
TASK QUARTERLY 8 No 3 (2004), 327–332

PARALLEL COMPUTING

IN A NETWORK OF WORKSTATIONS

RAFAŁ OGRODOWCZYK1 AND KRZYSZTOF MURAWSKI2

1Institute of Mathematics and Informatics,

Higher Vocational State School in Chelm,

Pocztowa 54, 22-100 Chelm, Poland

rogrodow@pwsz.chelm.pl

2Institute of Physics, UMCS,

Radziszewskiego 10, 20-031 Lublin, Poland

kmurawsk@tytan.umcs.lublin.pl

(Received 15 April 2004)

Abstract: In this paper we describe a few architectures and software for parallel-processing

computers. We have tested a cluster constructed with the use of MPI. All tests have been performed

for one- and two-dimensional magneto-hydrodynamic plasma. We have concluded from the results

of these tests that a simple problem should be run in a sequential node, as its execution time does

not essentially decrease with the number of processors used. At the same time, the execution time

of a complex problem decreases significantly with the number of processors. In the case of two-

dimensional plasma the acceleration factor has reached the value of 3.7 with the use of 10 processors.

Keywords: parallel computing, clusters, parallel-processing systems

1. Introduction

We often face challenging scientific problems. Our strategy is then to test the

existing methods or develop new theories. As a consequence of the internal complexity

of these problems, fast computers are often the only tools leading to solutions of

physically realistic models. However, fast computers are usually too expensive for

small scientific groups. Therefore, many research centers continue to work in order

to link personal computers into clusters and write software to logically connect these

nodes [1]. Such clusters are able to execute parallel codes and divide a large task into

smaller parts which can be solved simultaneously [1, 2].

The idea of linking computers is not new. It was first developed by the US

Army in the 1960s as protection against a potential Soviet nuclear attack. Such

supercomputers were designed as complex machine architectures. The cost of their

production was very high and the computing problem was difficult to implement. In

the early 1990s, with the sudden development of PCs, scientists started to connect

computers and wrote appropriate software which made it possible to use joined PCs. In

tq308p-e/327 4XII2004 BOP s.c., http://www.bop.com.pl



328 R. Ogrodowczyk and K. Murawski

a computer center we can implement a few types of cluster architectures and parallel-

processing systems and every such system has its advantages and disadvantages for

advanced computations.

The purpose of this paper is to present a few architectures and software

of parallel-processing systems (see Section 2). We show similarities and differences

between several different implementations of parallel-processing systems in Section 3.

In Section 4 we describe the results of the tests we have performed with our cluster

for numerical simulations of MHD waves.

2. Architecture of parallel-processing computers

A parallel-processing computer is a system containing at least two processors

able to solve a computational task simultaneously [1]. Parallel computers may be

classified by the way in which data is processed and memory is accessed (according

to Flynn’s taxonomy) [2].

Single Instruction Multiple Data (SIMD) computers can execute the same

instructions in many data sets. We can divide this group into vector computers with

Global Shared Memory (SM-SIMD) and a class of processors with Local Distributed

Memory (DM-SIMD). These systems are very efficient in processing a specific problem

by solving a task with a small degree of date exchange between the processors and the

memory. Programming this type of parallel computers does not require any specific

construction of the algorithm because a compiler parallels the code automatically.

Multiple Instruction Multiple Data (MIMD) systems can simultaneously process

many datasets with the use of many processors. Owing to the application potential

of these systems, the technology is presently dynamically expanding and we can

distinguish systems with common memory, shared by all processors (SM-MIMD), and

systems with local memory, typically for individual processors (DM-MIMD).

SM-MIMD has three basic ways of hardware realization. First, a model which

guarantees the processor Uniform (equal) Memory Access (UMA). To achieve such

access is very expensive and it does not guarantee the fastest computations. Systems

with a shared memory that do not realize UMA standards and access times are

different. They are called Non-Uniform Memory Access (NUMA) systems and are

produced to decrease access time to memories integrated with processors (ccNUMA).

Such architecture allows faster access to the most often used data sets. Design and

construction of SM-MIMD systems with regard to subtle technical solutions is very

expensive and makes it impossible to extend the scale of such supercomputers. The

advantage of this architecture is a relatively simple way of setting parallel software

while executing the calculations on a computer with a common address memory space.

The most popular parallel-processing architecture is DM-MIMD. This standard

characterizes a large number of processors with their own memory suitable to

execute autonomic tasks. These processors work on aggregated data in their local

memories and synchronize the calculations by exchanging messages. The advantages

of these systems are their scalability and low costs. The main disadvantage of these

systems is the necessity of installation of specialist software which synchronizes

parallel computing and communication time. One of the ways to realize an DM-MIMD

architecture is to connect a network of PC’s and use the appropriate software.

tq308p-e/328 4XII2004 BOP s.c., http://www.bop.com.pl



Parallel Computing in a Network of Workstations 329

3. Parallel-processing systems software

The software used in parallel-processing systems should quickly and efficiently

distribute processes between accessible processors and exchange data sets and mes-

sages which synchronize the systems’ work. Realizations of this task differ depending

on the type of architecture of parallel-processing computers. We have three main im-

plementations for DM-MIMD systems: Multicomputer Operating Systems for UnIX

(MOSIX), Parallel Virtual Machines (PVM), Bulk Synchronous Parallel Computation

(BSP) and Message Passing Interface (MPI).

MOSIX is an integral part of an operating system [3]. This patch can automat-

ically distribute processes to all nodes, remove processes from slower to faster nodes,

load balancing tasks and migrate computing tasks from computers with full memory

in order to prevent swapping. Its main disadvantages are as follows:

• MOSIX is unable to parallel processes automatically,
• processes cannot share memory, and
• we have to use nodes of the same structure to build clusters.
PVM is a software application that allows us to connect PCs through a network

in order to use them as a single parallel system [4]. Such a cluster of computers can

be built from Unix and Windows computers. They can have different parameters

and architectures. PVM is able to pass messages dynamically, it synchronizes and

processes the management, but it is not an integral part of the operating system.

We can add and separate nodes from virtual machines during while this system is at

work. Moreover, PVM can balance load.

BSP is a programming standard which allows us to create a scalable software

application [5]. BSPlibs supports Single Program Multiple Date (SPMD) programming

model. It can be implemented in C++ and Fortran, deals with data set distribution

and introduces a minimization mechanism of communication. The BSP standard is

implemented in various machine architectures and operating systems. This model is

developed in European research centers and as an alternative to the American MPI

project.

MPI is a message-passing standard to communicate parallel-processing sys-

tems [6]. This library specification with prototype procedures and functions enables

communication and synchronization of calculations between different nodes of a clus-

ter. Messages are sent between the processes of the same programme only. The MPI

standard does not support such services as load balancing, dynamic migration of

processes and memory management. Its main disadvantage is that a breakdown or

disconnection of one node destroys the parallel calculation. MPI has many implemen-

tations on different platforms and it is supported by most scientific software packages.

4. Our network of workstations

We have decided to use DM-MIMD architectures in the construction of our

parallel-processing system. The main reason for such choice is that we could use

a network of laboratory computers.

We connected 10 nodes of Intel Pentium IV 2.6GHz and 256MB of RAM with

a Fast Ethernet network. We used the MPI standard as the software configuration

tq308p-e/329 4XII2004 BOP s.c., http://www.bop.com.pl



330 R. Ogrodowczyk and K. Murawski

for our Network of Workstations (NOW). This software package is implemented in

the FLASH code, which is designed to solve magneto-hydrodynamic equations. This

code was developed at the ASCI/Alliance Center for Astrophysical Thermonuclear

Flashes at the University of Chicago [7]. In the FLASH code, a numerical problem is

implemented by selecting appropriate modules.

5. Numerical model

We have performed two numerical tests by simulating wave processes in plasma.

The processes can be described by the MHD equations:

∂ρ

∂t
+∇·(ρV)= 0, (1)

ρ
∂V

∂t
+ρ(V ·∇)V=−∇p+ 1

µ
(∇×B)×B, (2)

∂p

∂t
+∇·(pV)=−(γ−1)p∇·V, (3)

∂B

∂t
=∇×(V×B), (4)

∇·B=0, (5)

where ρ is the mass density,V is the plasma velocity vector, p denotes the gas pressure,

B is the magnetic field, and γ=5/3 is the adiabatic index [8]. We have considered one-

and two-dimensional models of wave propagation and investigated the performance

of the NOW cluster.

In the one-dimensional model we have taken the following equilibrium into

account:

ρ0(x)= ρl(1+sinx), (6)

V0=0, p0=const, B0= [B0x,0,0], B0x=VA
√
µρ0, B0x=const. (7)

Here ρl is a constant mass density. B0x is the x component of a magnetic field and

VA=10
6m/s is the Alfvén speed.

For the two-dimensional model the equilibrium is as follows:

ρ0(x,y)= ρl(1+sinx+siny), (8)

V0= [0,0,0], p0=const, B0= [0,B0y,0], B0y =VA
√
µρ0, B0y =const. (9)

This equilibrium is perturbed by initially launched pulses in mass density and

pressure. For instance, in the one-dimensional case these pulse are:

ρ(x,t=0)=Aρe
−[(x−x0)/w]

2

, (10)

p(x,t=0)=Ape
−[(x−x0)/w]

2

, (11)

where Aρ and Ap denote relative amplitudes of the pulse, x0 = 2 ·106m is its initial
position and w=1.25 ·106m is the pulse’s width.

tq308p-e/330 4XII2004 BOP s.c., http://www.bop.com.pl



Parallel Computing in a Network of Workstations 331

6. Numerical tests

We define the acceleration coefficient, S(n,p), which allows us to describe

quantitatively properties of the MPI cluster. S(n,p) is defined as the following ratio:

S(n,p)=
T (n,1)

T (n,p)
. (12)

Here T (n,p) is the execution time of an n-size task run by p processors.

First, we consider a one-dimensional case for which n=1. We run all numerical

jobs up to time t=10s and set an initial numerical grid which consists of 500 blocks

over the spatial domain 0≤ x≤ 5 ·109cm. Each block contains 8 interior cells, which
are surrounded by 4 ghost cells on each side. Table 1 displays the dependence of

execution time on the number of processors and the value of S(1,p). The test results

have shown that for the case of n=1 the execution time does not decrease significantly

with the number of nodes (Figure 1). It results from the fact that communication and

synchronization between parallel computing processes take a relatively long time. As

we have S(1,2) = 0.43 in the case of two processors, it follows that computation is

more than twice slower than in the single processor case and – in consequence – we

conclude that a simple problem should be run in a sequential mode instead.

We now consider the two-dimensional problem for which the equilibrium state

is described by Equations (8) and (9).This equilibrium is perturbed by the impulses

given by Equations (10) and (11). We run this problem up to t=1s with the use of

4500 blocks over the spatial domain 0≤x≤ 4 ·109cm, 0≤ y≤ 4 ·109cm.
Table 2 and Figure 2 show the dependence of execution time on the number of

processors and the value of S(2,p).

The execution time apparently decreases with the increasing number of pro-

cessors. For the case of a single processor the execution time is 1066s and it drops

to 285s for 10 processors, achieving an acceleration of 3.70 (S(2,10) = 3.70). Conse-

quently, we can conclude that a cluster can significantly reduce the execution time of

complex tasks.

Figure 1. Execution time versus number

of processors; zero means running without

the use of MPI on one processor

Figure 2. Execution time as a function

of the number of processors

tq308p-e/331 4XII2004 BOP s.c., http://www.bop.com.pl



332 R. Ogrodowczyk and K. Murawski

Table 1. Execution time and the acceleration

coefficient, S(1,p), versus number

of processors, p

Numbers of Execution
S(1,p)

processors, p time [s]

0 96 1.00
1 97 0.99
2 223 0.43
3 59 1.63
4 63 1.52
5 69 1.39
6 63 1.52
7 52 1.85
8 54 1.78
9 56 1.71
10 63 1.52

Table 2. Execution time and the acceleration

coefficient, S(2,p), versus

number of processors, p

Numbers of Execution
S(2,p)

processors, p time [s]

0 1054 1.00
1 1066 0.99
2 859 1.23
3 689 1.53
4 560 1.88
5 476 2.21
6 425 2.48
7 362 2.91
8 317 3.32
9 295 3.57
10 285 3.70

7. Summary

In this paper we have discussed parallel computing technology. We have

performed two tests for one- and two-dimensional plasma described by a set of

magneto-hydrodynamic equations.

Our main conclusion is that single problems should be run on a sequential

computer, while the use of an MPI cluster significantly reduces the execution time of

complex tasks.

The results prove that a delay in communication between different nodes

significantly reduces the computing efficiency. While choosing a parallel-computing

system we should take into account the network’s capacity and protocol, delays of the

input/output devices, as well as the system’s requirements of the problem, viz. the

quantity of transferred data and the frequency of its exchange.

We have performed two tests to check the efficiency of systems with load

balancing. We are going to implement MOSIX and MPI simultaneously in the NOW

cluster. This solution will assure dynamic scalability of the parallel-processing system.

The software used in this work was in part developed by the DOE-supported

ASCI/Alliance Center for Astrophysical Thermonuclear Flashes at the University of

Chicago.

References

[1] Spector D 2000 Building Linux Clusters, O’Relly

[2] Hargrove W W, Hoffman F M and Sterling T 2001 The Do-IT-Yourself Superkomputer,

Scientific America

[3] http://www.mosix.org/

[4] http://www.csm.ornl.gov/pvm/pvm home.html

[5] http://www.bsp-worldwide.org/

[6] http://www-unix.anl.gov/mpi

[7] http://flash.uchicago.edu/flashcode

[8] Murawski K 2002 Analytical and Numerical Methods for Wave Propagation in Fluids, World

Scientific, Singapore

tq308p-e/332 4XII2004 BOP s.c., http://www.bop.com.pl


