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Abstract: The aim of this paper is to examine the performance of an independent component

analysis algorithm based on neural networks applied to the solution of an electrical engineering

problem related to non-destructive evaluation of conductive objects. The proposed application is

assessed through computer experiments carried out on real-world data, which prove the usefulness

of this non-destructive evaluation technique.
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1. Introduction

Blind signal processing by neural networks is an emerging research field which

benefits from cross-fertilization among the scientific areas related to neurobiology,

signal processing and adaptive circuits. In fact, intelligent signal/data processing

tasks and adaptive circuits share fundamental goals with biological systems, such

as universal data processing of multiple signals, unsupervised classification and

supervised learning by examples. Thanks to these features, neural networks are

attractive candidates for intelligent multiple signal processing, as evidenced by the

recent research activity in this area.

In particular, blind source separation by the independent component analysis

(ICA) has received much attention in the recent years owing to its potential appli-

cations to intelligent multiple signal processing, as in speech recognition systems,

telecommunications, fault detection tasks, medical imaging, financial data analysis

and other important research fields [1–4]. The aim of ICA is twofold: first, to recover

unobservable independent source signals from their sensor observations by reducing

high-order statistical correlations; second, to extract independent latent variables from

structured signals by constructing few linear combinations of many measured signals

that retain the largest quantity of information.

tq308r-e/359 4XII2004 BOP s.c., http://www.bop.com.pl



360 E. Frulloni and S. Fiori

The pioneering work on ICA was carried out by Hérault and Jutten [5, 6], who

introduced an adaptive algorithm in a feedback neuromimetic multiple filter; their

approach was further developed by Cichocki and Umbehauen (see [7]). Comon [8]

developed the concept of independent component analysis and proposed a class of

cost functions termed discriminant contrasts. The contrast-based approach was fur-

ther studied by Comon, Moreau and Macchi who introduced simplified contrasts for

lepto-kurtic and plati-kurtic source signals (i.e. for signals with positive or negative

kurtosis) [9, 10]. On the basis of simplified contrast (i.e. kurtosis optimization), Car-

doso and Laheld [11] proposed an adaptive algorithm relying on the relative gradient,

which has been proven to enjoy very desirable properties, such as equivariancy and

fast convergence. In addition to these parallel algorithms, Delfosse and Loubaton [12]

proposed an approach based on a deflation procedure, whose idea has been recently

developed by Thawonmas, Cichocki and Amari, resulting in a cascade neural net-

work [13]. Some algorithms are also available for hetero-kurtic ICA, i.e. in the case

when source signals are mixed plati-kurtic and lepto-kutic signals (see [14–18] and

references therein). Some non-iterative algorithms (i.e. block learning procedures)

have also been proposed. (For an up-to-date review see e.g. the survey paper [19] and

the recent proposal by Yeredor [20].)

In parallel to such ICA studies, unsupervised learning rules based on infor-

mation theory were proposed by Linsker [21] and Plumbley [22]. Their aim was to

maximize the mutual information between the inputs and the outputs of a neural

network so that each neuron is able to encode features as statistically independent as

possible from the features extracted by other neurons. Baram and Roth [23], and Bell

and Sejnowski [24], derived stochastic gradient learning rules for this maximization

and applied them to forecasting and time-series analysis, blind separation of sources

and blind deconvolution, respectively. Girolami and Fyfe [25] employed neural ex-

ploratory projection pursuit algorithms to achieve separation. Generalized Hebbian

learning algorithms for ICA have been developed by Karhunen et al. [26], Hyvärinen

and Oja [27], and Fiori [28]. Non-conventional neural optimization techniques have

recently been applied to blind separation; worth citing as representative examples

are the mechanical-type learning algorithms of Fiori [29, 30], the purely geometri-

cal approach to be applied in the presence of uni-modal/symmetrical source density

distributions developed by Prieto et al. [31], the genetic algorithm by Yoshioka and

Omatu [32] and the EM-type algorithm for independent component analysis developed

by Welling and Weber [33].

Many experiments have been performed to illustrate the usefulness and effec-

tiveness of separating algorithms, for instance in EEG data processing (showing that

the algorithms can extract EEG activation and isolate artifacts), and in exploring in-

dependent features in natural images. Neural techniques have recently been applied

to solve electromagnetic problems (see e.g. [34–36] and references therein), and it has

been specifically proven in recent experimental research that the use of ICA enables

one to acquire additional knowledge from electromagnetic measurements [37–40].

The aim of the present paper is to examine one of the sequential approaches to

ICA, the TCA algorithm of Thawonmas, Cichocki and Amari [13], with application to

the non-destructive evaluation of metallic slabs by eddy-current testing data analysis.
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Eddy-current testing (ECT) [41, 42] is a non-destructive evaluation (NDE) technique

especially well suited for inspection of metallic objects with a probe system. The probe

is connected to a digital nano-voltmeter, capable of measuring complex-valued voltage.

Voltage change is used for defect detection and identification, with particular interest

in defect shape. When a defect is present in a slab, it is important to detect, localize

and measure the crack. However, eddy-current measurement is corrupted by the skin

effect, the lift-off disturbance and measurement noise. Prior to the development of

a flaw detection/recognition system, the measure has to be restored by featuring the

disturbance and the defect signal. In order to extract information from the measured

data, a proper signal processing algorithm based on ICA is proposed and tested on

real-world data made available by the Hungarian Academy of Sciences.

2. Independent component analysis

2.1. Signal model and independence

Let us assume that n linear mixtures x1(t),. . .,xn(t) of m (m≤n) independent
components sj(t) are observed. Let us further assume sj(t) to be unknown random

signals:

xj(t)= aj1s1(t)+aj2s2(t)+ . ..+ajmsm(t), j=1,. . .,n (1)

or, using a matrix notation:

x(t)=As(t). (2)

Note that, in general, the t variable denotes a data ordering index, such as a discrete-

time or a spatial index.

If the elements of matrix A are known, in order to extract sj it would suffice

to solve the linear equation system described by Equation (2). If matrix A is also

unknown, sj ’s appear as latent variables, which means that they are not directly

observed, and a different way has to be pursued to solve the problem. In particular,

independent component analysis (ICA) allows one to calculate sj(t) and the mixing

matrix A from the observed signals x1(t),. . .,xn(t) only under fair conditions.

The main hypotheses about the signal model are: (1) each sj(t) is an inde-

pendent, identically distributed (IID), stationary, random process; (2) sj(t)’s are sta-

tistically independent at any time; (3) at most one among the source signals has

a Gaussian distribution; (4) A is a constant, real-valued, full-rank matrix. The basic

ICA theory shows that, under the above conditions, the sources may be recovered up

to arbitrary scaling and permutation [8].

An interesting example to explain the blind separation problem is the “cocktail

party” scenario [24]. Let us imagine m people standing in a room and talking. If the

room is equipped with n microphones, each sensor receives a different superposition

of the speech signal uttered by each person in the room, so that the set of received

signals may be described by model (2), where matrix A describes the geometry of

“emitters” and the sensor and pressure wave propagation phenomena. The aim is

to recover, from sensor observation only, single independent signals uttered by the

people. This is a source separation problem in that we know that there exist some

sources which physically emit some signals that impinge on an array of sensors.

The idea behind latent variable extraction is quite different: given a multivariate

signal having complex structure, the aim is to construct a set of signals (latent
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variables) endowed with special features whose linear superposition described by (2)

gives the observed signals. Latent variables may have no recognizable physical meaning

and we require they have the special feature to be as statistically independent as

possible. An example to clarify the concept of latent variables extraction is the analysis

of vibrating machines [43]. Let us suppose that a rotating pump under fault test is

equipped with a number of accelerometers that measure its vibration amplitudes

versus time. We know that the recorded accelerometer signals are originated by

a large number of small vibrating parts. Seeking for a compact representation of the

measured data by the ICA technique, the obtained basis of independent signals are

(complex) vibration-signals pertaining to a small number of virtual oscillators whose

linear superpositions generate the observed data. The classification of vibration modes

of these virtual oscillators leads to an effective fault-detection technique.

Although in the above examples we have started from two different perspectives,

the assumed signal model is the same and, thus, the solution is the same. Independent

component analysis provides an interesting and effective solution to such problems.

ICA is based on the concept of independence. Two random variables, y1 and

y2, are termed statistically independent if the knowledge of the value of one of them

does not help us in any way to know the value of the other. From this property we

can also derive the following relation:

E{h1(y1)h2(y2)}=E{h1(y1)}E{h2(y2)}, (3)

where h1 and h2 are generic functions and E{·} denotes statistical expectation. This
relation is stronger than the un-correlation between variables expressed as:

E{y1y2}−E{y1}E{y2}=0. (4)

Figure 1. Comparison between the density function of Gaussian and Laplacean distributions
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To perform ICA statistical independence of signals is necessary (for them to

be extracted) and, from the distribution point of view, their non-Gaussianity. To

illustrate the non-Gaussianity aspect, we refer the reader to the example used by

Hyvärinen and Oja in [44]; in Figure 1 the density function of a Gaussian distribution:

p(y)=
1√
2π
exp

(

−y
2

2

)

, (5)

and that of a Laplacean (i.e. super-Gaussian) distribution:

p(y)=
1√
2
exp
(

−
√
2|y|
)

, (6)

are compared, both normalized to unit variance.

A classical measure of non-Gaussianity is the kurtosis or fourth-order cumulant,

defined for a random variable y as:

kurtosis(y)=E{y4}−3(E{y2})2. (7)

From this definition we derive the following properties:

kurtosis(y1+y2)= kurtosis(y1)+kurtosis(y2),

kurtosis(ay)= a4kurtosis(y),
(8)

for any pair of independent signals, y1(t)∈ IR, y2(t)∈ IR, and for any constant a∈ IR.
The value of the kurtosis gives rise to a signal classification. It is:

– positive if the distribution is super-Gaussian,

– negative if the distribution is sub-Gaussian,

– zero for a Gaussian distribution.

Kurtosis’ response to signal Gaussianity does not change if we consider its

normalized form:

kurtosis(y)=
E{y4}
(E{y2})2 −3. (9)

In this case the properties described in Equation (8) are recast in the following form:

kurtosis(y1+y2)= kurtosis(y1)+kurtosis(y2),

kurtosis(ay)= kurtosis(y).
(10)

2.2. Independent component analysis with a cascade neural

network

Many algorithms based on neural networks have been developed to perform

independent component analysis. Thawonmas, Cichocki and Amari have proposed

in [13] the use of a cascade neural network giving rise to a separation procedure

hereafter referred to as a TCA algorithm. An exemplary schema of such a network

with five different input signals is show in Figure 2. We can assume without a loss

of generality to have a zero-mean random vector x = [x11(t), .. . ,x15(t)]
T of unit

covariance at the input.

The algorithm will work so that the extraction unit shown in Figure 2 will

evolve, in the value of (w1, .. . ,w5), until one of sk’s will be extracted. This means

having y1(t)=±csk(t), with c∈ IR+. At this point a deflation process will take place
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Figure 2. Cascade neural network described in [13] (the case with five input signals)

in order to obtain a new vector, [x21(t),. . .,x25(t)]
T , of signals that are linear mixtures

of components not yet extracted. New extraction and deflation units will follow until

the last independent component has been extracted.

It is important to underline that, in general, the observed signals do not meet

all the above conditions. However, it is always possible to remove the first- and

second-order statistics from the observations in order to make them zero-mean and

uncorrelated, as explained in the following section.

The TCA algorithm is based on minimization with respect to weight, wk, of

the normalized cost function:

J (wk)=
1

4
βkurtosis(yk), (11)

where:

β=

{

+1 for extraction of a source signal with negative kurtosis
−1 for extraction of a source signal with positive kurtosis

This determines the law for the evolution of weight, wk, during the extraction process

to be [13] as follows:

dwk

dt
=−µk(t)

[

E{yk(t)4}
E{yk(t)2}3

][

yk(t)−
E{yk(t)2}
E{yk(t)4}

y3k(t)

]

xk(t). (12)

It is important to note that the sign of the kurtoses of the independent signals to be

extracted is unknown, therefore the algorithm estimates it on the basis of the current

source estimation provided by the neuron. The above learning rule incorporates such

a sign estimation technique.

In the above learning equation, µk(t) is a time-dependent learning rate of the

following expression:

µk(t)=µ1 exp

[

log

(

µ2

µ1

)

t

Tmax

]

(13)

of the shape shown in Figure 3.
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Figure 3. Learning rate µk(t)

As can be seen from Equation (13), the learning rate is completely defined once

the value of µ1 and µ2 have been chosen. The influence of these two parameters on

the behavior of µk(t) is presented in Figures 4 and 5. The Tmax quantity denotes the

maximum temporal abscissa of the signal.

The learning Equation (12) enables the kth neuron to extract an independent

component from the residual mixture xk(t), which is obtained by deflating the residual

mixture xk−1(t) from the (k−1)th independent component, where, x1(t) by convention
coincides with the original observations. We can formally define the xk(t) sequence as:

x1(t)=x(t),

xk+1(t)=xk(t)−w̃kyk(t), k≥ 1.
(14)

The w̃k(t) vector is termed a “signature” of the extracted source and should coincide

with one of the columns of the mixing matrix A, up to a scale factor and a possible

sign switch. The signature vector may be computed on the basis of simple least-mean-

square produces described in [13].

2.3. TCA algorithm tested on images

In a way similar to that presented in [13], the behavior of the cascade

neural network proposed by Thawonmas, Cichocki and Amari has been investigated

with respect to image extraction from mixed combinations. The TCA algorithm’s

performance has been assessed for the case of a number of mixtures equal to the

number of independent components. These experiments were performed in order to

examine the TCA algorithm’s performance on a synthetic problem and to validate the

learning-rate decaying-scheme in order to find suitable learning values µ1 and µ2 for

the subsequent ECT/NDE data processing.
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Figure 4. Impact of µ1 variation on µ(t) (µ2=0.001)

Figure 5. Impact of µ2 variation on µ(t) (µ1=0.5)

Images presented in Figure 6 have been used for the test. The five original

images are 100×100 gray-level pictures with both negative and positives kurtoses
of the following normalized values: −1.67, 1.98, −0.84, −0.78 and 0.4. Five linear
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mixtures were generated from the original images (see Figure 6) by multiplying the

source signal vector s by the randomly generated mixing matrix A:

A=











0.9003 0.5242 0.2309 −0.1886 −0.8842
−0.5377 −0.0871 0.5839 0.8709 −0.2943
0.2137 −0.9630 0.8436 0.8338 0.6263
−0.0280 0.6248 0.4764 −0.1795 −0.9803
0.7826 −0.1106 −0.6475 0.7873 −0.7222











The obtained mixed signal vector, x(t) = [x1(t), . .. ,x5(t)]
T , was then pre-processed

before inputting into the neural network. It was first centered by subtracting its

mean value:

xc=x−E{x}. (15)

The resulting vector-stream is then whitened, i.e. a new vector, xwc , is obtained from

xc (with a linear transformation) whose components are uncorrelated and have unit

variance. To perform whitening, we used the method based on eigenvalue decomposi-

tion (EVD). Starting from an eigenvector matrix E and a diagonal eigenvalue matrix

D of E{xcxTc }, asymmetric whitening is performed by:

xwc =D
−1/2ETxc, (16)

where D−1/2=diag
(

d
−1/2
1 ,. . .,d

−1/2
n

)

.

The pre-whitening has the effect of making the data better conditioned for the

processing phase that follows and accelerating the network learning phase [1]. Once

centered and whitened, the signal is processed using the TCA algorithm. Figure 6

shows the original, mixed and extracted images. These results pertain to the values

of:
{

µ1=0.5,
µ2=0.001.

(17)

The influence of the values of µ1 and µ2 on the performance of the algorithm was

tested within the range [0.0001,0.1] for µ2 and [0.25,0.75] for µ1 (see Figures 4 and 5).

We found a stronger dependency of the results on the value of µ2, with respect to

the influence of parameter µ1, that had no influence. The best results were found, on

average, using the pair of values of Equation (17) (see Figure 7).

3. Application to non-destructive evaluation problem

The physical phenomenon of eddy-currents is used as the basis for a non-

destructive evaluation (NDE) technique usually referred to as eddy-current testing

(ECT) to inspect metal parts. The technique is based on measurement of the

impedance of a coil situated close to the surface to be inspected. The coil is driven by

a sinusoidal current of a few mA of amplitude, with a frequency of less than 100kHz,

and is moved along the part’s surface. The impedance of the circuit depends on the

interaction of the metallic part under inspection with the magnetic field generated

by the inductor. The presence of a crack on the surface or inside the metal causes

a variation of the probe’s resistance and inductance.

For instance, for a small spherical (point) void defect, the relationship between

the differential impedance measured at a point of the specimen’s accessible surface

and the location of the imperfection has been derived by Prince and Hildebrand [45]
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ORIGINAL IMAGES MIXED IMAGES EXTRACTED IMAGES

Figure 6. Computer simulation results for a mixture of image signals:

original, mixed and extracted images (set of test images used in [16])

under the assumption that the probe is axially symmetric, driven with a sinusoidal

current of constant amplitude, I, and angular frequency, ω, and that the metal is

non-magnetic. Basic electromagnetic considerations suggest that the probe response,

described by the value of its impedance change ∆Z, reads:

∆Z =− 1
I2

∫

Vd

ETi Jddv, (18)

where Ei is the incident electric field, Vd is the defect volume, and Jd is the
volume-current in the defect, which may be written as Jd =−σEd, with Ed being
the electric field in the defect volume and σ representing the metal specimen’s

conductivity. When the defect has a diameter much smaller than the wavelength

λ, it can be analytically shown that Ed = 1.5Ei, where Ei remains constant within

the defect’s volume. The complex incident electric field may be computed quite

easily in this ideal setting and, after the electrical and magnetic properties of

the metal are specified, the Prince-Hildebrand model allows one to compute the

differential impedance, ∆Z(xp,yp,xd,yd,zd), when the probe is located at (xp,yp)
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(a) (b) (c)

Figure 7. Sets of images extracted using different values of µ2 in the neural network’s settings:

(a) µ2=0.0001, (b) µ2=0.001, (c) µ2=0.1; µ1=0.5 set for all runs

on the accessible specimen’s surface and the defect is in (xd,yd,zd). An exemplary

theoretical differential impedance profile is depicted in Figure 8.

Eddy-current measurements are corrupted by the skin effect, lift-off noise due

to the mechanical system and uncorrelated noise, and practical set-up measurement

systems often display rather low signal-to-noise ratio values. Independent compo-

nent analysis can be used in order to extract the component due to the defect

from the measured signal, thus improving the signal-to-noise ratio for subsequent

processing.

In order to better understand eddy-current test results, the MANODET

(MAgnetic NOn DEstructive Testing) project was started in 1998. The project has

been based on international collaboration of Universities. The Technical University

of Budapest has built the probe and carried out the measurements. The obtained

data have been distributed to other Universities to be analyzed. The tested specimen

consists of a square INCONEL plate (80×80×1.25mm) with a rectangular thin crac
in the center (0.2mm thick, 9mm long, 0.25mm deep); a schema of the specimen is

shown in Figure 9.
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Figure 8. Exemplary differential impedance profile. In the example, the defect is located

in (20,20)mm at a depth of 2mm

From the inspection point of view, the crack can be a surface, outer defect

(OD), or a hidden, inner defect (ID). The inspected area consists of a square region

of 40×40mm around the crack.
Figures 10 and 11 present measurements results in the case of an inner and an

outer defect, respectively. The values refer to the magnitude and phase of the ECT-

NDE complex signal. In order to carry out the signal restoration task, we have used

a source-separation model. Our basic assumption has been that the measured signal

is a linear superposition of two (complex-valued) signals: one due to the defect and

the other coming from the lift-off noise and other disturbances. To perform an ICA,

we have assumed that the real and imaginary parts of the involved signals interact

in an additive way, and that the defect-signal and the disturbances are mutually

statistically independent. The input signal to the neural network is then obtained as:

x=







|VID|cos[arg(V )ID]
|VOD|cos[arg(V )OD]
|VID|sin[arg(V )ID]
|VOD|sin[arg(V )OD]






. (19)

The algorithm was also run with the validated parameter values of µ1 = 0.5, µ2 =

0.001. The four components extracted by the TCA neural network are show in Fig-

ure 12. One can see from Figure 12 that the algorithm has been able to separate the

component due to the defect from the lift-off signal. Furthermore, the obtained com-

ponent for the defect shows a good signal-to-background-noise ratio (see Figures 13

and 14).
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Figure 9. Schematic of the tested specimen for the ECT problem under investigation

The achieved separation between the defect signal and the background/lift-off

disturbances would allow subsequent data processing enabling the ECT system to

locate, describe and classify the crack in the material.

4. Conclusion

The behavior of the TCA algorithm of Thawonmas, Cichocki and Amari [13],

based on a cascade neural network, has been considered within the independent

component analysis scenario. Using images in a way similar to that of [13], the

performance of the algorithm has been investigated in the case of the number of

available signals equal to the number of independent components to be extracted.

The influence of the learning parameters on the algorithm’s performance has also

been studied in order to find the best setting for the neural network. Furthermore,

the TCA algorithm has been applied to the ECT-NDE data belonging to theMANODET

project in order to separate the signal due to the presence of a defect from spurious

components. The obtained results are satisfactory, as the algorithm has been able to

point out the latent component relative to the presence of the defect with respect to

the signal due to lift-off. The component extracted for the defect additionally shows

a good ratio between the signal and the background-noise.
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Figure 10. Magnitude and phase of a ECT-NDE signal for an inner defect (ID);

two different views

Figure 11. Magnitude and phase of a ECT-NDE signal for an outer defect (OD);

two different views
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Figure 12. Estimated latent variables in the NDE problem as extracted by the TCA algorithm

Figure 13. Estimated latent variable in the NDE problem corresponding to the defect signal
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Figure 14. Different views of the component due to the defect
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