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Abstract: The paper describes an EMG signal analysis based on the wavelet transform, applied for
the hand prosthesis control. Signal features are represented by wavelet coefficients. A cross-validation
method is applied for the feature selection process. The classification algorithm uses multistage
recognition. The information about finger posture provided by a data glove is recorded concurrently
with forearm EMG signals. The acquired data are used to train the classification algorithm.
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1. Introduction

The discussed problem concerns the recognition of palm fingers movements on
the basis of electromyography (EMG) signals. The elaborated method of recognition is
applied to artificial hand control. The analyzed EMG signals create a set of information
about the executed movement of fingers. These signals are superpositions of potentials
accompanying the activity of the muscle motor units activated by the nervous system
for a given type of movement. The different movements are related to stimulation of
different motor units, and different spatial location of these units within the analyzed
muscles causes the formation of EMG signals with differing features, e.g. with different
frequency spectra.

Consequently, the authors’ earlier investigations concerned the extraction of
features on the basis of the Fourier transform [1–3].
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The initial experiments were conducted with root-mean-squared (rms) values
of EMG signals. For this purpose a two-channel measuring circuit was developed.
Each channel contained a differential amplifier with an amplifying coefficient of about
2000V/V and a filtering-rectifying-integrating (f-r-i) module which formed the output
signal proportionally to the rms value of the measured myopotentials. The rms value
was then proportional to the level of excitation of the examined muscle. Two muscles,
the elbow wrist flexor and the finger extensor, responsible respectively for wrist flexion
and extension, were selected for the experiments. The construction of the measuring
circuit was preceded by an analysis of the EMG signals’ power spectrum to determine
the circuit parameters (see Figure 1).

Figure 1. Exemplary plots of EMG signals and their frequency spectrum
for the two tested muscles
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Figure 2. EMG signals after filtering, rectification and integration

The analysis showed that different muscle myopotentials could be measured by
channels of the same parameters. After amplification and transformation the analogue
signals (Figure 2) were sampled by a prosthesis microcontroller. The analysis of signal
amplitude turned out to be reliable enough to control a gripper mechanism with one
degree of freedom, if the gripper’s opening and closing with controlled velocity was
considered.

However, to control prosthesis with a greater number of degrees of freedom the
above method was avoided. This resulted from the lack of selective access to EMG
potentials from the muscles responsible for separate finger movements.

A consideration of the nature of electrical signals’ spatial propagation through
the human body led to the conclusion that to control more sophisticated prosthesis
movements the Fourier analysis of EMG signals had to be applied.

Therefore, our next experiments were conducted using the Fourier transform
and a neural network and statistical model as classifiers. The features were selected by
the extrapolation method. The experiments were performed on a group of four healthy
persons aged 23–25 (Q1, Q2, Q3, Q4), using the same selected muscle groups. The
persons performed eight different movements (plus one neutral movement): (1) flexing
and (2) extending the wrist, (3) flexing and (4) extending the fingers, (5) supination
and (6) pronation of the wrist, (7) radial deviation and (8) ulnar deviation, plus
(9) a neutral state. The sample frequency for two electrode pairs was f = 1.6KHz.
The Hamming window function was used to decrease the effects of the not integer
number of signal sampling cycles. The number of averaging points was IP=10.

Based on the series of measurements, a 90-element teaching set was obtained
(10 patterns for each class) and, after half an hour’s break, a 180-element testing set
(20 patterns for each class) was created. A multilayer perceptron (MLP) with the back
propagation error teaching method and the Kohonen Learning Vector Quantization
(LVQ) neural networks, as well as the statistical approach of the k-nearest neighbour
(k-NN) were applied as classifiers. The obtained results of the testing set recognition
are shown in Table 1.

The LVQ network gives the best results, with an average recognition error of
6.17%. This is a significant improvement from those described by Hudgins [4–6],
although 16 persons were tested there, four classes recognised and other muscle groups
used.
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Table 1. The obtained average errors of recognition

Classifier Q1 Q2 Q3 Q4 Average

k-NN 12.22% 4.44% 7.78% 8.33% 8.19%

MLP 17.28% 5.83% 5.89% 7.61% 9.15%

LVQ 9.50% 2.94% 5.83% 8.56% 6.17%

So far, our investigations have also shown that the unsteady character of the
signals renders the patterns obtained in this way insufficient for a reliable classification
of movements of separate fingers. The analysis of signals in the joint domains of
frequency and time gives qualitatively new possibilities in this case. This group of
time frequency methods comprises the wavelet transform method.

The wavelet analysis is one of the latest and most intensely studied meth-
ods. Most often a discreet form of the wavelet transform is used, closely related to
multidistributive analysis. Various methods of EMG signal analysis, as well as pre-
liminary results of their applications to finger movement recognition, are discussed in
papers [4–11].

Hudgins used signal features in the time domain [4]. He proposed the following
features: zero crossing, mean absolute value, mean absolute value slope and trace
length, and used these features as the input vector of an artificial network organized
as a multilayer perceptron (MLP). The network recognized four classes of arm muscle
actions, with a 10% error.

More advanced methods were used by Englehart [5, 6]. He applied joint time
and frequency domain methods: the Short-Time Fourier Transform, the Wavelet
Transform and the Wavelet Packet Transform. He also used two methods of feature
selection: Class Separability (CS) and Principal Components Analysis (PCA), as well
as two classification methods: MLP and Linear Discrimination Analysis (LDA). He
compared the obtained data with Hudgins’ results, using the same recognized classes,
and showed that for the time domain approach the best combination is CS and MLP
(9.25% error), whereas for the joint time and frequency domain approach the best
combination is PCA and LDA (6.25%).

Similar research was conducted by Nishikawa [7–9], who used a wavelet Gabor
transform and applied an interactive trainer unit in the neural network classifier. It
recognised 6 classes on the basis of two EMG signals with average results of 81.5%
on-line learning and 70.9% off-line learning.

Moshou [10] used the wavelet transform for feature generation and applied two
methods for feature set reduction: soft thresholding and hard thresholding. He also
applied the Self-Organized Maps Kohonen Network as a classifier and used it for car
driver fatigue recognition.

Jeong-Su Han [11] recognised 8 classes using the fuzzy pattern classifier and the
fuzzy min/max neural network. The measurements were performed with a 4-channel
circuit. He used four types of time domain features: integral absolute value (IAV), av-
erage IAV slope (ASIAV), variance (VAR) and zero cross (ZC), and one in the frequency
domain: frequency ratio (FR). His recognition results were in the range a 83-90% of
correct results. The system controlled a robot arm mounted on a wheelchair.
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Figure 3. A block diagram of the EMG signal recognition process

A general block diagram of the recognition process is shown in Figure 3. It
includes two basic stages:

(a) determination of features of the measured signal and
(b) signal classification on the basis of the determined features.

The realization of the first stage consisted in developing an algorithm of feature
extraction and selection using a wavelet transform, the second – in developing an
algorithm of multistage recognition using a statistical model with a teaching set.
These algorithms are discussed in the following paragraphs.

2. EMG signal analysis

The wavelet transform method (WT) transforms a signal in the joint fields of
time and frequency, offering a possibility to locate the harmonic components of the
signal in time. This method offers much better analytical possibilities for unsteady
signals in comparison with the Fourier transform method (FT). It locates quick
changes of the signal in time and frequency well, whereas FT averages energy over
frequencies in the analysed time window and thus locates frequency of stationary
signals well. This is illustrated in Figure 4. In the FT method, the size of the time
window is constant and independent of frequency, which implies a constant frequency
resolution. However, in the WT method the size of the time window varies with
frequency. This gives good time location for high frequencies, as well as good frequency
location for large time windows. According to Heisenberg’s indeterminacy principle,
it is impossible to estimate concurrently the exact time and frequency location. An
additional advantage of WT is a higher speed of its operation resulting from its lower
computational complexity in comparison with FT. The complexity of FT and WT

Figure 4. The partition of the time-frequency space into Heisenberg rectangles
for the FT and WT methods
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amounted to O(n log(n)) and O(n), respectively: that means a smaller number of
necessary operations for the wavelet transform method.

The conducted investigations used the fast discreet Wavelet transform al-
gorithm given by Mallat [3, 5]. The algorithm exploits the multidistributive repres-
entation of signals. It uses the banks of filters associated with the suitable wavelets.
The transform is lossless.

2.1. The algorithm of the discreet wavelet transform

The mother wavelet, Ψ(t), determines a band-pass filter; we can thus generate
a family of wavelets:

Ψab(t)=
1√
a
Ψ
(

t−b
a

)

, a∈R+, b∈R, (1)

where the a parameter is a scale and corresponds to frequency, while the b parameter
scales a shift in time.

The continuous wavelet transform of signals f(t) ∈ L2(R) is given by the
following equation:

CWT (a,b)=

+∞
∫

−∞

f(t)Ψ∗ab(t). (2)

As a result of quantization of parameters a= 2m and b= n2m in Equation (1), we
obtain:

Ψmn=2−m/2Ψ(2−mt−n), where (m,n)∈Z2, (3)

which is a dyadic orthonormal wavelet basis of L2 space.
The discreet wavelet analysis of signal f(t)∈L2(R) consists in the calculation

of wavelet coefficients for the expansion of Equation (2), after substitution (3). The
one-dimensional signal f(t) can be expressed as:

f(t)=
∑

m

∑

n

dm[n]Ψmn, (4)

where the wavelet coefficients, dm[n], represent the common features of signal f and
wavelet Ψ.

The fast wavelet transform is closely associated with the signal multidistributive
analysis using the orthogonal basic functions for the spanning of the signal onto the
suitable subspaces of the signal details and approximation. Such spaces have to fulfil
the conditions given in [1, 3, 5].

The approximation of the function, f(t), with resolution 2m for scale, J , will
be the orthogonal projection onto space Vj decomposed according to the equation:

Vj =Vj0 ∪
J−1
⊕

j=l0

Wj , j0<J, j0 ∈Z. (5)

Spaces Wj are called the spaces of details and the Vj0 space – the space of approxim-
ation.
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Figure 5. Exemplary EMG signals from the finger extensor and the elbow wrist flexor

The calibrating function, ϕ(t), is then the function which is scaled and trans-
lated when it spans on Vj spaces:

ϕj,k =2j/2ϕ(2jt−k), k∈Z. (6)

However, the ψ(t) wavelet is a scaling and translating function, which spansWj spaces:

ψj,k =2j/2ψ(2jt−k), k∈Z. (7)

Finally, we can represent a one-dimensional signal as:

f(t)=
∞
∑

k=−∞

cj0,kϕj0,k(t)+
J−1
∑

j=j0

∞
∑

k=−∞

dj,kψj,k(t), (8)

where the wavelet coefficients are calculated as follows:

cj0,k =

∞
∫

−∞

f(t)ϕj,k(t)dt, dj,k =

∞
∫

−∞

f(t)ψj,k(t)dt. (9)

Coefficients cj0,k create approximations of the signal, f(t), on the j0 level, while
coefficients dj,k represent the details of the signal, f(t), on the given levels.

The numerical realization of the fast discreet wavelet transform does not use
wavelets ψ(t) or the calibrating function, ϕ(t), but the filters associated with them.
The calibrating function is connected with the low-pass filter giving the signal’s
approximation, while the wavelet is connected with the high-pass filter giving signal
details.

An example course of wavelet decomposition of an EMG signal is shown in
Figure 6.

3. Multistage recognition with wavelets

The algorithm of multistage recognition with the teaching set is shown in
Figure 7.

The considered problem of recognition has been split into sub-problems. A de-
scription of the method and the algorithm of multistage recognition are given in
papers [1, 2]. We have modified the basic algorithm as follows.
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Figure 6. EMG signal wavelet decomposition for the elbow wrist flexor f(t) from Figure 5
using the db3 wavelet; the spaces of details, Wj , are shown on the right and the spaces

of approximation, Vj , of the signal, for scale j=2 to 14 – on the left
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Figure 7. The scheme of the multistage recognition [2]

Let us use the following symbols and descriptions: M – the set of all classes;
Min – the set of numbers of classes (terminal nodes) attainable from the in node;
Din – the set of direct successors of the node in; D(n) – the set of nodes distant from
a root about n, that is the set of decisions possible for stage n−1, D(n)=M ; x∈X –
the vector of features describing the object; xin ∈Xin ∈X – the vector of features
used in the in in node.

The modification consists in that the consecutive decomposition levels determ-
ine the set of features for undertaking a successive decision. Discriminating the signals
onto detail levels and the approximation level we can choose scales j in such a way
that the interesting waveband will cover the levels of details, that is they are cap-
tured by {dj,k}, for j= j0, .. .,J−1. Sets XWj are the sets of signal features on given
levels of decomposition. The adopted approach simplifies the algorithm of multistage
recognition, as it imposes the set of features used in the succeeding stages of the de-
cision process. The next stages already serve as corrections of the decisions from the
previous levels.

It is known that with the growth of scale j the quantity of features increases and
it is not profitable to use them in the next stages. One should rather choose subsets
XWj , dependent on the already taken decisions. The use of wavelet approximation
imposes the structure of the multistage recognition algorithm. We have established
the structure of a decision tree (see Figure 8), as well as the set of features used in
the next stages. The closest neighbour algorithm is used as a classifier at each stage.
Two classes have been accepted: 1 – for images connected with forefinger flexion and
2 – for the middle finger. The method of cross-validation described in papers [12, 13]
has been used for feature set reduction and to evaluate the recognition algorithm in
succeeding stages.

A set of features which improved the quality of discrimination between different
classes has been distinguished for feature subsets XWj . The distinguishing procedure
was as follows: one feature in subset XWj was chosen and another rejected, then
the number of wrong classifications was estimated by the cross validation method.
This was repeated for each feature. Finally, the feature whose rejection gave the best
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Figure 8. A decision tree of multistage recognition using wavelet coefficients
as representations of signal features

improvement for classification was rejected permanently. The procedure was repeated
until the rejection of any feature deteriorated the quality of classification.

4. Experiment

One healthy person took part in the experiment. Electrodes were placed
on the forearm over the muscles of the finger extensor and the wrist elbow
flexor. The measuring system included two pairs of dry electrodes located over
the selected muscles and a reference electrode situated in an electrically neut-
ral place, an arrangement of amplifiers and galvanic separators of analogue sig-
nals, eight-channel analogue input device NI4472 with the maximum frequency of
sampling of 102.4kS/s for each channel and 24-bit resolution. The NI4472 was
equipped with an anti-aliasing filter automatically tuned to the Nyquist frequency
(half of the sampling frequency). The acceptable input voltages for each channel were
±10V. The device cooperated with a Pentium 4 PC with LabView6 for recording
signals.

The measurements were conducted for isotonic flexion movement of forefinger
and the middle finger. 13 and 15 pairs of EMG signals were registered for the forefinger
and the middle finger, respectively. The signals were recorded with sampling frequency
fs=11025Hz and 16-bite resolution and period length of about 2s, which gave about
22000 samples for one signal. The useful band for EMG signals was included into
the range of 0Hz to 500Hz. Basing on this parameter, wavelet decomposition was
performed on the scale level from j=2 to 10 using the Daubechies wavelet, db3. This
gave about 2000 coefficients. With the scale range selected in this way, the wavelet
coefficients described every signal in the band from 2Hz to 350Hz.

Let us mark the ith EMG signal registered from the elbow wrist flexor and from
the finger extensor as f i1(t) and f

i
2(t), respectively. Further more, {di,1j,k} and {d

i,2
j,k}

are the sets of wavelet coefficients representing f i1(t) and f
i
2(t), respectively. As image

xi, the joint set of wavelet coefficients calculated for both signals for every pair i:

xi= {di,1j,k,d
i,2
j,k,j,k}, j=2, .. . ,10, k∈Kψ(j,[t0,t1]) (10)

was accepted, where t0 and t1 mark the beginning and the end of registration,
respectively.
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The prepared images contain about 4000 features. From the signal images,
f i1(t), prepared in this way and f

i
2(t), a teaching sequence, SN , was created with the

length of N =28. The closest neighbour recognition rule was used for each stage, given
by the following equation:

Ψin(xwn−1)=ml,

l=min
∑

k∈Kϕ(n−1,[t0,t1])

[

(

d1n−1,k−dl,1n−1,k
)2

+
(

d2n−1,k−dl,2n−1,k
)2
]

, (11)

where ml is a class including image xl of teaching sequence SN and xWn−1 is the
subset of the recognised image: x= {d1j,k,d2j,k,j,k}, j=2, . .. ,10, k∈Kψ(j,[t0,t1]).

In the basis on this sequence, the building of an algorithm of finger movement
recognition was approached according to the algorithm concept discussed above.

5. Conclusions

The conducted experiment is preliminary in character. The aim of the experi-
ment has been to distinguish the movements of flexion of two fingers – the forefinger
and the middle finger. The developed algorithm of multistage recognition numbered
a given image into one of the two classes, with a 3.5% error. The wavelet representation
of signals was used to extract features. Next, a considerable reduction of features was
done for the consecutive recognition stages according to the cross-validation method.
Out of 4000 enumerated features (wavelet coefficients) the algorithm used only 10.
Moreover, they were not used simultaneously. The calculation of recognition rules was
done off-line on a PC. Figure 8 shows the multistage recognition tree of EMG signals.
The amount of features before (above) and after (below) optimisation of the feature
set is shown on the left side of every node. On the right side of every node there
are numbers of wrong recognitions before (above) and after (below) the optimisation.
Below every branch the amount of images classified at the given node to class 1 and 2
is given.

Current research aims at increasing the set of classes (so as to increase the
number of recognized movements). It is necessary to examine the movements of flexion
and extension of three fingers: the thumb, the forefinger and the middle finger. The
final goal of this research is to develop a control system of dexterous prosthesis, so the
experiments should be conducted first of all with the participation of persons disabled
by an amputation at the forearm level.
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