subbands hosted by two

communicating asymmetric, approximately rectangular quantum wells (QWs).

The upper LASER action level employed is the second excited subband of the nanostructure’s

back, wider QW and is provided with electrons via resonant tunnelling from the first excited subband

of the nanostructure’s front QW populated through remotely ignited optical pumping out of the local

fundamental subband.

The first excited back QW subband functions as the lower LASER action level, directly

delivering the received electrons to the local fundamental subband – via fast vertical longitudinal

optical phonon scattering – wherefrom they are being recycled back to the nanostructure’s front

QW fundamental subband by virtue of a second-reverse sense-resonant tunnelling-mediated normal

charge transport mechanism.

The handling of the de Broglie wave-function problem evolves into a numerical calculation of

a Sturm-Liouville eigensystem solved by means of a finite difference method employing an appropriate

tridiagonal coefficient matrix.

Keywords: finite difference method, Sturm-Liouville eigensystem, nano-hetero-interface wave-

function

1. Introduction

The investigation of semiconductor hetero-interfaces is a prominent subject of

ongoing research in view of their crucial importance for the functionality of numerous

optoelectronic microdevices [1–6].

For more than two decades, the designing strategy of band gap engineering [7]

or, conformally, wave-function engineering has systematically yielded an admirable
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wealth of innovative semiconductor devices offering a high degree of tunability of

their optoelectronic performance.

The most celebrated pioneering microelectronic hetero-structures of the kind

have been the Bloch oscillator [8, 9], the resonant tunnelling double hetero-diode [10],

the hot electron tunnelling transistor [11], and the revolutionary LASER quantum

cascade [12, 13].

In the present paper, the principle of operation of an inter-subband, far

mid-infrared unipolar LASER action hetero-structure based on optically pumped

dual resonant tunnelling between two, both spatially and energetically depth-wise,

asymmetric quantum wells (QWs) is outlined in terms of wave-function engineering

and quantum mechanical conductivity electron vertical transport and local energetic

transition functionality.

The handling of the de Broglie wave-function problem evolves into a numerical

calculation of a Sturm-Liouville eigensystem solved by means of a finite difference

method employing an appropriate tridiagonal coefficient matrix.

2. Proposed nano-hetero-interface wave-function engineering

for inter-subband LASER functionality

The present paper aims at proposing a novel LASER action nano-hetero-

structure [14] operational principle, based on a remotely optically pumped [15, 16]

dual resonant tunnelling (OPRT) unipolar change transport mechanism that can be

materialized within the framework of two communicating quantum wells (CQWs),

asymmetric both in their spatial extension and energetic barrier height aspects,

hosting a total of five partially localised subbands: two (the fundamental If〉 and

the first excited If ′〉) on the part of the envisaged device’s front [F] QW and the

remaining three (the fundamental Ib〉, the first excited Ib′〉 and the second excited

Ib′′〉) on the other part, of the OPRT device back [B] QW. This is a band gap

engineering design meant to establish two selective energy matches, achievable by

a nanostructure’s respective growth procedure: one between the uppermost subbands

If ′〉 and Ib′′〉 of the two CQWs and the other concerning the two neighbouring QWs

innermost fundamental sublevels If〉 and Ib〉 (Figure 1).

Figure 1. Band gap engineering of the proposed OPRT LASER nano-hetero-device

The two LASER action OPRT nanodevice levels are designed to be the second

excited Ib′′〉 back [B] QW subband and the local next-lower first-excited Ib′〉 one.
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The upper OPRT LASER action level is predicted to be provided with conduc-

tivity electrons resonantly tunnelling [17, 18] into it out of its energetically matched

device front [F] QW first excited If ′〉 subband, populated through remotely ignited

optical inter-subband pumping from its local fundamental If〉, front QW, subband.

The lower OPRT nanostructure’s LASER action level is expected to be directly deliv-

ering its radiatively de-excited electrons to the local device back [B] QW, fundamental

Ib〉 subband via particularly fast longitudinal optical (LO) phonon scattering, almost

vertical in the reciprocal space and favoured by a band gap-engineered energetic prox-

imity of the entailed Ib′〉↔ Ib〉 inter-subband separation with the characteristic LO

phonon energy valid under the device’s operational conditions entailed by the [B] QW

semiconductor material.

The considered OPRT LASER nanostructure resonant microcavity functional-

ity [19–21] is further determined by the above LO phonon scattering of radiatively

down-converted conductivity electrons (from the LASER action lower level to the local

[B] QW fundamental subband) being succeeded by their recycling back to the OPRT

LASER nanostructure’s [F] QW fundamental If〉 subband by virtue of a second-reverse

sense-resonant tunnelling-mediated normal charge transport mechanism.

The rate equation modelling of the LASER action functionality of subband levels

Ib′′〉 and Ib′〉 is taken in the following form:

dNIb′′〉

dt
=
1

TFB
NIf ′〉−

1

τIb′′〉
NIb′′〉, (1)

dNIb′〉

dt
=
1

τ
NIb′′〉−

1

τIb′〉
NIb′〉, (2)

with NIf ′〉, NIb′〉 and NIb′′〉 being the sheet electron concentration of nanostructure

resonator levels If ′〉, Ib′〉 and Ib′′〉, respectively, 1

TFB
being the temporal rate of

achieving the resonant tunnelling charge transport from the [F] QW first excited

subband If ′〉 onto the energetically commensurate [B] QW second excited subband

Ib′′〉, and τIb′′〉 being the total lifetime of the upper LASER action level Ib
′′〉,

expressible by means of the combined radiative and non-radiative Ib′′〉→ Ib′〉 down-

conversion rate 1
τ
and the non-radiative direct Ib′′〉→ Ib〉 relaxation rate 1

τ
Ib′′〉→Ib〉

as

follows:
1

τIb′′〉
=
1

τ
+

1

τIb′′〉→Ib〉
, (3)

1

τ
Ib′〉
being the non-radiative, fast vertical longitudinal optical phonon scattering rate

of electrons received by the lower LASER action subband Ib′〉 to the local, [B] QW,

fundamental subband Ib〉.

Equations (1) and (2) form a system with five unknowns, namely NIc〉
(c= f ,f ′,b,b′,b′′) – the areal electron densities of the five nanostructure resonator

levels Ic〉 – along with the following equations:

dNIf〉

dt
=
1

TBF
NIb〉−

IΣ

h̄Ω
NIf〉, (4)

dNIf ′〉

dt
=
IΣ

h̄Ω
NIf〉−

1

TFB
NIf ′〉, (5)
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dNIb〉

dt
=

1

τIb′′〉→Ib〉
NIb′′〉+

1

τIb′〉
NIb′〉−

1

TBF
NIb〉, (6)

where 1

TBF
denotes the temporal rate at which the (reverse-sense) Ib〉→ If〉 resonant

electron tunnelling is effected within the CQWs, I – the optical pumping intensity, Ω

– the pumping photon cyclic frequency, and Σ – the optical absorption cross-section

exhibited by electrons initially resting upon the [F] QW fundamental subband level

If〉 to incoming pumping photons.

The aforementioned model formalism employed – based upon the rate equation

monitoring of the proposed OPRT LASER action level population evolution and

inversion – incorporates determination of the transmission coefficient [14, 17] for the

resonant tunnelling inter-QW communication mechanism’s consecutive steps.

3. Finite difference algorithm for resolving the
nano-hetero-interface wave-function eigensystem

To study the applicability of the proposed optically-pumped dual-resonant

tunnelling LASER action unipolar charge transport mechanism we have already

considered an indicative generic semiconductor nano-hetero-structure based on the

conventional AlxGa1−xAs/GaAs material system [22].

In particular, we have employed two totally asymmetric – both in their

spatial width and energetic barrier height approximately rectangular quantum wells,

communicating through an intervening barrier layer both formulated within (different

portions of) the GaAs semiconductor: the front QW [F] of spatial width of 96Å and

energetic barrier height of 221meV, contained between a surface Al0.3Ga0.7As slab

and the inter-QW communication barrier layer, and the back QW [B] of growth axis

extension of 162Å and an energetic confinement hill of 204meV, spanning the region

between the inter-QW communication barrier layer and a bottom Al0.33Ga0.67As

slab. The intervening inter-QW communication barrier layer has been regarded as

a succession of two sublayers of Al0.3GA0.7As and Al0.33Ga0.67As, of similar thickness.

The Sturm-Liouville eigenvalue system comprising the quantum mechanical

Schrödinger differential equation for the nano-hetero-interface wave-function and the

appropriate asymptotic boundary conditions is treated below according to the finite

difference method, after the employment of an independent variable transformation

restricting the integration domain to a universal dimensionless interval. The handling

of the problem evolves into numerical calculation of the eigenvectors and the respective

eigenvalues of a specific tridiagonal matrix hosting the three successions of coefficients

appearing in the kind of finite difference equations selected to convergently approach

the initial Sturm-Liouville differential equation.

With respect to the generic situation of a conductivity electron being hosted

by the quantum well (QW) of potential energy profile U(x) against the growth axis

coordinate x within a conventional semiconductor nanodevice hetero-interface, the

pertinent Schrödinger equation, concerning the electron’s de Boglie time-independent

wave-function ψ(x) and taking into account the spatial variation m∗(x) of the carrier

effective mass, reads as follows:

−
d

dx

[

h̄2

2m∗(x)

dψ(x)

dx

]

+U(x)ψ(x)=Eψ(x), (7)
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where E is the allowed energy eignevalue conjugate to each physically meaningful

wave-function ψ(x), solving Equation (7) and vanishing asymptotically at infini-

ties, i.e.

ψ(±∞)= 0 (8)

and h̄ is Planck’s action constant divided by 2π.

Performing now an independent variable transformation, namely:

x≡αx∗arctanh(ξ)↔ϕ(ξ)≡ψ[x(ξ)], (9)

we obtain, instead of Equation (7), the Sturm-Liouville differential equation:

d

dξ

[

µ(ξ)
dϕ(ξ)

dξ

]

−v(ξ)ϕ(ξ)+λσ(ξ)ϕ(ξ)= 0, (10)

under the following boundary conditions:

ϕ(−1)= 0 and ϕ(+1)=0, (11)

with functions µ(ξ), v(ξ) andσ(ξ) of the new dimensionless variable ξ (belonging to

the universal interval [−1,+1]) defined as:

µ(ξ)≡
1

α
(1−ξ2)

m0

m∗[x(ξ)]
, (12)

v(ξ)≡
2α

1−ξ2
U [x(ξ)]

E∗
, (13)

σ(ξ)≡
2α

1−ξ2
, (14)

and a new dimensionless, “reduced energy” eigenvalue λ defined as:

λ=
E

E∗
, (15)

where E∗ denotes a convenient energy scale,

E∗≡
h̄2

m0x∗2
≡ 1eV, (16)

rendering the characteristic confinement length, x∗, entering the independent variable

transformation (9) after the dimensionless scale factor α equal to 2.76043Å,mo giving

the electron rest mass.

To convert the Sturm-Liouville differential equation concerning the nano-

hetero-interface two-dimensional electron gas (2 DEG) transformed wave-function ϕ(ξ)

into a linearized system of difference equations, we employ the following numerical

approximation:

d

dξ

[

µ(ξ)
dφ(ξ)

dξ

]

→
1

k

[

µi+ 1
2

(

φi+1−φi
k

)

−µi− 1
2

(

φi−φi−1
k

)]

, (17)

in which the computational (nodal and interstitial) grid points ξn (whence fn≡ f(ξn),

with f standing for function ϕ, µ, v or σ, as the case may be) are chosen as follows:

ξi=−1+ ik (i=0,1,2,. .. ,N+1), ξi± 1
2

= ξi±
k

2
(i=0,1,2, .. .,N+1), (18)

for uniform grid spacing:

k=
1−(−1)

N+1
=
2

N+1
, (19)
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and for which the adjoining boundary conditions become, after Equations (11)

and (18):
φ0=φ(ξ0)=φ(−1)= 0, and

φN+1=φ(ξN+1)=φ

(

−1+(N+1)
2

N+1

)

=φ(+1)=0.
(20)

The Schrödinger equation eigenvalue problem is thus approximated by the following

system of difference equations:

{αiφi−1+βiφi+γiφi+1=−k
2Λφi; i=1,2,. .. ,N} (21)

or, equivalently, in the tridiagonal matrix row form:






N
∑

j=1

{[αiδi−1,j+βiδi,j+γiδi+1,j ]φj}=−k
2Λφi; i=1,2, .. . ,N







, (22)

(δi,j – the Kronecker delta), with the sets of coefficients αi, βi, γi defined as:

αi≡
µi− 1

2

σi
, γi≡

µi+ 1
2

σi
, βi≡−

(

αi+γi+
k2vi

σi

)

, i=1,2, .. .,N (23)

and Λ denoting an approximation to the exact reduced energy eigenvalue λ (see

Equation (15)), produced by the constructed numerical algorithm and expected to

converge with it more closely with the increasing number N of utilised nodal points

ξi of the computational grid.

The treatment has thus evolved into a matrix eigenvalue problem:






N
∑

j=1

{Λi,jφj}=−k
2Λφi; i=1,2,. .. ,N







(24)

with an N th order square tridiagonal matrix {(Λi,j ; j = 1,2, .. .,N); i = 1,2, .. .,N}

defined by:

Λi,j ≡αiδi−1,j+βiδi,j+γiδi+1,j . (25)

Indeed, the opposites of the eignvalues of matrix {Λi,j} divided by k
2 give Λ, the

approximations of the hetero-interface wave-function exact reduced energy eigenvalues

λ, thus computing (Equation (15)) the allowed QW 2DEG subband energies E=λE∗.

Obviously, given that the general Sturm-Liouville system (Equation (10)) may admit

an infinite sequence of eigenvalues λ, the finite succession of N eigenvalues Λ for

the algorithmic matrix {Λi,j} provides numerical approximations of only the N

lowest true reduced-energy eigenvalues λ, a slightly reduced approximation sufficiency

for the last higher order computed eigenvalues being algorithmically probable. At

the same time, the N -determined Sturm-Liouville eigenvectors |ϕ(ξ)〉 conjugate to

these numerical eigenvalues Λ unveil through transformation (Equation (9)) the

quantum-mechanically allowed wave-functions ψ(x) for the 2DEG dwelling within the

nanodevice’s hetero-interface QW and underlying the crucial optoelectronic effects

exhibited by the generic semiconductor nanostructure.

In this application, the partially localised conductivity electron eigenstates

accommodated by the couple of communicating QWs have been computed (after an

appropriate treatment of the rate equation system of Section 2) [22] to correspond
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to the energy eigenvalues E(If〉) = 32meV, E(If ′〉) = 136meV (measured within

each QW from its energetic bottom upwards) for the front QW fundamental and

first excited bound state, respectively, and E(Ib〉) = 14meV, E(Ib′〉) = 55meV,

E(Ib′′〉) = 121meV for the back QW fundamental, first-excited and second-excited

bound state, respectively.

Notably, against this predicted energy eigenvalue configuration, the fundamen-

tal back QW eigenstate Ib〉 elevated by 14meV over the back QW energetic bottom

is well aligned with the conjugate fundamental eigenstate If〉 of the front QW raised

above its QW energetic bottom by an amount corresponding to the inter-QW energetic

bottom discrepancy plus approximately the former fundamental eigenstate Ib〉 height

over its local QW bottom.

Likewise, the uppermost bound eigenstates of the two communicating QW

emerge aligned, as the difference in the height of each of them over its local QW

bottom almost cancels the energetic height asymmetry of the two QW bottoms.

Ultimately, in application [22], a LASER far mid-infrared emission OPRT

functionality in the 19µm band has been reached.

4. Conclusion

A novel principle for nano-hetero-interface inter-subband LASER functionality

has been outlined with the pertinent wave-function engineering determined through

a finite difference method algorithm concerning the entailed Sturm-Liouville eigen-

system. The synergy of the algorithm with the LASER rate equation model solution

proves satisfactory by virtue of an already treated application.
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