
TASK QUARTERLY 8 No 3 (2004), 321–326

THE INFLUENCE OF WAVE-NOISE ON WAVE

SPEEDS AND AMPLITUDES OF

SURFACE-GRAVITY WAVES

KRZYSZTOF MURAWSKI1,2 AND AGNIESZKA ZAWADA1

1Division of Theoretical Physics, Institute of Physics, UMCS,

Radziszewskiego 10, 20-031 Lublin, Poland

kmurawsk@tytan.umcs.lublin.pl

2Institute of Mathematics and Informatics, State High School at Chelm,

Pocztowa 54, 22-100 Chelm, Poland

(Received 20 February 2004)

Abstract: We have analytically examined surface-gravity waves which propagate in space- and

time-dependent random velocity fields. Using a perturbative method, we have derived a dispersion

relation which is solved for the case of wave-noise whose spectrum E(k,ω)∼E(k)δ(ω−crk), where δ
is Dirac’s delta-function and cr is the random phase speed. We have found that for a dispersionless

noise resonance occurs when cr is equal to the group velocity cg of the surface-gravity wave. In

this resonance the real part of the wave frequency is finite, but its imaginary part exhibits the

characteristic 1/x singularity. The wave-noise interacts with a packet of the surface-gravity waves in

such a way that the waves are attenuated for cr <cg and are amplified for cr >cg . As the real part

is positive for high values of k, the surface-gravity waves are accelerated by the wave-noise.
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1. Introduction

Random waves have been the subject of intensive studies. For instance, random

sound waves in a weakly stratified atmosphere has been discussed by Murawski

(2002) [1]. Wave propagation in random media, with oceanic applications, has been

reviewed by Mysak (1978) [2]. In another context, the theory of sound propagation

in media of random sound speed, density, and flow speed in the atmosphere and

ocean has been discussed by Ostashev (1994) [3]. The author has considered the

Born-approximation, ray, Rytov and parabolic-equation methods and the theory of

multiple-scattering. These techniques can be used to develop new remote-sensing

methods for the atmosphere and ocean seismology (Ostashev 1997 [4]). As a particular

application we can mention surface-gravity waves which propagate in a basin of

random bottom (Pelinovsky, Razin and Sasorova 1998 [5]). The analytical findings

for the exponential correlation function have revealed that these waves are attenuated

and their wave speed is altered. The attenuation reaches its maximum value at an
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intermediate value of the normalized horizontal wavenumber kh0, but it is negligibly

small for high values of kh0. Here, h0 is the mean depth of the basin. The wave speed

is lower for shallow water and higher for deep water. This has direct implications for

explaining the increase of tsunami travel time variations which are lower than 1–2

seconds even for transoceanic paths (Pelinovsky, Razin and Sasorova 1998 [5]). At

the same time, Kawahara (1996) [6] has found that the effect of a random bottom

on surface gravity waves is attenuation and wave speed variations. These results have

been presented in the form of a non-linear Schrödinger equation which shows that the

wave speed increases for long waves and decreases for short waves.

In another approach, it has been shown that a space-dependent Gaussian

random flow produces a reduction of the surface-gravity wave frequency and its

amplitude, while a time-dependent flow produces an increase (Murawski and Roberts

1993 [7]). Thus, the surface-gravity wave is attenuated and decelerated by a space-

dependent Gaussian random, and amplified and accelerated by a time-dependent flow

(Murawski 2000 [8]). Nevertheless, the treatment of surface-gravity waves is still

unsatisfactory as no space- and time-dependent random fields have been discussed

so far. The simplest realization of such a field is wave-noise, which has been studied

in the context of sound waves by Murawski, Nocera and Pelinovsky (2001) [9]. It has

been found that when the wave speed of wave-noise (which represents a random mass

density field) cr, is equal to the phase speed of sound waves, ω/k, resonance occurs

at which the cyclic frequency tends to infinity. For values of cr which are close to

the resonance point, the frequency shift may be negative or positive; the imaginary

part of the frequency attains the negative sign for cr <ω/k and the positive sign for

cr >ω/k.

The main goal of this paper is to examine the influence of a space- and time-

dependent random flow in the form of non-dispersive wave-noise in frequencies and

amplitudes of the surface-gravity wave. This goal is additionally motivated by the

fact that the surface-gravity wave is dispersive, while sound waves are non-dispersive.

Thus, it is interesting to see how these waves behave in wave-noise. This research

is also motivated by the fact that it has been shown that flows can affect waves,

modifying dispersion relations and changing line widths (Nakariakov and Roberts

1995 [10], Nakariakov, Roberts and Murawski 1998 [11], Pintér, Erdélyi and New

2001 [12]).

We start by introducing wave-noise in the next section. In Section 3, we present

the dispersion relation for a random surface-gravity wave which propagates along the

interface between the incompressible bottom medium and the evacuated atmosphere.

In the following section, we investigate the influence of a random flow on wave

frequencies and amplitudes. We conclude the paper with a summary of the main

results in Section 5.

2. Wave-noise

We define wave-noise by introducing the correlation function of a random field

fr, viz.:

R(|x2−x1|,|t2− t1|)= 〈fr(x2,t2)fr(x1,t1)〉, (1)
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where xi and ti, i=1,2, denote, for simplicity, normalized spatial and temporal points,

and 〈〉 stands for the ensemble average (Ostashev 1997 [4]). The Fourier transform of
the correlation function is:

E(K,Ω)=

∞
∫

−∞

e−i(Kx−Ωt)R(x,t)dxdt (2)

with K as normalized wavenumber and Ω as dimensionless frequency.

For wave-noise we have:

E(K,Ω)=
σ2

π
E(K)δ(Ω−Ωr(K)), (3)

where Ωr is the K-dependent frequency of the random fluctuations. We specialize to

non-dispersive noise:

Ωr(K)= crK, (4)

where cr is the normalized phase speed of random noise. For such noise, the initial

random profile fr(x,t = 0) is translated in time t by the distance crt such that

fr(x,t) = fr(x− crt,t = 0). For practical applications, we shall use henceforth the
normalized Gaussian spectrum:

E(K)=
1

π
e−K

2

. (5)

Although this spectrum may not be completely physically justifiable for each medium,

it is quite convenient for an analytical exercise.

3. Surface-gravity waves in a random velocity field

We consider a surface-gravity wave that propagates along an interface between

two semi-infinite layers of perfect gas under constant gravity, g, which is assumed

to be pointing in the z-direction. The simplest case considered is a closed medium

at z = 0, i.e. all the atmospheric effects are excluded. As the surface-gravity wave

is incompressible (∇· ~V = 0) and the plasma is assumed to be magnetic field-free,
the motions in the bottom medium are described by incompressible hydrodynamic

equations (Lighthill 1978 [13]).

The normalized wavenumber, K = klx, and frequency, Ω =
√

lx/gω, of small

amplitude surface-gravity waves which propagate in a weak random velocity field,

Vr(x,t), satisfy the following dispersion relation (Murawski 2000 [8]):

glx(Ω
2−K)= 4ΩK

∞
∫

−∞

∞
∫

−∞

K̂Ω̂E(Ω̂−Ω,K̂−K)
Ω̂2−K̂

dK̂dΩ̂, (6)

where lx is the correlation length, and g – surface gravity.

We now consider a surface-gravity wave whose wavenumber is K. In view of

the smallness of σ2, its frequency, Ω, can be expanded as:

Ω=
√
K+σ2Ω2+ ·· ·. (7)

Substituting Equations (3)–(7) into Equation (6) we obtain:

Ω̄2≡ glxΩ2=
2K

π3/2

[

cr−2
(

cr(K+w)+

(

1+
K

w

)√
K

)

D(w)

]

−
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i
2

π
K

[

K3/2

w
+sign(cr)

(

cr(K+w)+

(

1+
K

w

)√
K

)

e−w
2

]

, (8)

where

w=
1−2cr

√
K

c2r
(9)

and

D(ξ)= e−ξ
2

ξ
∫

0

eζ
2

dζ (10)

is the Dawson integral (Press et al. 1992 [14]).

It is noteworthy that when w=0 or

cr =
1

2
√
K
= cg, (11)

resonance occurs. Here, cg is the group velocity of the surface-gravity wave. At this

resonance, the real part of Ω̄2 is finite, but the imaginary part of Ω̄2 attains an infinite

value.

4. Numerical results

Figure 1 exhibits the normalized frequency correction, Ω̄2, for a given value

of wave-noise speed, cr. It is interesting that in the case of cr =−1 (top panel) the

Figure 1. Real (solid line) and imaginary (dashed line) parts of the frequency correction glxΩ2
versus the normalized wavenumber K = klx for cr =−1 (top panel) and cr =1/2 (bottom panel)
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Figure 2. Real (solid line) and imaginary (dashed line) parts of the frequency correction glxΩ2
versus cr for the normalized wavenumber K = klx=1

imaginary part of Ω̄2 is negative over the whole range of K. This results in wave

attenuation, the process which leads to an amplitude decrease in time. The real part

of Ω̄2 is positive and, consequently, frequencies of the surface-gravity wave increase

and the random effect grows with K. Thus, wave-noise, while propagating in the

direction opposite to the direction of the surface-gravity wave, transfers some energy

into the wave, whose speed increases.

The bottom panel of Figure 1 shows the normalized frequency correction Ω̄2
for a down-wave propagating wave-noise with a speed of cr = 1/2. According to

formula (11), resonance occurs at K = 1. This resonance should be present in the

imaginary part of Ω̄2, while Equation (8) shows that the real part of Ω̄2 attains

a finite value. Indeed, this kind of resonance is discernible in the bottom panel of

Figure 1. On its left side the wave is attenuated, while it is amplified for K> 1. The

closer K approaches the unity, the more pronounced the process. As the real part of

the frequency correction is negative for low values of K, the surface-gravity wave is

decelerated by a down-wave propagating wave-noise.

Figure 2 displays Ω̄2 versus cr for K = 1. The imaginary part of Ω̄2 exhibits

the 1/x-type singularity at cr =1/2. For cr =1/2
− the imaginary part of Ω̄2 grows to

minus infinity, the process which leads to wave attenuation. For cr > 1/2 the imaginary

part of Ω̄2 is positive, leading to wave amplification. The real part of Ω̄2 continues

at this point. As it is negative at the resonant point, the surface-gravity wave is

decelerated there.

5. Summary and discussion

In this paper we have studied the propagation of surface-gravity waves in

a random velocity field given in the form of wave-noise. The main result of our research

is that these waves experience resonance when the speed of the wave-noise, cr, is equal

to the group velocity of the surface-gravity wave. At this resonance, the real part of

the wave frequency continues, but its imaginary part exhibits the characteristic 1/x

singularity. Surface-gravity waves may transfer their energy into the random flow as

the imaginary part of the frequency is negative for values of cr lower than the wave

group velocity. For higher values of cr, surface-gravity waves may gain energy from
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the wave-noise, as the imaginary part is positive. The real part of the frequency of

a surface-gravity wave attains positive values for high K and cr, but it is negative for

long waves and close to the resonance point.

There is a notable difference between the behavior of surface-gravity waves

and sound waves. For sound waves, resonance occurs when their phase speed ω/k

is equal to the phase speed of the wave-noise, cr (Murawski, Nocera and Pelinovsky

2001 [9]). At this resonance, both the real and imaginary parts of the cyclic frequency,

ω, of a sound wave tend to infinity. For values of cr close to the resonance point, the

waves are decelerated and attenuated for cr <ω/k and accelerated and amplified for

cr >ω/k. The possibility of amplification is akin to the the case of a time-dependent

random density field, which has been discussed by Murawski, Nocera and Mędrek

(2001) [15]. As non-random sound waves are non-dispersive and a surface-gravity wave

is dispersive, we conclude that this property is important as far as wave propagation

in non-dispersive wave-noise is concerned.
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