
TASK QUARTERLY 8 No 3 (2004), 333–358

A METHOD TO BUILD

NETWORK-OF-QUEUES-BASED SIMULATORS

FOR COMMUNICATION SYSTEMS

LEONARDO PASINI AND SANDRO FELIZIANI

Department of Mathematics and Computer Science, University of Camerino,

via Madonna delle Carceri, 62032 Camerino, Macerata, Italy

{leonardo.pasini, sandro.feliziani}@unicam.it

(Received 7 May 2004; revised manuscript received 7 June 2004)

Abstract: In this study we build a library of new object types whose architecture is based on models

of networks-of-queues to simulate communication networks. We also define a class of procedures to

automatically generate a simulator of a generic communication network described by the library’s

objects.

Keywords: queuing systems, computer simulation, communication systems

1. Introduction

The context of this study is performance evaluation of communication networks.

In particular, we develop a technique to create a model of a communication network

with the use of devices functioning as a network-of-queues model. Therefore, dis-

crete events simulation is the technique that we have applied to evaluate performance

of the communication network model to be examined. Particularly, we started from

Fdida and Pujolle’s [1] concepts on models of communication protocols concerning

connections. We then built a library of objects to represent the functioning of a com-

munication network bearing in mind the first three levels of the ISO (International

Standards Organization) model.

In this study we present a class of procedures to automatically generate

a simulator of a generic communication network described by the library objects. We

also illustrate the way a specific communication network is unequivocally associated

with the description file of the network. This file is given as an input file of

the procedure that generates the simulator of the communication network to be

examined. The functioning of the simulator allows us to verify and optimise the

protocol behaviour according to different network types. We conclude the paper with

a case study.

The programming context is QNAP2 V9.3 [2].

tq308q-g/333 4XII2004 BOP s.c., http://www.bop.com.pl

334 L. Pasini and S. Feliziani

Figure 1. Modular host representation

2. Context

The communication systems we analyse are based on a communication protocol

with acknowledgement. Specifically, we use a modular host representation as shown

in Figure 1.

This representation has three levels: the user, the protocol and the network

access component.

We contemplate a generic communication system that can be simulated with

a finite number of hosts, connected by means of routers and half-duplex and full-

duplex communication channels. The representation methodology of this system class

is based on the following object set, of which the first level description is offered.

Each object will then be translated into a model based on networks of queues

and customers in Section 2. In this way a library of QNAP2 object types will be built.

Flow

A flow locates a source host and a destination host within a communication

network. It will be characterized by the path that connects the source host to the

destination host. The flow path is the sequence of routers and channels crossed by the

packet flow. In this context, a data flow is characterized by the data rate of the source

host. Each flow of data in the network is associated with a flow of acknowledgments

from the destination host to the data source host.

Packets

They represent the system’s users. A packet’s length, expressed in bytes,

depends on the information typology it stands for. In the present context, a packet

corresponds to one of the following types: information, data or ack. Data are

generated by a source and are routed to the queue that represents the protocol

management level within the host. Information packets represent messages with actual

information interchanged by hosts. Ack packets are messages acknowledging receipt

tq308q-g/334 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 335

of an information packet. Packets are shaped according to a model so as to have two

fields specifying the flow they belong to and their length.

Host

This device constitutes a centre of generation and transfer of packets in the

network as well as reception and processing of packets incoming from the network.

A host contains a source to generate packet flows and, at the same time, can be

a recipient of packet flows in the network. It has a specific processing capability, as

it contains an internal service device, labelled the protocol, to process packets in two

service modalities, viz. transmission and reception. Additionally, each host checks

the flow of packets to be sent to the network. These devices are connected to the

network though a communication channel of bandwidths different for transmission

and reception.

Routers

These service devices can receive packets directly from hosts or other routers

connected by specific transmission channels. Incoming packets are processed by an

internal service device in a period of time that depends on the router’s processing fre-

quency. Packets are routed to outgoing transmission channels according to a criterion

based on acknowledgment of the destination host.

Connection lines between host and router

These devices constitute service centres that simulate the physical transmission

of packets from the host network board to the router interface.

Connection lines between router and router

These devices constitute service centres that simulate the physical transmission

of packets from one router to another.

3. The object library

In this section, the above-described objects are introduced into a network-of-

queues model to simulate their functioning. When applying such a model, we define

a new type of data within a QNAP2 programming context for each object of Section 2,

so as to implement a new object library based on queues that can be used to simulate

a generic communication network.

3.1. Definition of the object flow

While implementing a communication network model, each host within the

system will be assigned to an unequivocal identifier determined by an integer number.

This allows considering two integer member variables within each IDSH and IDDH flow.

These variables identify the source host and the destination host of the flow. In the

communication network, the integer member variables ID and IDA are unequivocal

identifiers of the flow and the corresponding acknowledgement flow, respectively. The

integer member variable LE indicates the length of packets of the flow. The real

variable IA indicates the mean time between arrivals of two data packets of the flow

of the source of the generating host.

tq308q-g/335 4XII2004 BOP s.c., http://www.bop.com.pl

336 L. Pasini and S. Feliziani

The QNAP2 code to define the object flow is given below. For each router crossed

by the flow, the ROUTABLE array specifies the identifier of either the router or the

following host in the path:

OBJECT FLOW(ID);

INTEGER ID, IDA;

INTEGER IDSH, IDDH;

INTEGER LE;

INTEGER ROUTABLE(NROUTER,1);

REAL IA;

END;

3.2. Definition of the object packet

Packets are the system’s users. CUSTOMER is a pre-defined variable type in

QNAP2. The PACKET variable type will therefore be defined as a CUSTOMER subtype

containing some additional member variables. Packets can belong to three different

typologies, according to the value of the string member variable TYP:

• data indicates that the packet has been generated by the user application,

• info indicates that the packet has to be processed by the host protocol and

afterwards transmitted to the network,

• ack indicates that the packet is a host reply to an info packet received by

a sender host.

When a packet originates inside a host, it is assigned to a determinate data

flow, which it maintains until it gets to the destination host. Here, once it has been

processed, it is assigned to the corresponding acknowledgement flow and sent back

into the network. An integer member variable, IDF, identifies the flow the packet

belongs to. Besides, there are two integer member variables, IDSH and IDDH, that

identify the packet’s source and destination hosts, respectively. These variables are

employed if the system representation does not use the object flow type.

The QNAP2 code to define the object packet is as follows:

CUSTOMER OBJECT PACKET;

STRING TYP;

INTEGER IDF;

INTEGER IDSH, IDDH;

END;

In the present programming context, CLASS is a pre-defined variable type used

to subdivide users into classes and specify different service modalities for the user

classes within the service devices. We will therefore define two user classes with the

following instruction:

CLASS EMISSION, RECEPT;

EMISSION and RECEPT indicate the two transit modalities of packets within

the host system.

3.3. Definition of the object host

The network-of-queues model simulating the functioning of the host is shown

in Figure 2.

This architecture shows the following internal queue stations:

tq308q-g/336 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 337

Figure 2. Host queuing model

• User: this queue is a source that generates data type packets ascribing to each

packets its destination in the network. With reference to Figure 1, it generates

the flow from the user-application level of the host to the communication

network.

• Control: this queue is the service device within which packets send their access

requests to the protocol queue, a device where access is limited to a finite

number of users. If the protocol device is busy, packets are kept in the control

queue.

• Window: this queue manages access requests to the protocol device originating

from packets in the control queue. It is a semaphore and can assign aWIN SIZE

maximum number of access rights to packets that simultaneously request access

to the protocol device. When access rights to the protocol have been exhausted,

the following request is kept in the window queue and the packet that sent it

is kept in the control queue. Packets that leave the protocol device free their

access rights, which are then re-assigned by window.

• Protocol: this queue implements a service device that serves packets according

to their class. The service algorithm of EMISSION classed packets, which

are generated by the user-application level of the host, is described by the

PROTOCOL EMI procedure. The service algorithm of RECEPT classed packets,

arriving at the host from the network, is described by the PROTOCOL REC

procedure.

tq308q-g/337 4XII2004 BOP s.c., http://www.bop.com.pl

338 L. Pasini and S. Feliziani

• Access E: this queue simulates the connection device to the output commu-

nication channel of the host towards the network. The service algorithm of this

queue’s packets is described by the ACC EMI procedure. The LINE CAP pa-

rameter simulates the bandwidth supported by the emission device connected

to the network.

• Access R: this queue simulates the connection device to the input commu-

nication channel of the host from the network. The service algorithm of this

queue’s packets is described by the ACC REC procedure. The REC CAP pa-

rameter simulates the bandwidth supported by the reception device connected

to the network.

The following QNAP2 code defines of a new object type host that implements

the architecture shown in Figure 2.

OBJECT HOST(ID,HFN);

QUEUE USER,CONTROL,PROTOCOL;

QUEUE ACCESS E,ACCESS R,WINDOW,TIMER;

REF QUEUE NETWORK;

INTEGER HFN;

INTEGER HF(HFN);

REAL HFP(HFN);

INTEGER ID;

INTEGER ID R;

INTEGER WIN SIZE;

INTEGER LI,LA;

REAL T ARR;

REAL T EMI I,T EMI A;

REAL T REC I,T REC A;

REAL TIME OUT;

REF PACKET RP;

END;

Figure 2 shows the queues that are member variables of each host. We will

afterwards describe the general functioning of service devices built on these variables

by using template stations, which are procedures typical for this programming context.

In a network model to be simulated, the integer variables ID and ID R are

unequivocal identifiers of a host object and the router object it is connected to.

We have supposed that each host in our model structure is connected to

a network access router.

The real T ARR variable indicates the time between arrivals of two packets in

the flow generated by the user queue. The integer variables LI and LA are the length

of packets of the info and ack types, expressed in bytes.

WIN SIZE is the dimension of the window that controls access to the protocol

queue, while TIME OUT is the time interval after which a packet for which the

corresponding ack has not been received is re-transmitted.

T EMI I and T REC I are, respectively, the internal emission and reception

process times for packets of the info type, while T EMI A and T REC A are the

corresponding values for packets of the ack type.

NETWORK is a queue pointer that represents the connection between host and

router.

tq308q-g/338 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 339

Let’s now define, by means of template stations, the functioning of the host’s

internal devices that generate the packets flow and route it to the protocol queue.

/STATION/

NAME = *HOST.USER;

TYPE = SOURCE;

SERVICE = BEGIN

RP:=NEW(PACKET);

RP.IDF:=DISCRETE(HF,HFP);

RP.TYP:="data";

EXP(TIME ARR);

TRANSIT(RP,CONTROL,EMISSION);

END;

TRANSIT = OUT;

/STATION/

NAME = *HOST.CONTROL;

SERVICE = P(WINDOW);

TRANSIT = PROTOCOL;

/STATION/

NAME = *HOST.WINDOW;

TYPE = SEMAPHORE,MULTIPLE(WIN SIZE);

The DISCRETE function used in the service algorithm of the source returns

a flow index among those contained in the HF array according to the HFP prob-

abilities. Thus, each packet generated by the source is assigned to one of the flows

generated inside the host. The TIME ARR service time must be calculated as the time

between arrivals of two packets in the process resulting from the superposition of the

single flows generated by the host.

The P procedure in the control queue forces the present customer to request

an access right to the window semaphore queue.

The service devices built on the protocol and timer queues of a generic host are

defined by the following procedures.

/STATION/

NAME = *HOST.PROTOCOL;

SCHED = PRIOR;

SERVICE(EMISSION) = PROTOCOL EMI(T EMI I,T EMI A);

SERVICE(RECEPT) = PROTOCOL REC(T REC I,T REC A);

TRANSIT = OUT;

/STATION/

NAME = *HOST.TIMER;

SERVICE = BEGIN

CST(TIME OUT);

TYP:="data";

TRANSIT(PROTOCOL,EMISSION,1);

END;

TRANSIT=OUT;

The internal service procedures for the customer classes EMISSION and RECEPT

are PROTOCOL EMI and PROTOCOL REC, respectively.

PROCEDURE PROTOCOL EMI(TEI,TEA);

REAL TEI,TEA;

BEGIN

WITH CUSTOMER::PACKET DO

IF TYP="data" THEN BEGIN

tq308q-g/339 4XII2004 BOP s.c., http://www.bop.com.pl

340 L. Pasini and S. Feliziani

TYP:="info";

EXP(TEI);

COPY P(NEW(PACKET),CUSTOMER::PACKET.IDF);

TRANSIT(HOST.ACCESS E);

END ELSE BEGIN

EXP(TEA);

TRANSIT(HOST.ACCESS E);

END;

END;

This service procedure calls the following COPY P procedure to send a copy of

the packet outgoing from the Timer queue to simulate the management of transmission

errors.

PROCEDURE COPY P(RP,I);

REF PACKET RP;

INTEGER I;

BEGIN

RP.IDF:=I;

TRANSIT(RP,HOST.TIMER);

END;

The service procedure PROTOCOL EMI identifies packets of the data type

generated by the host’s internal source, submits them to a process mean time T EMI I

and changes their type into info. It then uses the COPY P procedure to send a copy

of the packet to the host’s timer queue and moves the packet to the host’s ACCESS E

queue for transmission to the network. After a process mean time T EMI A the ack

packets are sent to the ACCESS E queue.

PROCEDURE PROTOCOL REC(TRI,TRA);

REAL TRI,TRA;

BEGIN

WITH CUSTOMER::PACKET DO

IF TYP="info" THEN BEGIN

TYP:="ack";

IDF:=FLOW#(CUSTOMER::PACKET.IDF).IDA;

EXP(TRI);

TRANSIT(HOST.PROTOCOL,EMISSION);

END ELSE BEGIN

EXP(TRA);

IF HOST.TIMER.FIRST<> NIL THEN BEGIN

TRANSIT(HOST.TIMER.FIRST,OUT);

V(HOST.WINDOW);

END;

TRANSIT(OUT);

END;

END;

The service procedure PROTOCOL REC identifies the packets of the info type

incoming from the network. In this case, the packet type is transformed into ack and

its flow identifier is assigned the corresponding ack flow identifier. After a process

mean time T REC I the packet is re-sent to the protocol queue with the EMISSION

class and the ack type. If the in-service packet’s type is not info, the PROTOCOL REC

procedure identifies an incoming packet of the ack type. In such a case, after a process

mean time T REC A the procedure controls the timer queue status. If this queue is

tq308q-g/340 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 341

not empty, the first customer is removed. Then the V procedure returns an access

right to the window semaphore queue.

Let us now define, with reference to Figure 2, the functioning of the two host

internal devices, ACCESS E and ACCESS R.

The ACCESS E queue represents the physical connection of the host to the

network in the emission modality towards the router it is connected to. Using the

definition of the template station of this queue, for a generic host, the following

QNAP2 code is obtained.

/STATION/

NAME = *HOST.ACCESS E;

SERVICE = ACC EMI(LI,LA);

TRANSIT=NETWORK;

The service procedure for packets inside this queue is described by the following

ACC EMI(LI,LA) procedure:

PROCEDURE ACC EMI(LENGTH I,LENGTH A);

INTEGER LENGTH I,LENGTH A,LENGHT;

BEGIN

WITH CUSTOMER::PACKET DO

IF TYP = "info" THEN LENGTH:= LENGTH I

ELSE LENGTH:= LENGTH A;

EXP((LENGTH*8)/LINE CAP);

END;

The above service procedure controls the typology of each in-service packet,

assigning an appropriate value in bytes to its length. Then, the procedure simulates

the transmission time of the packet assigning a service mean time that corresponds

to (LENGTH*8)/LINE CAP. LINE CAP indicates the available transmission band

expressed in bpms. At the end of its service a packet is routed in the NETWORK

towards the input queue of the router the host is connected to.

At the same time, the ACCESS R queue represents the physical connection of

the host to the network in the reception modality from the router it is connected to.

Using the definition of the template station of this new queue, for a generic host, the

following QNAP2 code is obtained:

/STATION/

NAME = *HOST.ACCESS R;

SERVICE = ACC REC(LI,LA);

TRANSIT=PROTOCOL;

The service procedure for packets inside this queue is described by the following

ACC REC(LI,LA) procedure:

PROCEDURE ACC REC(RLENGTHI,RLENGTHA);

INTEGER RLENGTHI,RLENGTHA,LENGHT;

BEGIN

WITH CUSTOMER::PACKET DO

IF TYP = "info" THEN LENGTH:= RLENGTHI

ELSE LENGTH:= RLENGTHA;

EXP((LENGTH*8)/REC CAP);

END;

This service procedure also controls the packet’s typology and assigns a proper

value to its length. Then the procedure simulates the incoming reception time

tq308q-g/341 4XII2004 BOP s.c., http://www.bop.com.pl

342 L. Pasini and S. Feliziani

of the packet in the host assigning a service mean time that corresponds to

(LENGTH*8)/REC CAP. REC CAP represents the host’s incoming bandwidth, avail-

able from the network, expressed in bpms. At the end of its service, the host’s incoming

packet is routed towards the host’s protocol queue with the RECEPT incoming class.

3.4. Definition of the object router

The network-of-queues model simulating the functioning of the router is shown

in Figure 3.

Its architecture includes a single server internal queue CPU, defined by a RATE

variable expressed in bpms, that can process packets in transit.

In the service device of the CPU a not-null probability of packets getting lost

is assumed, represented by a P ERR internal variable.

An unequivocally determined identification number, ID, is associated with

a generic router of the network. The router’s architecture includes NCR channels

communicating with the other routers of the network it is connected to and NCH

channels communicating with the hosts it is connected to at the same time.

Each router receives packets coming from a connection channel to another

router or a host. Each incoming packet belongs to a specific flow and is put in the

queue of the CPU internal device to be processed. Outgoing packets from the router

CPU are routed following the instruction of the routing table of the flow they belong

to.

Figure 3. Router queuing model

The following QNAP2 code defines of the new router object type implemented

by the architecture shown in Figure 3.

OBJECT ROUTER(ID,NCR,NCH);

INTEGER ID, NCR, NCH;

INTEGER CH(NCH);

QUEUE CPU;

REF QUEUE S(NCH);

REF QUEUE INSTR(NCR);

REAL PROB(NCR);

REAL RATE;

REAL P ERR;

END;

The integer variable NCH indicates the number of hosts directly connected to

the router in the network. CH is an array of integers containing NCH identifiers related

tq308q-g/342 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 343

to the hosts which are directly connected to the router. The internal variable S(NCH)

is an array of NCH queue pointers. When a router is created, each pointer will be

assigned to the queue of the channel that connects the router to a host.

Similarly, the integer variable NCR indicates the number of routers connected

to the router instance in the network. The internal variable INSTR(NCR) is an array

of NCR queue pointers. When a router is created, each pointer will be assigned to

the queue of the channel that connects the router to another router. PROB(NCR) is

an array for probabilities of routing to connected routers, used only when the system

implements a probabilistic routing in the network.

The following QNAP2 code defines the procedure describing the functioning of

the CPU internal queue:

/STATION/

NAME = *ROUTER.CPU;

SCHED = FIFO,PRIOR;

SERVICE = BEGIN

WITH CUSTOMER::PACKET DO BEGIN

EXP((FLOW#(IDF).LE*8)/RATE);

IF DRAW(1-P ERR) THEN BEGIN

IF ISTPR THEN

TRANSIT(S(FLOW#(IDF).ROUTABLE(ID,1)),RECEPT))

ELSE TRANSIT(INSTR(FLOW#(IDF).ROUTABLE(ID,1));

END;

END;

END;

TRANSIT = OUT;

The service algorithm of the CPU code recognises the flow an in-service packet

belongs to and its length in bytes, and assigns the packet a service mean time inversely

proportional to the server speed expressed in bpms. The algorithm allows for an error

probability, P ERR, so that the packet is eliminated through the TRANSIT parameter

of the station. If the packet is not eliminated, the ISTPR function is called to determine

the type of outgoing routing from the router’s CPU. The ISTPR function checks if the

destination host of the flow the packet belongs to is directly connected to the router.

When that is the case, the packet is routed to the host’s ACCESS R queue. The

routing is obtained through the transit procedure using indexes memorised in the

flow’s routing table. If the destination host of the flow is not directly connected to the

router, routing takes place in the queue of the connection channel of the next router

on the path of the relevant in-service packet’s flow.

The code that defines the ISTPR function is as follows:

BOOLEAN FUNCTION ISTPR;

INTEGER I;

REF ROUTER RR;

REF FLOW RF;

BEGIN

RR:=INCLUDIN(QUEUE)::ROUTER;

RF:=FLOW#(CUSTOMER::PACKET.IDF);

WHILE ((I<RR.NCH) AND (RESULT=FALSE)) DO BEGIN

I:=I+1;

IF (RF.IDDH=RR.CH(I)) THEN RESULT:=TRUE;

END;

END;

tq308q-g/343 4XII2004 BOP s.c., http://www.bop.com.pl

344 L. Pasini and S. Feliziani

As an alternative, if the communication system implements probabilistic rout-

ing, the service algorithm of the CPU queue is modified, as – in such case – packets

which are not aimed at a host directly connected to the router are routed to the NCR

outgoing RR lines according to probabilities PROB(NCR).

The definition of the CPU’s functioning in the case of probabilistic routing of

packets outgoing from routers is as follows:

/STATION/

NAME = *ROUTER.CPU;

SCHED = FIFO,PRIOR;

SERVICE = BEGIN

WITH CUSTOMER::PACKET DO

BEGIN

IF TYP = "info" THEN EXP((HOSTS#(IDSH).LI * 8)/RATE)

ELSE EXP((HOSTS#(IDSH).LA * 8)/RATE);

IF DRAW(P ERR) THEN TRANSIT(OUT) ELSE

IF (HOSTS#(IDDH).ID R = ID) THEN TRANSIT(S(IDDH),RECEPT);

END;

END;

TRANSIT=INSTR(1 STEP 1 UNTIL NCR),PROB,OUT;

In the present case, where the flow object is not used, IDSH and IDDH are the

member variables of the packet object and contain the actual values concerning the

present in-service customer.

3.5. Definition of the object LINE HR

In the present context, the LINE HR object represents a connection channel

between a host and a router. Its architecture is shown in Figure 4 and contains a single

server internal queue, R. Packets coming from the ACCESS E queue of the connected

router are routed to R. The time of packets’ propagation through this channel is

exponentially distributed, with a T mean value expressed in ms. After crossing the

HR line, packets are sent to the CPU queue of their destination, determined by the

member variable ROUT.

Figure 4. LINE HR queuing model

The following code defines the new object type:

OBJECT LINE HR(T);

QUEUE R;

REF QUEUE ROUT;

REAL T;

END;

This object represents the physical connection between the network card of

a host and the router. The real variable T indicates the packets’ propagation time

within the line.

tq308q-g/344 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 345

When building the model, the queue pointer ROUT is assigned to the CPU queue

of the router to which transiting packets are sent. The following QNAP2 procedure

specifies the code to define the functioning of the internal queue R:

/STATION/

NAME = *LINE HR.R;

TYPE = INFINITE;

SERVICE = EXP(T);

TRANSIT = ROUT;

3.6. Definition of the object LINE RR

The LINE RR object represents a one-way connection between two routers, of

architecture shown in Figure 5.

Figure 5. LINE RR queuing model

If we need two-way communication between two routers, we must create two

corresponding lines.

Each instance of a LINE RR object in a specific model is endowed, as any

other component in the present context, with an integer, unequivocally determined

identifier. The router-to-router connection is implemented by a single server internal

queue, CHANNEL, where packets are transmitted in service mean time TEM expressed

in ms.

The pointer to the outgoing router is the member variable NEXT R.

The following QNAP2 code defines this object type:

OBJECT LINE RR(ID,TEM);

QUEUE CHANNEL;

REF QUEUE NEXT R;

REAL TEM;

INTEGER ID;

END;

3.7. Building the library

A file is compiled containing the definitions of the objects as above as well as the

procedures describing the functioning of their internal queues, originating a library

file. In the QNAP2 programming context, it requires the following steps.

First of all, we have to declare a variable of the FILE type, which is a type pre-

defined in the programming context. Then, in a code section opened by an /EXEC/

command, the following pre-defined procedures are to be followed: FILASSIGN – to

assign a physical file to the file object that has been created, OPEN – to open the file

in the writing mode, SAVE – to save the context in the file with a specific name.

tq308q-g/345 4XII2004 BOP s.c., http://www.bop.com.pl

346 L. Pasini and S. Feliziani

The following QNAP2 code illustrates the programme section creating the object

library and must be placed in the final part of the file, before the /END/ command

that closes the QNAP2 source file.

/DECLARE/ FILE F;

/EXEC/ BEGIN

FILASSIGN(F,"LIB1.lis");

OPEN(F,2);

SAVE(F,"OBJECTS");

END;

/END/

4. A programme to generate the simulator

In this section we will illustrate a class of BuildMod procedures to generate

simulators of communication networks based on the object library described above.

A generic communication network will be represented by a network made up

of objects of the library defined in Section 3.

The network description will therefore be contained in a text file called

Model.dat. The format of data in Model.dat files depends on the structure of the

BuildMod procedure used, as the procedure executes reading operations from the

Model.dat files according to a pre-defined scheme. These operations are carried out

using GET and GETLN functions to manage inputs in a QNAP2 context.

The BuildMod procedure, when executed, reads data from a Model.dat file and

generates the components of the analysed network, assigning actual values read from

the Model.dat file to the internal variables.

The result of the procedure’s execution is a simulator of the communication

system described by the corresponding Model.dat file.

4.1. Inclusion of the object library

The programme code defining the BuildMod procedure is included in a library

file. The file must initially contain a code module to carry out the inclusion of the

first library file, where the new object types are defined.

The following QNAP2 code is an example of a possible structure of the module

to include the first library.

The module creates a new object of the FILE type, F, and executes the following

operations: assigns the previously-compiled library file to F and opens the file in

the reading mode. It restores the OGGETTI model from file F with the RESTORE

procedure, as follows:

/DECLARE/ FILE F;

/EXEC/ BEGIN

FILASSIGN(F,"LIB1.lis");

OPEN(F,1);

RESTORE(F,"OGGETTI");

END;

4.2. The NewLine procedure

This procedure is used as part of the BuildMod procedure. NewLine allows

one to improve the data reading mode from the Model.dat text file containing data

tq308q-g/346 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 347

from the communication network. The data are memorised in records, each of them

terminated with a “;” character.

The NewLine procedure, when executed, detects the character at the end

of a record and moves the following reading operation to the next record. If the

NewLine execution does not detect a record’s end character, the procedure interrupts

BuildMod’s execution and writes an error message in the output file of the simulator’s

generation.

The NewLine procedure is defined by the following code, placed in the same

section as the BuildMod procedure and is:

/DECLARE/

PROCEDURE NewLine;

STRING S;

BEGIN

S:=GETLN(STRING,2);

IF INDEX(S,";")=0 THEN BEGIN

WRITELN(" (!); not found:[",S,"]");

ABORT;

END;

END;

4.3. The BuildMod procedure

The BuildMod procedure is structured in code sections specific for the following

actions:

• generation of instances constituting the model to be simulated, for each object

type of the library;

• generation of the necessary connections among the components described above.

The procedure uses some global variables, such as N Hosts, N Router etc.,

employed to memorise the number of components of the model to be simulated read

from the corresponding Model.dat file. The BuildMod procedure generates different

simulators starting from different Model.dat data files.

The code of a BuildMod procedure’s prototype is given below, in which the

flow object is not used. The generated simulator implements probabilistic routing of

packets coming from routers.

The BuildMod procedure is characterised by a subdivision of code sections

carrying out the following actions in order to build the simulator:

• definition of global variables,

• generation of the system’s routers,

• generation of RR lines and connections to outgoing routers,

• generation of outgoing routing procedures from the routers,

• generation of hosts, HR lines and router-to-host connections,

• generation of host-to-router connections.

The data reading operations are carried out with the GET and GETLN functions

on a Model.dat data file describing the system to be simulated.

PROCEDURE BuildMod;

INTEGER N Hosts,N Router,N LineRR,idh,idr,idv,I,J,K;

BEGIN

tq308q-g/347 4XII2004 BOP s.c., http://www.bop.com.pl

348 L. Pasini and S. Feliziani

Definition of global variables:

N Hosts := GET(INTEGER);

N Router:= GET(INTEGER);

N LineRR:=GET(INTEGER);

NHTEST:= N Hosts;

NRTEST:=N Router;

NVTEST:=N Vie;

LINE CAP:=GET(REAL);

REC CAP:=GET(REAL);

NewLine;

T MAX:=GET(REAL);

PERIODO:=GET(REAL);

NewLine;

Generation of the system’s routers:

IF (N Router > 0) THEN

FOR I:=1 STEP 1 UNTIL N Router DO BEGIN

idr :=GET(INTEGER);

ROUTER#(idr):=NEW(ROUTER,idr,GET(INTEGER));

WITH ROUTER#(idr) DO BEGIN

ROUTER#(idr).RATE := GET(REAL);

ROUTER#(idr).P ERR := GET(REAL);

END;

NewLine;

END;

Generation of RR lines and connections to outgoing routers:

IF (N LineRR > 0) THEN

FOR I:=1 STEP 1 UNTIL N LineRR DO BEGIN

idv :=GET(INTEGER);

LINERR#(idv):=NEW(LINE RR,idv,GET(REAL));

WITH LINERR#(idv) DO BEGIN

idr:=GET(INTEGER);

NEXT R:=ROUTER#(idr).CPU;

END;

NewLine;

END;

Generation of outgoing routing procedures from the routers:

FOR I:=1 STEP 1 UNTIL N Router DO BEGIN

idr:=GET(INTEGER);

WITH ROUTER#(idr) DO BEGIN

FOR J:=1 STEP 1 UNTIL N DO BEGIN

K:=GET(INTEGER);

INSTR(J):=LINERR#(K).CANALE;

PROB(J):=GET(REAL);

END;

END;

NewLine;

END;

Generation of hosts, HR lines and router-to-host connections:

IF (N Hosts > 0) THEN

FOR I:=1 STEP 1 UNTIL N Hosts DO BEGIN

idh:=GET(INTEGER);

HOSTS#(idh):=NEW(HOST,idh);

tq308q-g/348 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 349

WITH HOSTS#(idh) DO BEGIN

HOSTS#(idh).T ARR := GET(REAL);

HOSTS#(idh).T EMI I := GET(REAL);

HOSTS#(idh).T EMI A := GET(REAL);

HOSTS#(idh).T REC I := GET(REAL);

HOSTS#(idh).T REC A := GET(REAL);

HOSTS#(idh).TIME OUT := GET(REAL);

HOSTS#(idh).WIN SIZE := GET(INTEGER);

HOSTS#(idh).LI := GET(INTEGER);

HOSTS#(idh).LA := GET(INTEGER);

END;

LINE HR#(idh):=NEW(LINE HR,GET(REAL));

idr:=GET(INTEGER);

HOSTS#(idh).ID R := idr;

ROUTER#(idr).S(idh):=HOSTS#(idh).ACCESS R;

NewLine;

END;

Generation of host-to-router connections:

IF (N Hosts > 0) THEN

FOR I:=1 STEP 1 UNTIL N Hosts DO BEGIN

HOSTS#(I).NETWORK:=LINE HR#(I).R;

LINE HR#(I).ROUT:=ROUTER#(HOSTS#(I).ID R).CPU;

END;

END;

4.4. Building the BuildMod library

The file containing the BuildMod procedure definition code closes with the

following section code to create a second library file, Lib2.lis.

Procedures to be used are the same as those in Section 3.7:

/DECLARE/ FILE I;

/EXEC/

BEGIN

FILASSIGN(I,"LIB2.LIS");

OPEN(I,2);

SAVE(I,"BuildMod");

END;

/END/

5. Study on a communication system

The application presented in this section builds a simulator for the communi-

cation network described in Figure 6.

The system operates according to the following hypotheses:

• each host is connected to a router of the network;

• inside a host, each generated packet is randomly assigned to a destination host;

• in each router, packets whose destination is a host unconnected through a direct

HR line are probabilistically routed to RR lines.

The flow object type, introduced in Section 3.1, is not used to represent this

system; instead, the flow of packets is controlled through internal variables of the

object packet, defined in Section 3.2, and of the object router, defined in Section 3.4.

tq308q-g/349 4XII2004 BOP s.c., http://www.bop.com.pl

350 L. Pasini and S. Feliziani

Figure 6. Communication network to be simulated

The BuildMod procedure prototype illustrated in Section 4.3 is consistent with this

representation.

The following sections show the phases of generating the simulator and some

of the results of the simulation experiments.

5.1. Network description

The description of the communication network to be simulated is accomplished

with a Ms-Excel file. This file defines the actual values, in the model, of the network

system’s global variables and all the connections among hosts, communication lines

and routers. The specifications relevant to each component of the system have to

be place in the description file. The file is organized in 5 worksheets with specific

functions described as follows.

5.1.1. Sheet 1: GLOBALS

The above data define the dimension of the network under analysis. They

specify the number of hosts, routers and RR lines in the communication system,

as well as the download and upload speed of packets. The model concerns an ADSL

network with an emission speed of 128Kb/s and a reception speed of 256Kb/s.

The actual values of the simulation’s control parameters are also defined in the

above sheet. TMAX indicates the maximum time of the simulation and PERIOD – the

execution period of the system’s testing procedures during a simulation. The fixed

simulation time is 500 seconds, while the time unit for simulation is milliseconds.

tq308q-g/350 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 351

The testing procedure will be executed in the system every 1000ms from the instant

a simulation begins.

5.1.2. Sheet 2: ROUTERS

Sheet 2 of the ModelDescription.xls file is made up of four columns. The first

column contains routers’ identifiers in the model. For each router identifier, the other

fields of the same record include, in sequence, the following values:

• number of output RR lines from the router,

• process capability of the router in b/ms,

• error probability.

5.1.3. Sheet 3: LINE RR

Sheet 3 of the ModelDescription.xls is made up of 3 columns. The first column

contains RR line identifiers in the model. For each router identifier, the other fields

of the same record include, in sequence, the following values:

• mean transmission time on the line in ms,

• the identifier of the output router in the line.

5.1.4. Sheet 4: INSTR ROUTER

In sheet 4 the first column contains routers’ identifiers in the model. For each

router identifier, the number of fields in the same record varies and depends on the

number of RR lines outgoing from the router identified in sheet 2. Each record includes

sequences of two fields that respectively contain:

• the identifier of an output RR line of the router,

• packets’ routing probability on that line.

5.1.5. Sheet 5: Host

Sheet 5 of the ModelDescription.xls file is made up of 12 columns. The first one

contains host identifiers in the model. For each host identifier, the other fields of the

same record include, in sequence, the following values:

• Tarr: the time between arrival of two packets,

• TEI: emission time of a packet whose type is information,

• TEA: emission time of a packet whose type is ack,

• TRI: reception time of a packet whose type is information,

• TRA: reception time of a packet whose type is ack,

• TIME OUT: waiting time in the timer queue before a copy is sent,

• WIN SIZE: dimension of the access control window,

• LI: dimension of a packet whose type is information,

• LA: dimension of a packet whose type is ack,

• LINE HR: service time within the host’s line HR,

• Routers: identifier of the router the host is connected to.

5.2. Generation of the Model.dat file

The generation process of the Model.dat file starts from the system’s description

file, ModelDescription.xls. We have placed an MS-Visual Basic code module in this

file and built the following data export macro:

tq308q-g/351 4XII2004 BOP s.c., http://www.bop.com.pl

352 L. Pasini and S. Feliziani

Sub esportation()

N = Worksheets.Count

For I = 1 To N

Worksheets.Item(I).SaveAs("c:\home\pasini\qnap\model\"+
Worksheets.Item(I).Name),

xlTextPrinter

Next

ThisWorkbook.SaveAs "c:\home\pasini\qnap\model\excelmodel",
xlWorkbookNormal

End Sub

The macro generates, for each internal sheet of the ModelDescription.xls file, a

*.prn extension file that contains data of the relevant Excel sheet.

We have created a batch file in the same working directory, Catmod.bat, whose

code is:

if exist Model.dat del Model.dat

copy *.prn Model.dat

del *.prn

The execution of the Catmod.bat file produces an updated version of the

Model.dat file in the working directory, deleting previous versions, if any, as well

as the intermediate files to export data.

If we apply this process to generate the Model.dat file to the communication

network shown in Figure 6 and described by the ModelDesription.xls file described in

Section 5.1, we obtain a Model.dat file of the following text:

& GLOBAL VARIABLES

&Nb Hosts Nb Router Nb Line RR Cap. Emis. (b/ms) Cap. Ric.(b/ms)

16 8 17 128.0 256.0;

& SIMULATION

& TMAX PERIOD

500000.0 1000.0;

& ROUTERS

& ID Exit Rate(b/ms) P Err

1 1 100.0 0.001;

2 3 123.0 0.001;

3 1 111.0 0.001;

4 2 122.0 0.001;

5 5 100.0 0.001;

6 2 123.0 0.001;

7 1 111.0 0.001;

8 2 50.0 0.001;

& Line RR

&ID Propag(ms) Router...

1 32.0 1;

2 32.0 2;

3 54.0 4;

4 34.0 5;

5 11.7 4;

6 22.0 8;

7 22.0 4;

8 12.4 8;

9 21.0 6;

10 10.5 6;

11 10.5 5;

tq308q-g/352 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 353

12 20.0 7;

13 20.0 6;

14 11.0 3;

15 11.0 5;

16 32.0 3;

17 54.0 2;

& Routing ROUTER

&Router ID L RR Prob L RR Prob L RR Prob L RR Prob L RR Prob

1 2 1.0;

2 1 0.4 3 0.3 16 0.3;

3 15 1.0;

4 4 0.6 6 0.4;

5 5 0.2 8 0.1 10 0.2 14 0.2 17 0.3;

6 11 0.6 12 0.4;

7 13 1.0;

8 7 0.5 9 0.5;

& HOSTS

&ID Tarr TEI TEA TRI TRA TIME OUT WIN SIZE LI LA LineHR Router

1 120.0 12.1 1.0 4.3 1.1 800.0 10 55 1 12.0 1;

2 123.0 12.0 2.0 4.6 1.2 804.0 11 55 1 13.0 1;

3 124.0 13.0 1.5 6.4 1.3 780.0 12 55 2 12.6 1;

4 135.0 15.0 1.0 5.0 1.8 800.0 20 55 2 10.0 1;

5 120.0 12.0 1.0 4.3 1.1 803.0 12 55 1 11.0 4;

6 123.0 12.3 2.0 5.2 1.2 803.0 12 55 1 12.0 4;

7 201.0 13.0 1.5 5.0 1.3 803.2 14 55 2 13.0 4;

8 204.0 14.0 1.8 4.1 1.5 802.4 12 55 1 15.0 8;

9 112.0 13.0 0.6 5.0 1.1 802.0 13 55 1 12.0 8;

10 180.0 13.7 0.8 6.0 1.2 803.0 14 55 2 10.3 7;

11 110.0 12.5 0.9 3.0 1.6 780.0 15 55 1 9.6 6;

12 112.0 11.3 1.1 2.5 1.9 801.0 13 55 2 8.5 6;

13 202.0 10.7 1.0 2.9 2.0 789.0 12 55 1 13.0 5;

14 145.0 11.9 2.0 2.5 1.0 803.0 11 55 2 11.3 3;

15 143.0 12.5 0.8 2.4 1.3 804.2 10 55 1 12.2 3;

16 180.0 13.0 0.9 3.0 1.7 805.1 15 55 2 14.7 2;

5.3. Generation of the simulator

In order to generate the simulator pertinent to the communication system

described by the Model.dat file, the following code has to be executed:

/DECLARE/ FILE H;

/EXEC/ BEGIN

FILASSIGN(H,"Model.dat");

OPEN(H,1);

END;

/CONTROL/ UNIT = GET(H);

/EXEC/ BEGIN

BuildMod;

CLOSE(H);

END;

In this case, the FILASSIGN procedure assigns a file H object to the Model.dat

in the working directory. This file is opened in the reading modality. Using the UNIT

parameter of the /CONTROL/ command, we define FILE H as the logic unit where

the GET and GETLN functions read data.

tq308q-g/353 4XII2004 BOP s.c., http://www.bop.com.pl

354 L. Pasini and S. Feliziani

Thus, the execution of the BuildMod procedure yields the simulator of the

system described in Model.dat.

6. Simulation and results

The simulation of the system generated by the BuilMod procedure is obtained

through the call of the QNAP2 SIMUL procedure.

This procedure calls discrete events simulation. The simulator is based on

a scheduler and a generator of random numbers. The length of the simulation is

to be defined in advance with the TMAX parameter.

The following code assigns the maximum length of the simulation, read from

the Model.dat file, to TMAX. The time unit to express this length is in accordance

with the one used in the model. In our context, the simulation time unit is expressed

in milliseconds, ms. The simulation’s length has been fixed at 500000ms.

/CONTROL/

CLASS=ALL QUEUE;

TMAX=T MAX;

/EXEC/ BEGIN

SIMUL;

END;

/END/

The CLASS parameter of the /CONTROL/ command allows us to request results,

for a list of queues, according to user classes. Results are given according to the user

classes for all the queues.

The simulation results are arranged in a standard chart that describes the

following elements:

• NAME = name of the examined queue,

• SERVICE = mean length of a service, calculated as a result of the measures

simulated,

• BUSY PCT = busy percentage of the queue, calculated as a result of the

measures simulated,

• CUST NB = mean number of customers in the queue, calculated as a result of

the measures simulated,

• RESPONSE = mean response time of the queue, that is the sum of the mean

service time and the mean wait time,

• SERV NB = number of users served in the queue.

*** SIMULATION ***

... TIME = 500000.00

* NAME * SERVICE * BUSY PCT * CUST NB * RESPONSE * SERV NB *

* * * * * * *

*ROUTER 1. * * * * * *

*CPU . * 2.324 *0.2845 *0.5330 * 4.353 * 61215*

(EMISSION) 2.324 *0.2845 *0.5330 * 4.353 * 61215*

* * * * * * *

*ROUTER 2. * * * * * *

*CPU . * 1.883 *0.4265 * 1.131 * 4.993 * 113269*

(EMISSION) 1.883 *0.4265 * 1.131 * 4.993 * 113269*

tq308q-g/354 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 355

* * * * * * *

*ROUTER 3. * * * * * *

*CPU . * 2.090 *0.3533 *0.7611 * 4.503 * 84509*

(EMISSION) 2.090 *0.3533 *0.7611 * 4.503 * 84509*

* * * * * * *

*ROUTER 4. * * * * * *

*CPU . * 1.878 *0.4576 * 1.277 * 5.243 * 121818*

(EMISSION) 1.878 *0.4576 * 1.277 * 5.243 * 121818*

* * * * * * *

*ROUTER 5. * * * * * *

*CPU . * 2.277 *0.9994 * 530.8 * 1204. * 219473*

(EMISSION) 2.277 *0.9994 * 530.8 * 1204. * 219473*

* * * * * * *

*ROUTER 6. * * * * * *

*CPU . * 1.819 *0.4883 * 1.476 * 5.499 * 134224*

(EMISSION) 1.819 *0.4883 * 1.476 * 5.499 * 134224*

* * * * * * *

*ROUTER 7. * * * * * *

*CPU . * 2.020 *0.2173 *0.3762 * 3.496 * 53799*

(EMISSION) 2.020 *0.2173 *0.3762 * 3.496 * 53799*

* * * * * * *

*ROUTER 8. * * * * * *

*CPU . * 4.549 *0.6664 * 3.216 * 21.95 * 73258*

(EMISSION) 4.549 *0.6664 * 3.216 * 21.95 * 73258*

* * * * * * *

*VIA 1. * * * * * *

*CANALE . * 32.00 *0.0000E+00* 2.786 * 32.00 * 43524*

(EMISSION) 32.00 *0.0000E+00* 2.786 * 32.00 * 43524*

* * * * * * *

*VIA 2. * * * * * *

*CANALE . * 32.00 *0.0000E+00* 2.817 * 32.00 * 44021*

(EMISSION) 32.00 *0.0000E+00* 2.817 * 32.00 * 44021*

* * * * * * *

*VIA 3. * * * * * *

*CANALE . * 54.00 *0.0000E+00* 3.516 * 54.00 * 32552*

(EMISSION) 54.00 *0.0000E+00* 3.516 * 54.00 * 32552*

* * * * * * *

*VIA 4. * * * * * *

*CANALE . * 34.00 *0.0000E+00* 4.416 * 34.00 * 64945*

(EMISSION) 34.00 *0.0000E+00* 4.416 * 34.00 * 64945*

* * * * * * *

*VIA 5. * * * * * *

*CANALE . * 11.70 *0.0000E+00* 1.008 * 11.70 * 43071*

(EMISSION) 11.70 *0.0000E+00* 1.008 * 11.70 * 43071*

* * * * * * *

*VIA 6. * * * * * *

*CANALE . * 22.00 *0.0000E+00* 1.895 * 22.00 * 43062*

(EMISSION) 22.00 *0.0000E+00* 1.895 * 22.00 * 43062*

* * * * * * *

*VIA 7. * * * * * *

*CANALE . * 22.00 *0.0000E+00* 1.417 * 22.00 * 32202*

(EMISSION) 22.00 *0.0000E+00* 1.417 * 22.00 * 32202*

* * * * * * *

*VIA 8. * * * * * *

*CANALE . * 12.40 *0.0000E+00*0.5320 * 12.40 * 21451*

(EMISSION) 12.40 *0.0000E+00*0.5320 * 12.40 * 21451*

tq308q-g/355 4XII2004 BOP s.c., http://www.bop.com.pl

356 L. Pasini and S. Feliziani

* * * * * * *

*VIA 9. * * * * * *

*CANALE . * 21.00 *0.0000E+00* 1.364 * 21.00 * 32465*

(EMISSION) 21.00 *0.0000E+00* 1.364 * 21.00 * 32465*

* * * * * * *

*VIA 10. * * * * * *

*CANALE . * 10.50 *0.0000E+00*0.8974 * 10.50 * 42731*

(EMISSION) 10.50 *0.0000E+00*0.8974 * 10.50 * 42731*

* * * * * * *

*VIA 11. * * * * * *

*CANALE . * 10.50 *0.0000E+00* 1.583 * 10.50 * 75361*

(EMISSION) 10.50 *0.0000E+00* 1.583 * 10.50 * 75361*

* * * * * * *

*VIA 12. * * * * * *

*CANALE . * 20.00 *0.0000E+00* 1.995 * 20.00 * 49875*

(EMISSION) 20.00 *0.0000E+00* 1.995 * 20.00 * 49875*

* * * * * * *

*VIA 13. * * * * * *

*CANALE . * 20.00 *0.0000E+00* 1.999 * 20.00 * 49976*

(EMISSION) 20.00 *0.0000E+00* 1.999 * 20.00 * 49976*

* * * * * * *

*VIA 14. * * * * * *

*CANALE . * 11.00 *0.0000E+00*0.9478 * 11.00 * 43084*

(EMISSION) 11.00 *0.0000E+00*0.9478 * 11.00 * 43084*

* * * * * * *

*VIA 15. * * * * * *

*CANALE . * 11.00 *0.0000E+00* 1.668 * 11.00 * 75825*

(EMISSION) 11.00 *0.0000E+00* 1.668 * 11.00 * 75825*

* * * * * * *

*VIA 16. * * * * * *

*CANALE . * 32.00 *0.0000E+00* 2.087 * 32.00 * 32606*

(EMISSION) 32.00 *0.0000E+00* 2.087 * 32.00 * 32606*

* * * * * * *

*VIA 17. * * * * * *

*CANALE . * 54.00 *0.0000E+00* 6.987 * 54.00 * 64696*

(EMISSION) 54.00 *0.0000E+00* 6.987 * 54.00 * 64696*

* * * * * * *

*HOST 1. * * * * * *

*USER . * 119.1 * 1.000 * 1.000 * 119.1 * 4198*

* * * * * * *

*HOST 1. * * * * * *

*CONTROL . * 233.1 *0.9968 * 1009. *0.1180E+06* 2138*

(EMISSION) 233.1 *0.9968 * 1009. *0.1180E+06* 2138*

* * * * * * *

*HOST 1. * * * * * *

*PROTOCOL. * 4.805 *0.8358E-01*0.9303E-01* 5.348 * 8698*

(EMISSION) 6.871 *0.6072E-01*0.6356E-01* 7.192 * 4419*

(RECEPT) 2.671 *0.2286E-01*0.2946E-01* 3.443 * 4279*

* * * * * * *

*HOST 1. * * * * * *

*ACCESS E. * 1.808 *0.1598E-01*0.1650E-01* 1.867 * 4418*

(EMISSION) 1.808 *0.1598E-01*0.1650E-01* 1.867 * 4418*

* * * * * * *

*HOST 1. * * * * * *

*ACCESS R. *0.8635 *0.7389E-02*0.7678E-02*0.8972 * 4279*

*(RECEPT)*0.8635 *0.7389E-02*0.7678E-02*0.8972 * 4279*

tq308q-g/356 4XII2004 BOP s.c., http://www.bop.com.pl

A Method to Build Network-of-Queues-Based Simulators. .. 357

* * * * * * *

*HOST 1. * * * * * *

*WINDOW . *0.0000E+00*0.0000E+00*0.9968 * 234.5 * 2128*

*(EMISSION)*0.0000E+00*0.0000E+00*0.9968 * 234.5 * 2128*

* * * * * * *

*HOST 1. * * * * * *

*TIMER . * 221.4 *0.9998 * 9.928 * 2195. * 2258*

(EMISSION) 221.4 *0.9998 * 9.928 * 2195. * 2258*

* * * * * * *

*LINE HR1. * * * * * *

*R . * 12.00 *0.0000E+00*0.1060 * 12.00 * 4418*

(EMISSION) 12.00 *0.0000E+00*0.1060 * 12.00 * 4418*

.

*HOST 16. * * * * * *

*USER . * 179.7 * 1.000 * 1.000 * 179.7 * 2781*

* * * * * * *

*HOST 16. * * * * * *

*CONTROL . * 212.3 *0.9828 * 226.7 *0.3991E+05* 2314*

(EMISSION) 212.3 *0.9828 * 226.7 *0.3991E+05* 2314*

* * * * * * *

*HOST 16. * * * * * *

*PROTOCOL. * 4.834 *0.8708E-01*0.9718E-01* 5.395 * 9007*

(EMISSION) 7.309 *0.6654E-01*0.6962E-01* 7.647 * 4552*

(RECEPT) 2.305 *0.2054E-01*0.2756E-01* 3.093 * 4455*

* * * * * * *

*HOST 16. * * * * * *

*ACCESS E. * 1.906 *0.1735E-01*0.1808E-01* 1.986 * 4552*

(EMISSION) 1.906 *0.1735E-01*0.1808E-01* 1.986 * 4552*

* * * * * * *

*HOST 16. * * * * * *

*ACCESS R. *0.8963 *0.7986E-02*0.8313E-02*0.9330 * 4455*

*(RECEPT)*0.8963 *0.7986E-02*0.8313E-02*0.9330 * 4455*

* * * * * * *

*HOST 16. * * * * * *

*WINDOW . *0.0000E+00*0.0000E+00*0.9828 * 216.6 * 2299*

*(EMISSION)*0.0000E+00*0.0000E+00*0.9828 * 216.6 * 2299*

* * * * * * *

*HOST 16. * * * * * *

*TIMER . * 209.8 *0.9992 * 14.83 * 3103. * 2381*

(EMISSION) 209.8 *0.9992 * 14.83 * 3103. * 2381*

* * * * * * *

*LINE H16. * * * * * *

*R . * 14.70 *0.0000E+00*0.1338 * 14.70 * 4552*

(EMISSION) 14.70 *0.0000E+00*0.1338 * 14.70 * 4552*

* * * * * * *

... END OF SIMULATION ...

MEMORY USED: 1763370 WORDS OF 4 BYTES

(11.76 % OF TOTAL MEMORY)

The simulation was carried out by using a Personal Computer with a 2.8GHz

Intel Pentium IV CPU, 256MB of RAM and MS Windows 2000 operative system, and

it took a few CPU seconds.

tq308q-g/357 4XII2004 BOP s.c., http://www.bop.com.pl

358 L. Pasini and S. Feliziani

If we consider that the mean transfer time of information generated within

a host corresponds to the time that separates the transmission of an information

packet from the reception of the corresponding ack, we can take the mean response

times of the internal window semaphore queues of the hosts as estimates of these

measures. It is therefore possible to say that, for example, the mean time for the

information generated by host 1 to cross the network was about 235ms.

7. Conclusions

We have built a library of objects based on queue systems to represent and

simulate communication systems. We have also proposed a scheme to build procedures

for the automatic generation of simulators based on this object library.

This has allowed us to verify and optimise the communication protocol conduct

according to different queue types. It will thus be possible to measure different

parameters of the protocol to optimise its performance criterions according to the

service quality.

References

[1] Fdida S and Pujolle G 1990 Modèles de Systèmes et de Réseaux, Tome 1: Performance, Ed.

Eyrolles, Paris

[2] Simulog, QNAP2 Reference Manual, ver.9.3

tq308q-g/358 4XII2004 BOP s.c., http://www.bop.com.pl

