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Abstract: A new clustering method of fuzzy c-myriad clustering with partial supervision is

presented in this paper. The proposed method has been applied to breast cancer diagnosis data

obtainted from the University of Wisconsin. The data set contains 699 cases of breast cancer, with

each instance described by 10 features.
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1. Introduction

Clustering is a procedure in which objects are distiguished or classified in

accordance with their similarity. There is no teacher to provide guidance, hence it

is also called unsupervised classification. According to the theory of classification,

clustering methods may be treated as classification methods that utilize minimal

information about classified objects (their features). A data set partition can be

described by a c×N partition matrix U (where c is the number of clusters, N is the

number of objects) [1], where each element of U represents the membership of every

input object in fuzzy clusters. Clustering results can either be used, after hardening

of the partition matrix, as a final partition of the input data or be processed further

by a human expert, expert systems and so on.

2. The fuzzy c-myriad clustering method

with partial supervision

2.1. Weighted myriads

Let us consider a set of N independent and identically distributed observations,

X= {x1,x2,·· ·,xN}, and a set of assigned weights, U= {u1,u2,· · ·,uN}. A weighted
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myriad is a value, Θ̂, that minimizes the weighted myriad objective function defined

as follows [2, 3]:

Θ̂= argmin
Θ∈IR

N∑

k=1

ln[K2+uk(xk−Θ)]. (1)

The value of a weighted myriad depends on the data set X and assigned weights U

and on parameter K, called a linearity parameter. Two interesting may occur: first,

when the K value tends to infinity (K→∞), the weighted myriad converges with the

weighted mean, that is:

lim
K→∞

Θ̂K =

N∑

k=1

ukxk

N∑

k=1

uk

, (2)

where Θ̂K =myriad{uk♦xk;K}
N
k=1. Second, where the K parameter value tends to

zero (K→ 0), the weighted myriad is always equal to one of the most frequent values

of the input data set.

2.2. The fuzzy c-myriad clustering method

A partition of an input data set can be described by a c×N matrix (where c

is the number of clusters, N is the number of objects), called a partition matrix, in

the following form:

U =







u11 . .. u1k . .. u1N
u21 . .. u2k . .. u2N
... . ..

... . ..
...

uc1 . .. uck . .. ucN






= [u(1) . .. u(k) . .. u(N) ]. (3)

For fuzzy clustering methods, the partition matrix is defined as [1]:

MfcN =

{

U ∈ [0,1]c×N |
c∑

i=1

uik =1,k=1,2, .. . ,N ;
N∑

k=1

uik > 0,i=1,2. . .,c

}

. (4)

A set of N objects, O= {o1,o2,. .. ,oN}, is described by a set of N feature vectors,

X = {x1,x2, . .. ,xN}, in a p-dimensional feature space (where p is the number of

features bescribing each object). The sum of squared errors has been choosen as

an objective function for the proposed method:

Jm(U) =

c∑

i=1

N∑

k=1

umik‖xk−vi‖
2
A
, (5)

where V = {v1, .. . ,vc} is a prototype matrix ∀
1≤i≤c

vi ∈ IR
p, U ∈MfcN and A is

positive-defined matrix. In this work, the unity matrix I has been choosen as matrix

A, hence the norm ‖·‖2I is an euclidan norm in the p-dimensional space.

Based on the fuzzy partition matrix definition (4), elements uik of U have to

satisfy the following constraints:

∀
1≤k≤N

c∑

i=1

uik =1, (6)
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and

∀
1≤i≤c

N∑

k=1

uik > 0. (7)

Constraint (7) guarantees that no cluster is empty and constraint (6) ensures that

the sum of membership degrees for each feature vector equals 1.

Let us now minimize the objective function (5). Noting that the columns of U

are independent, the clustering task reads as the following constrained optimization

problem:

minJk, (8)

subject to conditions (6) and (7), where

Jk =
c∑

i=1

umikd
2
ik k=1,2, .. . ,N, (9)

where d2ik denotes euclidan distance (i.e. d
2
ik = ‖xk−vi‖

2).

Using the standard technique of Lagrange multipliers [4, 1], the optimization

problem is converted into a form of unconstrained minimization (here Jk is written

down explicitly to underline the variables taken into account in the optimization):

Jk(λ,uk)=
c∑

i=1

umik−λ

(
c∑

i=1

uik−1

)

, (10)

with λ denoting the Lagrange multiplier and uk denoting the kth column of U. The

(λ,uk) pair forms a stationary point of the optimized functional if and only if:

∂Jk

∂λ
=0,

∂Jk

∂uk
=0. (11)

These two derivatives yield the following relationships:

∂Jk

∂λ
=
c∑

i=1

uik−1=0, (12)

and
∂Jk

∂ust
=mum−1st −λ=0, (13)

s=1,2,. .. ,c and t=1,2, .. .,N . We begin with solving Equation (13) for ust:

ust=

[
λ

m(dst)2

] 1
m−1
. (14)

The sum of membership values,
∑c
j=1ujt=1, implies:

t∑

j=1

ujt=

c∑

j=1

(
λ

m

) 1
m−1

[
1

(djt)2

] 1
m−1
=

(
λ

m

) 1
m−1







c∑

j=1

[
1

(djt)2

] 1
m−1






=1. (15)

Thus,
(
λ

m

) 1
m−1
=

1

c∑

j=1

(

1
(djt)

2

) 1
m−1

. (16)
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The left-hand side of Equation (16) may be directly substituted into Equation (14)

producing the final expression for ust:

∀
1≤s≤c

∀
1≤t≤N

uik =






c∑

j=1

(

d2st

d2jt

) 1
m−1






−1

. (17)

2.2.1. The fuzzy c-myriad clustering algorithm

The fuzzy c-myriad clustering method can be described as:

1. given the data set X = {x1,x2,. . .,xN}, where xi ∈ IR
p, fix the number of

clusters, c ∈ {2,. . .,N −1}, the fuzzyfier, m ∈ [1,∞), and the tolerance limit,

ε. Initialize randomly the partition matrix, U (with respect to conditions (6)

and (7)), fix l=0;

2. calculate the prototype values, V, as weighted myriads. A weighted myriad has

to be calculated for each component of vi;

3. update the partition matrix, U, using Equation (17);

4. if ‖U(l+1)−U(l)‖<ε, stop the clustering algorithm, otherwise l= l+1 and go

to 2̊ .

2.3. The fuzzy c-myriad clustering method with partial

supervision

At the first step in the fuzzy c-myriad clustering algorithm, the partition matrix,

U, has to be initialized. The assigment of each feature vector from the input data set is

unknown, hence the initial values of the partition matrix are random. At the end of the

clustering procedure, each row of the final partition matrix corresponds to a particular

class, but the method has no way to know which row is which class. If the input data

set is truly unlabeled (has no elements assigned to particular classes) this problem can

only be resolved by human expert intervention. At the same time, a matrix including

assigment of each input vector to a particular class could be utilized as an initial

partition matrix. Unfortunately, each assigment of an input vector requires expert

intervention, hence for high-dimensional, large data sets the assigment of every input

vector is tedious, costly and impracticable.

The proposed approach is based on some feature vectors being selected from the

input data set by expert as the best representative samples of a particular cluster [5].

Let us consider an input data set in the following form:

X= {x1,x2,. . .,xN}. (18)

On the basis of the knowledge and experience of a human expert, the best repres-

entative samples can be selected from the input data set. Assuming that x
(i)
1 , .. . ,x

(i)
ni

describes ni samples of the ith cluster selected by an expert, the input data set X can

be denoted as:

X=







x
(1)
1 , .. .,x

(1)
n1

︸ ︷︷ ︸

cluster 1

,x
(2)
1 , .. .,x

(2)
n2

︸ ︷︷ ︸

cluster 2

, .. . ,x
(c)
1 , . .. ,x

(c)
nc

︸ ︷︷ ︸

cluster c

,x
(u)
1 , .. .,x

(u)
nu







=X(s)∪X(u), (19)

tq208e-e/196 9IV2004 BOP s.c., http://www.bop.com.pl



Breast Cancer Diagnosis via Fuzzy Clustering with. .. 197

where x
(u)
i denotes an unassigned input vector, X

(s) denotes a subset of the input

data set assigned by the expert – the supervised part of input data X, while X(u)

denotes the unassigned subset of X – the unsupervised part of the input data set.

In accordance with the division of the input data set, the partition matrix

can also be divided into two parts: the supervised and the unsupervised, so that the

partition matrix can be expressed as:

U=
[[

u
(1)
1 · · ·u

(1)
n1
u
(2)
1 · ··u

(2)
n2
· · ·u

(c)
1 ·· ·u

(c)
nc

][

u
(u)
1 · ··u

(u)
nu

]]

, (20)

or

U =















1 · · · 1 0 ·· · 0 ·· · 0 ·· · 0
0 · · · 0 1 ·· · 1 ·· · 0 ·· · 0
...

...
...

...
...

...
0 · · · 0 0 ·· · 0 ·· · 1 ·· · 1















u
(u)
11 ·· · u

(u)
1nu

u
(u)
21 ·· · u

(u)
2nu

...
...

u
(u)
c1 ·· · u

(u)
cnu

















= [U(s) U(u) ], (21)

where dim(U(s)) = c×ns and dim(U
(u)) = c×nu, ns is the number of supervised

(assigned) input vectors, nu – the number of unsupervised input vectors, and the

relationship N =ns+nu is satisfied.

Thanks to the knowledge and experience of the human expert, the superivised

part of the partition matrix, U(s), is constant during the clustering process; only

the unsupervised part, U(u), is changing. Choosing an objective function similar to

Equation (5), the optimal values of the unsupervised part of the partition matrix can

be obtained from:

∀
1≤i≤c

∀
1≤k≤ns

uik =






c∑

j=1

(

d2ik

d2jk

) 1
m−1






−1

, (22)

where ∀
1≤i≤c

vi are weighted myriads as cluster prototypes.

2.3.1. The fuzzy c-myriad clustering algorithm with partial supervision

The proposed method can be described as follows:

1. given the data set X = {x1,x2, .. .,xN}, where xi ∈ IR
p, fix the number of

clusters, c ∈ {2, .. .,N −1}, the fuzzyfier, m ∈ [1,∞), and the tolerance limit,

ε. Initialize the partition matrix, U: the supervised part, U(s), by an expert,

and the unsupervised part, U(u) – randomly satysfying Equations (6) and (7);

2. calculate the prototype values, V, as weighted myriads. A weighted myriad has

to be calculated for each component of vi;

3. update the partition matrix, U, using Equation (22);

4. if ‖U(l+1)−U(l)‖<ε, stop the clustering algorithm, otherwise l= l+1 and go

to 2̊ .

3. A numerical experiment

A breast cancer database of the University of Wisconsin has been choosen as

test data. Each instance in the database has been described by 11 features. The first

parameter is an ID, the next nine parameters describe the cell nucleus, the eleventh

parameter describes the type of cancer – malignant or benign; the latter parameter
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is a diagnosis made by an expert (a physician). The database contains 699 instances,

but in 16 of them some parameters are missing and these have been excluded from

our analysis. Probably the most popular fuzzy c-means clustering method has been

choosen as a reference method.

For the input data set with p=9 and N =683, the following parameters have

been fixed:

• number of clusters c=2, (malignant cancer or benign cancer),

• the tolerance limit ε=10−5,

• the fuzzyfier m=2,

• linearity weighted myriad parameter K ∈{50,20,10,5,2},

• number of supervised samples ns ∈{10,20,50,100,200}.

4. Results

For each value of the K parameter and for each value of ns, the clustering

algorithm has been performed five times (to exclude local minima solutions). A sample

mean of misclassified instances, nw, and their percentage share have been presented

in Table 1.

Table 1. Number of misclassified instances

K =50 K =20 K =10 K =5 K =2

ns nw [%] nw [%] nw [%] nw [%] nw [%]

10 24 3.54 25 3.60 23 3.43 22 3.16 28 4.04

20 24 3.54 24 3.54 23 3.43 23 3.43 22 3.16

50 23 3.43 23 3.43 23 3.43 22 3.19 16 2.31

100 22 3.16 22 3.16 22 3.16 19 2.81 17 2.43

200 19 2.81 19 2.81 18 2.66 18 2.58 17 2.43

For the reference method, nw = 30 (4.39%) misclassified instances have been

obtained. For the proposed method without supervision (i.e. ns=0) for K =20, the

number of misclassified samples equals nw =24 (3.54%).

5. Conclusions

Including the knowledge and experience of an expert allows us to obtain more

reliable results: the number of misclassified instances decreases. In the proposed

method, results obtained for the number of supervised samples ns=10 are very similar

to those for the number of supervised samples ns = 50. For almost all cases (except

for ns=10 and K =2), the share of misclassified instances was lower than 4.00%.

The proposed method thus offers improved results.
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