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Abstract: Biomedical signals are commonly recorded with many kinds of noise. One of these is

a waveform of the electrical activity of muscles. This “natural” distortion is usually modelled with

a white Gaussian noise. In order to suppress such noise a weighted myriad filter is applied. The

weighted myriad filter belongs to a class of non-linear filters and requires knowledge about noise

impulsiveness. An impulsive noise can be described with α-stable distributions. One objective of this

paper is to apply α-stable distribution as a model of real-life muscle noise in ECG signals. The other

objective of the paper is to apply a weighted myriad filter to suppress impulsive noise in biomedical

(ECG) signals. The reference filters have been the Savitzky-Golay smoothing filter and the median

filter. The obtained results have shown that α-stable distributions can be applied to model muscle

noise and that a weighted myriad filter with a Chebyshev weighted function can effectively suppress

such noise.
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1. Introduction

When biomedical signals are recorded, many kinds of noise may appear.

Of many different biomedical signals, the electrocardiogram (ECG) signal has been

chosen, well-known for a long time and well described in literature. The ECG signal

arises as a result of the electrical activity of the heart and is almost always disturbed

by noise, such as: 50Hz power line interference, baseline wander, an electromyogram

(EMG), motion artifact [1]. The spectrum of ECG signals significantly overlaps, with

the spectrum of muscle noise and motion artifacts. Muscle noise is the most difficult to

suppress. In fact, most types of noise are not stationary, which means that noise power

measured by noise variance is characterized by variability [2]. White Gaussian noise is

usually used to model an EMG signal, according to the Central Limit Theory. But this

assumption may lead to over-optimistic conclusions. Muscle noise frequently shows an

impulsive nature, which means that the Gaussian model may fail. In order to model

muscle noise more properly, an α-stable distribution model is introduced. Impulsive

noise can be suppressed with non-linear filters such as the weighted myriad filter.
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Linear filtering techniques are often used in applications of digital signal pro-

cessing. Their popularity is due to their mathematical simplicity and their efficiency

in the presence of additive Gaussian noise. For example, a moving average filter is

the optimal filter (according to the maximum likelihood criterion) for additive Gaus-

sian noise in terms of mean square error [3]. The assumption that noise is normally

distributed is rational and can be justified using the Central Limit Theorem, making

it a reasonable model for any physical phenomena. But in the real worlds of signals

there are many signals that are not well described by the Gaussian model. For in-

stance, a large number of noise processes are impulsive in their nature. Under such

conditions linear filtering techniques involve a significant performance degradation,

even for small levels of impulsiveness [4]. Non-gaussianity often results in significant

performance degradation for systems optimized under the Gaussian assumption [5].

Impulsive noise cannot be suppressed sufficiently by linear filtering. One type of dis-

tribution that exhibits heavier tails better than the Gaussian distribution is the class

of α-stable distributions, which are recently used to model the diverse phenomena

mention above [5, 6].

Biomedical signal processing often requires the use of filters to shape the

frequency content of the signal. Signal smoothing, enhancement or shape preservation

when impulsive noise appears makes robust methods the only alternative to linear

filtering. Linear filters tend to blur sharp edges, destroy lines and other fine image or

signal details in the presence of heavy-tailed noise. However, there is an important

class of smoothing applications that require careful treatment and preservation of

signal edges [3, 7, 8]. Weighted myriad filters have recently been proposed as a robust

filtering and estimation technique in impulsive environments. This class of filters have

originated from the simple myriad, which is defined as the maximum likelihood of

location of the Cauchy distribution [6].

The main aim of this paper is modelling EMG signals with α-stable distributions

and suppression of their noise with a weighted myriad filter. An additional aim

of this paper is to present the effect of weights (weighted function) selection on

suppressing impulsive noise in biomedical signals. The organization of the paper is as

follows. The paper begins with an introduction of α-stable distribution and its main

properties. In the next section muscle noise is analyzed. A myriad filter and its variety

– a weighted myriad filter – are presented in the next section. Then, weighted functions

are presented. The next section presents testing procedures. Finally, a number of

results and conclusions are presented.

2. α-stable distributions

There are many signals and noises which do not exhibit gaussianity, for example

power switching transients, accidental pulses in telephone lines, spread-spectrum

signals and man-made noise in communication channels, impulsive phenomena in

underwater acoustics and others. In biomedical engineering, such phenomena occur in

diathermia, when using surgical devices, or in electrocardiology (muscle noise), when

a system is switched from one mode to another. Such signals can be characterized by

their impulsiveness. Signals and noises in this class of impulsiveness are more likely

to occur in spikes or accidental bursts of outlying observations than one would expect
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from normally distributed signals. Consequently, their probability density functions

(PDF) decay in the tails less rapidly than the Gaussian density function. One of

the main features of impulsive noise is short-duration interferences, attaining large

amplitudes with probability much higher than the probability predicted by Gaussian

distributions. These impulsive features can be well characterized using α-stable

distributions [5, 9]. In this work, a symmetric α-stable distribution is described.

The class of symmetric α-stable distributions (SαS) can be characterized by

their distribution having the following characteristic function:

ϕ(t)= exp(jµt−γ|t|α), (1)

where α is the characteristic exponent restricted to the range 0 < α ≤ 2, µ is the
real-valued location parameter (corresponding to the mean for 1 < α ≤ 2 and the
median for 0<α≤ 1), and γ is the dispersion of the distribution (γ > 0, it determines
the spread of density around its location parameter; dispersion behaves similarly to

the variance of Gaussian density and is equal to half the variance when α= 2, the

Gaussian case) [4, 5, 10]. The most important parameter of α-stable distributions is

the characteristic exponent, because α controls the heaviness of distribution tails. If

a stable random variable is observed, the larger the value of α, the less likely it is to

observe values of the random variable which are far from its central location. A small

value of α denotes a significant shift in the probability mass of distribution tails [5].

An interesting property of SαS is that there are no closed-form expressions for the

general stable density and distribution functions, except for the Gaussian (α = 2)

and Cauchy (α=1) ones. But power series expansions of stable density functions are

available. The standard SαS density function is given by:
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where Γ(·) is the usual gamma function defined by:

Γ(x) =̂

∞
∫

0

tx−1e−tdt. (3)

The algorithm of generating a random variable with an SαS is presented in [11]. For

more information about α-stable distributions see [5].

The class of α-stable distributions does not have finite second (or higher)

moments. This means that, for example the use of variance as a measure of dispersion

is meaningless. In fact, α-stable distributions with α 6= 2 have finite moments only
for an order p lower than α. Likewise, many standard signal processing tools (e.g.

spectral analysis and all least-squares techniques) which are based on the assumption
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of finite variance will be significantly destabilized and may in fact give misleading

results [5]. An infinite variance also means that a random variable may receive values

very remote form the most expected ones. This may be used to ascertain whether

noise has an impulsive character. Some algorithms need only information about the

nature of noise (Gaussian or non-Gaussian), and an accurate value of the characteristic

exponent is not required [5]. The simplest method is to directly test whether the

population variance has a finite variance.

Given a set of samples {x(n)}Ln=1, the population variance based on the first l
observations is written as:

S2l =
1

l−1

l
∑

n=1

(x(n)− x̄l)2, (4)

where

x̄l=
1

l

l
∑

n=1

x(n), (5)

and plot the running population variance S2l against l. An example series of impulsive

noise and the change of population variance are presented in Figure 1.

The knowledge of the parameters of impulsive noise is required for the proper

operation of a weighted myriad filter. Several methods have been proposed to estimate

α-stable distribution’s parameters (see [5, 9, 10, 12]). In this paper, the method

described in [10] has been used. Estimation in the log |SαS|-process is characterized
by low computational complexity, and the estimators are closed-form expressions. Let

Figure 1. Running population variances for two values of α: α=1.4 and α=1.8
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Y equal log |X|, where X denotes a random variable of the SαS distribution. The
first and second moment of Y can be determined as:

E(Y )=Ce

(

1

α
−1
)

+
1

α
log(γ), (6)

V ar(Y )=E{[Y −E(Y )]2}= π
2

6

(

1

α2
+
1

2

)

, (7)

where Ce = 0.57721566. .. is the Euler constant and E(·) is the expected value
operator.

The characteristic exponent α is calculated from Equation (7), while dispersion

γ is obtained from Equation (6).

3. Modelling real-life muscle noise

Muscle noise is the result of superposition of a large number of action potentials

which forms in muscles and such a bio-waveform usually coexists with ECG or other

signals [13]. EMG signals are non-stationary and non-linear by nature and, as shown

in [14], a part of an EMG signal in a finished time interval has sufficient stationary

features.

Several methods have been proposed to mode muscle noise. White Gaussian

noise is the most frequently used, but (as shown in [15]) only some parts of an EMG

signal (10% of subsequences of an EMG signal of 2sec. duration, sampled 2000 times

per sec.) can be correctly modelled with white Gaussian noise. This means that there

were no reasons to reject the hypothesis of a Gaussian distribution of muscle noise.

Muscle noise can also be modelled using the auto-regressive (AR) model, but this

model is characterized by a relatively high order [15]. It can be also modelled as

muscle spikes, which are assumed to be an impulsive response of a second-order linear

system [13].

While analyzing an EMG signal, one can observe a number of samples for which

values are significantly removed from the average sample value. Such samples occur

as spikes of large value. In this situation α-stable distribution can be applied as the

model proper for muscle noise. An example of a real-life EMG signal and simulated

muscle noise distributed with α-stable distribution is presented in Figure 2.

The application of α-stable distribution as a statistical model is theoretically

justified by two important properties. The first is the stability property: the sum of

two independent stable random variables with the same characteristic exponent is

also stable and has the same characteristic exponent. The second is the Generalized

Central Limit Theory: if the sum of an infinite number of independent and identically

distributed (i.i.d.) random variables (with finite or infinite variance) converges in

distribution, the limiting distribution is α-stable. Thus, α-stable random variables

can arise in the physical world as the effects of a large number of independent

contributing factors in the same way that Gaussian random variables do. If an

observed signal or noise can be thought of as the sum or result of a large number

of i.i.d. effects, then the Generalized Central Limit Theorem suggests that a stable

model may be appropriate [5, 6, 9]. For example, α-stable distributions have been

used to model multiple access interference in radio networks where the independent
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Figure 2. A real-life EMG signal (upper plot) and a realization of simulated alpha-stable noise

(α=1.8, lower plot) and their power spectrum characteristics in the frequency domain

interfering sources are modelled as a Poisson field in space and the superposition of

the interfering electromagnetic waves follows an α-stable distribution [6].

Figure 3 presents an EMG signal randomly chosen from the available base,

consisting of 31200 samples at a sampling rate of 2000 samples/s. The plot is

divided into 20 subsequences and the characteristic exponent α is estimated for each

subsequence. It may be noted that for the 10th and 16th subsequences the value of

α decreases to ca. 1.5, which indicates that the impulsiveness of this signal’s sequence

has increased. On the time-series plot, one can see the instantaneous values of these

subsequences grow rapidly. The average value of the characteristic exponent α for

the whole of this EMG signal equals ca. 1.74, which value suggests that this signal

cannot be modelled with Gaussian distribution and the impulsiveness of the signal

is not very high.

4. Myriad filters and weighted myriad filters

Myriad filters belong to a class of maximum likelihood estimators of location

(M-estimators). The theory of M-estimators is a very general and mature field in

robust statistics. For a sequence of samples x1,x2, .. .,xN the M-estimator of location

is defined as the value β which minimizes the sum:

β̂=argmin
β

N
∑

i=1

ρ(xi−β). (8)
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Figure 3. A real-life EMG signal (lower plot) and the characteristic exponent α

estimated for each subsequence according to Equation (7)

The ρ(·) function is usually known as the cost function associated with the estimator.
The term “cost” is explained on the basis of the engineering interpretation that

a “penalty” of value ρ(xi−β) shall be paid for the estimator to be away from sample
xi. From this point of view, the M-estimator is the point β with the minimum sum

of costs [8]. Table 1 shows M-estimator cost functions and filter outputs for various

filter families [8, 16, 17].

Table 1. M-estimator cost function and filter output for various groups of filters

Filter Cost function Filter output Density function

linear (xi−β)2 mean{x1,x2, . .. ,xN}=
∑N

i=1
xi
N

Gaussian

median |xi−β | median{x1,x2, .. . ,xN} Laplacian

myriad log[k2+(xi−β)2] myriad{x1,x2, . .. ,xN ;k} Cauchy

weighted mean wi(xi−β)2
∑N

i=1
wixi
N
/
∑N

i=1wi Gaussian

weighted median wi |xi−β | median{xi �wi}Ni=1 Laplacian

weighted myriad log[k2+wi(xi−β)2] myriad{w1 ◦x1,w2 ◦x2,. . .,wN ◦xN ;k} Cauchy

A sample myriad is defined using the cost function log(k2+x2i ), where the

so-called linearity parameter k controls the impulse-resistance (outlier-rejection cap-

ability) of the estimator [16]. For small values of k, the filter tends to favor values near

the most populated clusters of input samples. The k→ 0 case leads to a highly robust
selection filter called a weighted mode-myriad filter, which means that the myriad
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becomes a mode-like estimator in the sense that it will always lie in one of the most

repeated values [4]. When k→∞ and α→ 2, the output of the myriad filter be-
haves like the output of a moving average filter [6, 17, 18]. For the weighted median

(Table 1), xi �wi denotes the replication of sample xi by a positive integer value, wi.
The filter output is then an unweighted median of a modified set of observations,

where each sample xi appears wi times [16]. As the extension of the sample mean

to the linear normalized FIR filter, a weighted myriad filter is defined by assigning

weights to the sample in the maximum likelihood of location estimation. The weights

reflect the different levels of reliability of the observed samples [6, 16, 17].

Let us consider a set of observations, {xi}Ni=1, and a set of filter weights, {wi}Ni=1.
The output of the weighted myriad filter is defined as:

β̂≡̂myriad (x1 ◦w1,x2 ◦w2, . .. ,xN ◦wN ;k)=

=argmin
β

N
∏

i=1

[k2+wi(xi−β)2] = (9)

= argmin
β

N
∑

i=1

log[k2+wi(xi−β)2],

where xi ◦wi denotes the weighting operation and the weights are restricted to non
negative, wi ≥ 0, i= 1,. . .,N , N is the window length. Weighted myriad filters may
use negative weights, which results in their potential instability (the output may be

+∞ or −∞) [6]. When all weights equal 1 (wi=1 for i=1, .. . ,N), a sample myriad
is obtained in dependence on the linearity parameter, k.

It is important to realize that the location estimation problem considered in this

paper is related to the problem of filtering a time-series x(n) using a sliding window.

The output, y(n), at time n, can be interpreted as an estimate of location based on

the input samples:

y(n)=myriad {x(n−N1),. . .,x(n−1),x(n),x(n+1),. . .,x(n+N2);k}, (10)

where N is window length. (If N is even then N1 =
N
2
and N2 =N1−1, if N is odd

then N1=
N−1
2
and N2=N1.)

The presented model of independent but not identically distributed samples

can acquire the temporal relationships which usually exist among input samples. As

an estimation of location the output, y(n), would expect more on sample x(n) in

comparison with samples that are further away in time. By assigning varying scale

factors in modelling the input samples, leading to different weights (reliabilities), their

temporal correlations can be effectively accounted for [17]. For more information about

how to estimate the output of a myriad filter see [4, 16, 17].

The fundamental problem of weighted myriad filters, and weighted filters in

general, is the proper choice of weights and window length N . Of course, there

are special optimization procedures and it is possible to find the proper values of

weights in the adaptive way. But this approach is rather time-consuming and when

the characteristic of the signal changes the optimization procedure has to be repeated.

A description of an adaptive weighted myriad filter can be found in [6]. In this paper,

weights have been calculated using the well-known weighted functions, also known as

window functions.

tq208f-e/206 9IV2004 BOP s.c., http://www.bop.com.pl



Application of Weighted Myriad Filters to Suppress. .. 207

5. Weighted functions

Weighted (window) functions or data windows are well known in the literature

on digital signal processing. Such functions are frequently used to improve the

accuracy of discrete Fourier transform (DFT)-based spectrum analysis, to design

digital filters, to simulate antenna radiation patterns, etc. [19]. In this paper, the

Chebyshev, Kaiser and triangular windows functions have been chosen. Expressions

defining these window functions are presented below:

• The Chebyshev window (also called the Dolph-Chebyshev or the Tchebyshev
window): let wc(n) be the N -point inverse Discrete Fourier Transform (DFT) of

cos
{

N ·arccos
[

ξ ·cos(πm
N
)
]}

cosh[N ·arccosh(ξ)] , (11)

where

ξ=cosh

(

1

N
arccosh(10A)

)

and m=0,1,2,. . .,N−1.

A is a parameter that allows to adjust side-lobe levels with respect to the

main lobe level of the window. In this paper this parameter has been chosen

arbitrarily as A=25. The window’s length should be odd.

• The Kaiser window:

wk(n)=

I0

[

η

√

1−
(

n−p
p

)2

]

I0(η)
, (12)

where n = 0,1,2,. . .,N − 1 and p = (N − 1)/2. I0(η) is the first-kind Bessel
function of the zero order,

I0(x)=̂1+
∞
∑

k=1

[

(x/2)k

k!

]2

,

η=̂







0, for A< 21,
0.5842 ·(A−21)0.4+0.07886 ·(A−21), for 21≤A≤ 50,
0.1102 ·(A−8.7), for A> 50.

A is side-lobe attenuation [dB], η is the Kaiser window parameter that affects

the side-lobe attenuation of the Fourier transform of the window. In this

paper η=5.

• The triangular window:

wt=1−
2|n−(N−1)/2|
N−1 , (13)

where n=0,1,2,. . .,N−1.
Matlab procedures have been used. For more information about window func-

tions see [19].

6. Numerical experiments

Weighted myriad filters with the weight functions presented in previous section

were evaluated in a computer simulation procedure involving filtering an ECG signal
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corrupted by noise distributed with symmetric α-stable distribution and real-life

muscle noise. The five, different, single ECG cycles used in this experiment were

chosen randomly from the available database. All signals were sampled 2000 times

per second and consisted of 1560 samples each. In order to obtain signals with a high

signal-to-noise ratio (SNR), the signals were modelled by a linear combination of

Hermite functions. These signals were corrupted with α-stable distributed noise for

different values of α. The noisy ECG cycles were obtained by adding each ECG cycle

to noise of various SNR. As mentioned above, the variance of a random variable of

α-stable distribution does not exist and therefore a generalized signal-to-noise ratio

(GSNR) was used, defined as follows:

GSNR= log
10

(

σ2s
aγ

)

[dB], (14)

where σ2s is the variance (power) of a clean signal, γ is the dispersion of impulsive

noise calculated as per [10], and a is a scaling factor. The additive assumption was

that the GSNR value was independent of time. Results were obtained for two values of

GSNR, viz. 0dB and 20dB. For each value of α, 50 different realizations of impulsive

noise were generated with known GSNR values. Then the results were averaged.

Generally, filtering is processing a signal in the time-domain resulting in

a change of the signal’s original spectral content. This change is usually a reduction

of unwanted components of the input signal [19]. Biomedical signals, like the ECG

signal, are corrupted with noise the spectral components of which lie in the range of

the useful part of deterministic signals. For example, the accuracy of high-frequency

ECG analysis is limited by the presence of noise, the precision of time alignment and

non-stationary signals [20]. The filtering process should not deform the signal, but

there exists a group of filters which introduce inadmissible deformations of the signal.

One of the ways to overcome this disadvantage in a FIR filter is the requirement of

a constant group delay. It means that no phase distortion is induced in the filter’s

desired output signal. All the frequency components of the filter input signal are

delayed by an equal amount of time before they reach the filter’s output [19]. Another

is that the signal and the noise should be orthogonal.

This approach is difficult to apply for non-linear filters, hence in this simulation

the relative power of the additive residual distortion introduced by the myriad filter

has been measured. It shows how the myriad filter distorts the ECG signal while

attempting to cancel the impulsive noise. Comparing the output of the myriad filter,

xo(n), with the clean ECG cycle, s(n), the additive residual distortion is defined as:

D=10log
10

∑L

n=1 [xo(n)−s(n)]
2

∑L

n=1[s(n)]
2

[dB], (15)

where L is the signal’s length. Signals xo(n) and s(n) are aligned and they have the

same time index.

The Savitzky-Golay smoothing filter, also called the digital smoothing polyno-

mial or least-squares smoothing filter, has been used as a reference filter. The funda-

mental idea of using this filter is to fit a different polynomial to the data surrounding

each signal sample. Smoothed samples are computed by replacing each sample with

the value of its fitted polynomial [21].
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Figure 4. The distortion, D, of the Savitzky-Golay filter for an ECG cycle disturbed

with noise at GSNR=10dB, modelled with SαS distribution for α=1.8

The Savitzky-Golay filter is determined by two parameters: the polynomial

order k which must be less then the window size, N , which must be odd. An

experiment was carried out in order to choose the proper values of these parameters.

For a randomly chosen ECG cycle which was disturbed with noise of α-stable

distribution at GSNR=10dB and α= 1.8, the residual distortion, D, introduced by

the Savitzky-Golay filter was measured. The results are presented in Figure 4. The

minimum value of distortion for the Savitzky-Golay filter was introduced when the

polynomial order equaled 3 and the window length was 65. These values were used

in further analysis to be compared with the weighted myriad filters when different

weighted functions were used.

The other reference filter is a well-known non-linear median filter [8].

7. Quantitative results and discussion

Figures 5, 6 and 7 present results obtained for various window lengths (numbers

of weights), N , and various values of the characteristic exponent, α.

On the basis of the obtained results, it may be concluded that the small window

length of the weighted myriad filter for GSNR=0dB and minimal residual distortion

has been obtained for the Chebyshev weighted function, with the window length

of N ∼= 45 (see Figure 5). If the weights of the weighted myriad filter are selected
according to the Kaiser or triangular weighted functions, the weighted myriad filter

requires a longer window (window length > 60, see Figures 6 and 7).

When the value of GSNR is higher, the window length decreases for all the

weighted functions (the minimum value of D is obtained for 25 ≤ N ≤ 35 for all
the weighted functions). But when α is in the 〈1.0,1.4〉 range, the smallest residual
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Figure 5. The average D in the function of window length, N , and the characteristic exponent,

α, for GSNR=0dB (upper graph) and 20dB (lower graph) for the Chebyshev weighted function

distortions are introduced by the Chebyshev function. For α≥ 1.6, the Kaiser and
triangular functions yield better results. Each of the evaluated weighted functions

requires a different window length at which the filtering process leads to the smallest

residual distortions of the investigated signal. The most useful is the Chebyshev

function, especially when the GSNR value is low.
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Figure 6. The average D in the function of window length, N , and the characteristic exponent,

α, for GSNR=0dB (upper graph) and 20dB (lower graph) for the Kaiser weighted function

In all cases, when the noise is very impulsive (α = 1), distortion reaches its

highest value above that for α= 2, which corresponds to the Gaussian noise. This

shows that, regardless of the choice of weights, the impulsiveness of noise has a strong

effect on the filtering process, especially when the signal-to-noise ratio is low or

extremely low.
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Figure 7. The average D in the function of window length, N , and the characteristic exponent,

α, for GSNR=0dB (upper graph) and 20dB (lower graph) for the triangular weighted function

A comparison of residual distortions has also been made for the different

weighted functions (Chebyshev, Kaiser, triangular), uniform weights, e.g. wi =

1/N(i=1,2, .. .,N), the median filter and the Savitzky-Golay smoothing filter (a lin-

ear filter). In order to do this, one ECG cycle was chosen randomly. This ECG cycle

was disturbed by an impulsive noise at GSNR= 0dB (window length for non-linear
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Table 2. The residual distortion, D, of the various weighted functions for a randomly chosen ECG

cycle disturbed by simulated noise of α-stable distribution (GSNR=0dB)

Weighted myriad filter (N =45) Median filter The Savitzky-Golay filter

α Chebyshev Kaiser triangular uniform (non-linear) (linear), N =65,

A=25 η=5 N =45 polynomial order of 3

1.0 −11.65 −11.05 −11.14 −6.50 −11.66 21.88

1.1 −11.80 −11.21 −11.32 −7.28 −11.57 14.21

1.2 −11.77 −11.24 −11.34 −7.88 −11.43 11.21

1.3 −11.77 −11.25 −11.37 −8.53 −11.32 5.27

1.4 −12.14 −11.60 −11.74 −9.41 −11.32 2.37

1.5 −12.41 −11.86 −12.02 −10.11 −11.49 −0.40
1.6 −12.30 −11.84 −12.00 −10.68 −11.31 −3.67
1.7 −12.43 −11.97 −12.14 −11.36 −11.27 −6.97
1.8 −12.52 −12.00 −12.19 −11.80 −11.16 −8.10
1.9 −12.91 −12.38 −12.59 −12.56 −11.51 −10.02
2.0 −12.86 −12.38 −12.58 −12.92 −11.25 −11.92

Table 3. The residual distortion, D, of the various weighted functions for a randomly chosen ECG

cycle disturbed by simulated noise of α-stable distribution (GSNR=10dB)

Weighted myriad filter (N =35) Median filter The Savitzky-Golay filter

α Chebyshev Kaiser triangular uniform (non-linear) (linear), N =65,

A=25 η=5 N =35 polynomial order of 3

1.0 −16.97 −16.23 −16.30 −11.08 −18.91 11.88

1.1 −17.46 −16.80 −16.87 −12.27 −18.85 4.21

1.2 −17.80 −17.21 −17.29 −13.16 −18.98 1.21

1.3 −18.12 −17.61 −17.70 −14.39 −18.89 −4.73
1.4 −18.77 −18.30 −18.39 −15.41 −18.99 −7.61
1.5 −19.27 −18.85 −18.95 −16.49 −19.26 −10.37
1.6 −19.51 −19.25 −19.31 −17.18 −19.23 −13.62
1.7 −19.93 −19.70 −19.81 −18.19 −19.16 −16.89
1.8 −20.17 −19.96 −20.08 −18.85 −19.10 −17.99
1.9 −20.66 −20.53 −20.64 −19.60 −19.44 −19.83
2.0 −20.87 −20.85 −20.95 −20.10 −19.28 −21.65

filters N = 45) and GSNR= 10dB (window length for non-linear filters N = 35), for

various values of α (from 1.0 to 2.0). This operation was repeated 50 times. Then the

average residual distortion was calculated. The linearity parameter of the weighted

myriad filter, k, was equal to 1. The results are presented in the Tables 2 and 3.

For GSNR=0dB and α=1.0, the median filter leads to the smallest distortion.

But when 1.1 ≤ α ≤ 1.9, the weighted myriad filter with the Chebyshev weighted
function is better than the median filter. The worst results have been obtained for

the Savitzky-Golay filter, but as α increases, this filter produces better and better

results. The uniformly weighted myriad filter also introduces large errors into the

filtered signal, but for α=2 this weighted function leads to the best result.

When GSNR increases to 10dB and α is in the 〈1.0,1.4〉 range, the median
filter produces the smallest residual distortion values. For α ≥ 1.5, the weighted
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Table 4. The residual distortion, D, of the various weighted functions when ECG cycle is

disturbed by real-life muscle noise (window length is constant)

Weighted myriad filter (N =35) Median filter The Savitzky-Golay filter

GSNR Chebyshev Kaiser triangular uniform (non-linear) (linear), N =65,

[dB] A=25 η=5 N =35 polynomial order of 3

0 −9.26 −7.94 −8.32 −9.59 −8.75 −8.82
5 −13.87 −12.74 −13.06 −13.79 −13.25 −13.68
10 −17.73 −17.25 −17.42 −17.11 −17.46 −18.12
20 −22.72 −24.06 −23.78 −21.06 −23.79 −24.89

Figure 8. Results of the filtering of ECG cycle disturbed with simulated α-stable distributed noise

(GSNR=10dB, α=1.7) with the weighted myriad filter (linear parameter k=1) for weights

calculated according to the Chebyshev weighted function, the window length is N =35

myriad filter with the Chebyshev weighted function yields the best results. But

when α=2.0, the Savitzky-Golay smoothing filter has the smallest residual distortion

value.

Results obtained for a ECG cycle disturbed with real-life muscle noise are

presented in Table 4. These results show that suppression of real muscle noise is

a serious problem. When GSNR is low (0dB or 5dB), the residual distortion is small for

the weighted myriad filter with the Chebyshev weighted function or uniform weights.

For GSNR≥ 10dB, the Savitzky-Golay filter produces the best results.
An example of filtering an ECG cycle disturbed with noise of α-stable distribu-

tion with a weighted myriad filter and weights calculated according to the Chebyshev

function is presented in Figure 8.
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8. Conclusions

This paper has dealt with modelling real-life muscle noise with α-stable distri-

butions and weighted myriad filters with various selection of weights.

Biomedical signals contain noise and outliers and thus require robust processing

methods. The application of a weighted myriad filter is such a robust method. Bio-

medical signals are usually non-stationary, but for short time intervals an assumption

of stationary features can be made. According to the Generalized Central Limit The-

ory, real-life muscle noise, which is produced by a great number of electrical sources,

converges to α-stable distribution. The mean value of the characteristic exponent is

usually ca. 1.7–1.9. α-stable distribution can be useful in modelling muscle noise, even

though this approach has some restriction.

The optimal choice of weights for a weighted myriad filter is sometimes

impossible. The application of weighted functions to weighted myriad filters produces

good results in comparison with those for linear and median filters when the noise

is characterized by their characteristic exponent α in the range from 1.5 to 1.9. This

range is suitable for real-life muscle noise. The most useful is the Chebyshev weighted

function: it requires short window lengths and yields the best results in the relevant

range of α changes. This function introduces the smallest residual distortion into the

filtered signal. For the Gaussian noise, linear filters almost always produce the best

results. The proposed filtering process does not distort the signal in the significant

mean and is able to effectively cancel impulsive types of noise.
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