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Abstract: Linear separability of data sets is one of the basic concepts in the theory of neural

networks and pattern recognition. Data sets are often linearly separable because of their high

dimensionality. Such is the case of genomic data, in which a small number of cases is represented in

a space with extremely high dimensionality.

An evaluation of linear separability of two data sets can be combined with feature selection

and carried out through minimisation of a convex and piecewise-linear (CPL) criterion function. The

perceptron criterion function belongs to the CPL family. The basis exchange algorithms allow us to

find minimal values of CPL functions efficiently, even in the case of large, multidimensional data sets.
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1. Introduction

Let us consider a situation when objects in a database are represented as a set

of feature vectors of the same dimensionality. Components of these vectors represent

particular features, which are numerical results of a given object examination. The

feature vectors divided into different categories (classes) constitute the so-called

learning sets. A given learning set contains feature vectors related to the same category

of objects.

An important practical problem is the extraction of decision rules from learning

sets. Estimated rules can be used in the classification process or in the decision

support systems [1]. For example, diagnosis support systems may be based on

differentiation rules between diseases. Differentiation rules can be extracted from

any medical database containing data about patients diagnosed with particular

diseases by physicians. Such a principle has been implemented in the Hepar computer

system which comprises a hepathological database and shell of procedures aimed

at multivariate data visualisation, analysis and diagnosis support ([2, 3]). Category
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models can be designed by means of combining experts’ knowledge with data

contained in the learning sets. Such an approach has been implemented in modelling

liver diseases by means of Bayesian networks in the Hepar II system [4].

Not all diagnostic examinations are used in the decision rules. In other words,

some features are irrelevant in the classification process and therefore can be neglected.

Neglecting unimportant features allows us to improve the quality of classification

rules. Extracting sets of the most important features is known as feature selection [1].

A proper feature selection should result in more correct and more general classification

rules.

One of the most direct approaches to the feature selection problem is the

evaluation of quality of classification rules based on a given feature subset. The most

common method of evaluating a classifier is estimating the classification error rate [1].

Estimation of a classification error related to a given feature subset is not efficient

from the computational point of view and is difficult to apply to large data sets.

Mainly for this reason, a variety of many other methods of feature selection has been

proposed [5]. Among them, the Support Vector Machine (SVM) has recently been

used for this purpose ([6, 7]).

In this paper we shall discuss the possibility of using the concept of linear

separability of learning data sets in the feature selection task [8]. A high dimensionality

of data (long feature vectors) often results in their linear separability. The convex and

piecewise-linear (CPL) functions defined on the learning sets are used for measuring

the linear separability of these sets. The perceptron criterion function belongs to the

CPL family. Different measures of the linear separability of learning sets can be based

on the minimal value of adequately adjusted CPL functions.

2. Linear separabilty of learning sets

Let us assume that m objects Oj contained in a database are represented as

feature vectors xj [n] = [xj1, .. . ,xjn]
T or points in the n-dimensional feature space F [n].

The xi components of vectors xj [n] are called features. Features xji are numerical

results of examination of the jth object Oj . We are considering a situation when

feature vectors xj [n] can be a mixed, qualitative-quantitative type. Components xji
of such vectors xj [n] can be binary (xi ∈{0,1}) or real numbers (xi ∈R

1).

Objects Oj are often divided into categories (classes), ωk (k = 1, . .. ,K). For

example, a medical database may contain patients Oj(k) linked by physicians to

particular diseases, ωk, and represented as labelled feature vectors xj(k). In such

cases, features xji are numerical results of diagnostic examinations of a given patient,

Oj . Learning set Ck containsmk feature vectors xj(k) belonging to the same class, ωk:

Ck = {xj(k)} (j ∈ Ik), (1)

where Ik is the set of indexes of the feature vectors xj(k) belonging to the ωk class.

We will consider separation of learning sets Ck by hyperplanes H(wk,θk)

(k∈K) in a feature space:

H(wk,θk)= {x : 〈wk,x〉= θk}, (2)

where wk ∈R
n is the weight vector, θk ∈R

1 is the threshold, and 〈wk,x〉 is the inner

product.
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Feature vector x is situated on the positive (negative) side of hyperplane

H(wl,θl) if and only if 〈wk,xj〉>θl (〈wk,xj〉<θl).

Definition 1: Learning sets (1) are linearly separable if each of the Ck sets

can be fully separated from the sum of the remaining Ci sets by some H(wk,θk)

hyperplane (3):

(∀k∈{1, .. . ,K}) (∃wk,θk) (∀xj ∈Ck) 〈wk,xj〉>θk,

and (∀xj ∈Ci,i 6= k) 〈wk,xj〉<θk.
(3)

In accordance with relation (3), the entire Ck learning set is situated on the positive

side of the H(wk,θk) hyperplane (2) and all the xj(i) feature vectors belonging to

the sum of the remaining Ci sets are situated on the negative side of this hyperplane.

Let the symbol Fl[n
′] stand for the n′-dimensional subspace of the n-

dimensional feature space F [n] (Fl[n
′] ⊂ F [n],n′ ≤ n). The Fl[n

′] subspace is con-

stituted of n′-dimensional vectors x′ = [xi(1),. .. ,xi(n′)]
T with the i(j) indices of n′

features xi(j) belonging to the Il[n
′] set:

Fl[n
′] = {x′= [xi(1),. . .,xi(n′)]

T : i(j)∈ Il[n
′]}. (4)

The x′ = [xi(1), . .. ,xi(n′)]
T vectors constitute of the n-dimensional feature x =

[x1, . .. ,xn]
T ∈F [n] vectors as a result of neglecting the features, xi, with the indices

i outside the set Il[n
′](i /∈ Il[n

′]).

The separability property (3) depends on the feature space, Fl[n
′]. The Ck (1)

learning sets can be linearly separable in one feature space, Fl[n
′], and not separable

in another space, Fk[n
′].

Remark 1 (monotonocity property): If Ck (1) learning sets are linearly separ-

able in one feature space, Fl, then they are also linearly separable in a greater feature

space, Fk (Fl⊂Fk).

In accordance with the above remarks, enlargement of the feature space cannot

eliminate the linear separability of the learning sets. In order to prove that linear

separability is preserved, it is enough to mention that any enlargement of feature

space Fl by some xi components can be linked to the enlargement of the weight

vector, wk (3), by some wki components equal to zero. As a result, relation (3) is

fulfilled in a greater feature space, Fk. We can also mention that linear separability

of learning sets Ck (1) can always be achieved by means of a sufficient enlargement

of the feature space, Fl[1]. This subject is discussed in greater detail in the following

section.

3. Positive and negative sets

Let us take into consideration two disjoined sets: positive (G+) and negative

(G−) composed of m+ and m− feature vectors xj(k) (1), so that:

G+∩ G−=ø. (5)

It is convenient to assume that entire learning sets Ck (1) have been allocated to the

positive (G+) or the negative (G−) set. In other words, the learning sets, Ck, are not

divided during this allocation:

(∀k∈{1, .. .,K}) (∀j) xj(k)∈G
+⇒Ck ⊂G

+,

xj(k)∈G
−⇒Ck ⊂G

−.
(6)
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We are interested in finding such a H(w1,θ1) hyperplane (3) that would sep-

arate the G+ and G− sets. It may mean that the largest possible number of

points xj from the first set, G
+, should be situated on the positive side of the

H(w1,θ1)hyperplane(〈w1,xj〉> θ1) and at the same time the largest possible num-

ber of points xj from the second set, G
−, should be situated on the negative side

(〈w1,xj〉< θ1). The G
+ and G− sets are linearly separable if there exist such para-

meters w1 and θ1 that all points xj from these sets are properly allocated:

(∃w1,θ1) (∀xj ∈G
+) 〈w1,xj〉>θ1,

and (∀xj ∈G
−) 〈w1,xj〉<θ1.

(7)

We are searching for such a H(w1,θ1) hyperplane that would separate these sets.

It is convenient to use augmented feature vectors, xj = [1,(xj)
T ]T , in dealing

with linear separability:

(∃v1) (∀yj ∈G
+) 〈v1,yj〉> 0,

and (∀yj ∈G
−) 〈v1,yj〉< 0,

(8)

where v= [−θ,wT ]T is the augmented weight vector [1].

Inequalities (8) can be represented as:

(∃v1) (∀yj ∈G
+) 〈v1,yj〉≥ ε,

and (∀yj ∈G
−) 〈v1,yj〉≤−ε,

(9)

where ε> 0.

The ε parameter could be chosen as:

ε=min
j
εj , (10)

where (∀yj ∈G
+) εj = 〈v1,yj〉 and (∀yj ∈G

−) εj =−〈v1,yj〉.

Remark 2 (linear separability): The G+ and G− sets are linearly separable (8)

if and only if the following inequalities are fulfilled:

(∃v2) (∀yj ∈G
+) 〈v2,yj〉≥ 1,

and (∀yj ∈G
−) 〈v2,yj〉≤−1.

(11)

To prove equivalence between Equation (9) and Equation (11) we can take:

v2=v1/ε. (12)

Remark 3 (sufficient condition for linear separability): The G+ and G− sets are

linearly separable (8) if the following equalities are fulfilled:

(∃v2) (∀yj ∈G
+) 〈v2,yj〉=1,

and (∀yj ∈G
−) 〈v2,yj〉=−1.

(13)

Equalities (13) constitute a part of condition (10).

The set of equalities (13) can be represented in the matrix form:

(∃v2) Av2=1
′, (14)

where A is the matrix of dimension m× (n+1), m=m++m−, and 1′ is the vector

of dimension m. The rows of matrix A constitute of augmented feature vectors yj(i).
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Vector yj(i) constitutes the ith row of matrix A. The ith component of vector 1
′ is

equal to 1 if yj ∈G
+ and equal to −1 if yj ∈G

−.

Let us suppose that m ≤ n+ 1 and that matrix A contains non-singular

submatrix B of dimension m×m obtained from m independent columns of A. In

other words, matrix B is composed of m independent vectors y′j(i) of dimension m.

Vectors y′j are obtained from feature vectors yj by neglecting the same components

xi. It is clear in this case that the equation below:

Bv′2=1
′ (15)

has the following solution:

v′2=B
−11′. (16)

Let us remark that the v2 solution of Equation (13) also exists in this case.

The v2 solution of Equation (13) can be extracted from Equation (15) by means

of enlargement of vector v′2 by additional components equal to zero. The new

components are put where the neglected xi components of vectors yj have been

situated. The existence of the v2 solution of Equation (13) means that the G
+ and

G− sets are linearly separable (8).

Lemma 1: If non-empty G+ and G− sets (5) contain no more than (n+1)

(m≤ n+1) independent, (n+1)-dimensional feature vectors yj , then these sets are

linearly separable (8).

The proof of this lemma can be based on the equations listed above (Equa-

tion (13) and Equation (16)) and on the above remarks.

Let us also remark that matrix A (14) may contain many non-singular sub-

matrices, Bl, of dimension m×m based on different feature subspaces, Fl[m] (4)

(Figure 1). Each of these feature subspaces Fl[m] provides linear separability (8) of

the G+l and G
−

l sets, where the G
+
l and G

−

l symbols stand for sets (5) of feature

vectors y′j which are constituted only of features xi with indices i from the Il[m]

set (4).

F1[3] F2[3] F3[3]

x1 x2 x3 xk xm xn

Figure 1. Each of the feature subspaces (F1[3], F2[3], and F3[3]) provides

linear separability (8) of the G+l and G
−

l sets (m=3)

4. Convex and piecewise linear (CPL) criterion functions

Convex and piecewise linear (CPL) criterion functions are used to find optimal

parameters v∗ of the H(v∗) = {y : 〈v∗,y〉 = 0} hyperplane (2) separating the G+

and G− sets (5).
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The perceptron criterion function, Ψ(v), belongs to the CPL family [1, 5]. Ψ(v)

is the sum of the convex and piecewise linear penalty functions, ϕ+j (v) and ϕ
−

j (v)

(Figure 2):

ϕ+j (v)=

{

1−〈v,yj〉 if 〈v,yj〉< 1,
0 if 〈v,yj〉≥ 1

(17)

and

ϕ−j (v)=

{

1+〈v,yj〉 if 〈v,yj〉>−1,
0 if 〈v,yj〉≤−1.

(18)

–1 1 〈v,yj〉

ϕ+j (v) ϕ−j (v)

Figure 2. The penalty functions ϕ+j (v) and ϕ
−

j (v)

Number 1 in Equations (16) and (17) represents the margins, δj(δj = 1). If

δj =0, then the penalty functions are related to the error correction algorithm used

in the Perceptron [1]. The ϕ+j (v) function is equal to zero if and only if vector

yj(yj ∈G
+) is situated on the positive side of hyperplane H(v) (5) and is not too

close to it. Similarly, ϕ+j (v) is equal to zero if vector yj(yj ∈G
−) is situated on the

negative side of hyperplane H(v) and is not too close to it.

The perceptron criterion function, Ψ(v), can be defined on the G+ and G−

sets (5) as follows:

Ψ(v)=
∑

xj∈G+

αjϕ
+
j (v)+

∑

xj∈G−

αjϕ
−

j (v), (19)

where non-negative parameters αj determine the relative importance (price) of

particular feature vectors xj(k). Let us remark that the positive penalty functions,

ϕ+j (v), are defined on elements yj of the G
+ set (5), while and the negative functions,

ϕ−j (v), are defined on the elements of the G
− set.

The perceptron criterion function, Ψ(v), in its standard form has the following

parameters:

αj =

{

1/(2m+) if xj(k)∈G
+,

1/(2m−) if xj(k)∈G
− .

(20)

We are interested in parameters v∗ constituting the minimum of the Ψ(v) function:

Ψ∗=Ψ(v∗)=minΨ(v). (21)

Minimisation of the criterion function, Ψ(v), results in minimisation of the penalty

functions, ϕ+j (v) and ϕ
−

j (v). It has been proved that Ψ
∗ is equal to zero (Ψ∗=0) if

and only if the G+ and G− sets (5) are linearly separable (10):

(Ψ∗=0)⇔ (G+ and G− are linearly separable). (22)
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If the G+ and G− sets (5) are linearly separable, then the entire set G+ is situated

on the positive side of the H(v∗) hyperplane, and the entire set G− is situated on the

negative side of H(v∗).

The basic exchange algorithm allows us to find the minimum (20) efficiently,

even if the multidimensional data sets G+ and G− (5) are large [9].

If the dimensionality of feature space Fl (4) is high, then there may exist many

feature subsets Fl[n
′] (4), which provide the linear separability of the G+ and G−

sets (5). This possibility can be seen on the basis of relations (13) and (15).

Let us introduce an additional penalty function, φi(v), to the criterion function

Ψ(v), Equation (18), in order to compare the linear separability of sets G+ and G−

in different feature subsets Fl (4). The φi(v)(i=1, . .. ,n+1) functions are defined as

the absolute values, |vi|, of weights vi (Figure 3):

φi(v)=

{

−vi if vi< 0,
vi if vi≥ 0.

(23)

φi(v)

vi

Figure 3. The penalty function φi(v)

We can see that φi(v) are convex and piecewise-linear (CPL) functions. The

penalty function φi(v) can be represented in the form similar to Equation (16) or

Equation (17) by using unit vectors ei = [0, .. .,0,1,0,. .. ,0]
T (i= 1, .. .,n+1) with all

components but i ones equal to zero and the i component equal to one:

φi(v)=

{

−〈ei,v〉 if 〈ei,v〉< 0,
〈ei,v〉 if 〈ei,v〉≥ 0.

(24)

Let us introduce modified criterion function, Φλ(v):

Φλ(v)=Ψ(v)+λ
∑

i∈I

γiφi(v), (25)

where λ≥ 0, γi> 0, I = {1, .. . ,n+1}.

The Φλ(v) function is the sum of the perceptron criterion function Ψ(v) (19)

in the standard form (20) and the φi(v) penalty functions multiplied by positive

parameters γi. The γi parameters represent the costs of particular features xi. These

costs can be chosen a priori, according to our additional knowledge.

The Φλ(v) criterion function (25) is a convex and piecewise-linear (CPL)

function, as the sum of the CPL penalty functions αjϕ
+
j (v) (17), αjϕ

−

j (v) (18), and
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λγiφi(v) (24). As previously (21), we are looking for the minimal value of the Φλ(v)

criterion function:

Φλ(v
∗

λ)=min
v
Φλ(v). (26)

The basic exchange algorithms allow us to efficiently solve the above minimisation

problem.

Let us remark that if λ=0, then Φλ(v)=Ψ(v) and:

v∗0 =v
∗, (27)

where v∗ is the minimum point (21) of the Ψ(v) function (19). Otherwise, it can be

proven that:

v∗
∞
=0, (28)

where the symbol v∗
∞
means “the minimum point of the Φλ(v) function (25), with

a very large value of the λ parameter”.

If the ith component of the optimal vector v∗λ equals zero (v
∗

λi = 0), then the

ith feature xi can be neglected in the yj(k) vectors without affecting the separation

of the G+ and G− sets (5) by the optimal H(v∗λ) hyperplane (2):

{w∗λi=0}⇒{the i
th feature xi can be neglected in all the xj(k) vectors}. (29)

Solution (28) means that none of the xi features is used in designing the H(v
∗

∞
)

hyperplane (2). In other words, the H(v∗) hyperplane (2) cannot be designed by

minimizing the Φ∞(v) criterion function because all weights w
∗

∞i equal zero. The

minimization of the Φ0(v) criterion function is equivalent to taking into account the

possibility that all features xi could be used in the construction of the separating hy-

perplane, H(v∗0). For some intermediate values of the λ parameter, some components

v∗λi of the optimal vector v
∗

λ will equal zero, but others will be different from zero.

5. Cost sensitive measures of the data sets’

linear separability

Let us assume that the G+ and G− sets (5) are linearly separable (8). Under

this assumption it can be proved that, for sufficiently small values of the λ parameter,

the optimal hyperplane H(v∗λ)=H(w
∗

λ,θ
∗

λ) (2), (26) separates the G
+ and G− sets:

(∃λ+) (∀λ∈ [0,λ+]) (∀yj ∈G
+) 〈v∗λ,yj〉> 0

and (∀yj ∈G
−) 〈v∗λ,yj〉< 0,

(30)

where v∗λ is the weight vector constituting the minimum (26) of the Φλ(v) criterion

function (25) with parameter λ. λ+ is the maximum value of the λ parameter which

still allows for the separation of the G+ and G− sets by theH(v∗λ) optimal hyperplane.

Definition 2: The measure, Φ∗, of linear separability of the linearly separable

G+ and G− sets (5) is equal to the minimal value, Φλ(v
∗

λ) (26), of the Φλ(v) criterion

function (25) with the λ parameter equal to λ+, Equation (30):

Φ∗=Φλ+(v
∗

λ). (31)

Let us remark that theG+l andG
−

l sets (5) may be linearly separable in different

feature subspaces Fl[n
′] (4) (Figure 1). As a result, the measure of linear separability,

Φ∗l (31), may depend on the feature subset Fl[n
′] used in the definition of the Φλ(v)
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criterion function (25). In other words, the measure of linear separability, Φ∗l (31),

may also allow for evaluation and comparison of such feature subsets Fl[n
′] (4) that

assure linear separability of the G+l and G
−

l sets (5).

If the G+l and G
−

l sets (5) are linearly separable (8) in feature space Fl[n
′] (4),

then the Φ∗l measure can be expressed as:

Φ∗l =Φλ+(v
∗

λ)=λ
+
l

∑

i∈Il

γi|v
∗

i |, (32)

where v∗i are components of the optimal vector v
∗

λ (26) in feature space Fl[n
′] (4), λ+l is

the maximal value of the λ parameter (25) which still allows for linear separability (30)

of the G+l and G
−

l sets in Fl[n
′] (4) by optimal hyperplane Hl(v

∗

λ).

Let us introduce another measure, Γ∗l , of linear separability in order to remove

the dependence of the Φ∗l measure on the λ
+
l parameters (32):

Γ∗l =Φ
∗

l /λ
+
l =
∑

i∈Il

γi|v
∗

i |. (33)

If costs γi (25) are equal to one, then the Γ
∗

l measure can be expressed as:

Γ∗l =
∑

i∈Il

|v∗i |. (34)

Let us notice a similarities between the Γ∗l measure (34) and the criterion used in

Support Vector Machines (SVM) [6]. In the case of the linearly separable sets G+l and

G−l (5) the SVM criterion can be expressed as:

min{||v1||2 :v1separates linearly (30) the G
+
l and G

−

l sets (5)}, (35)

where ||v||2= 〈v,v〉
1/2 is the Euclidean norm of the parameter vector v.

We can see similarities between criterion (34) and the SVM criterion (35). The

SVM criterion (35) is roughly aimed at such a parameter vector v∗1 that separates the

G+l and G
−

l sets and has the minimal Euclidean norm ||v
∗

1||2. Similarly, criterion (34)

is aimed at such a parameter vector v′1 that separates the G
+
l and G

−

l sets and has

the minimal L1 norm ||v
′

1||1.

Let us finally mention that minimization of an adequately adjusted criterion

function, Φλ(v) (25), offers the possibility of tackling the following problems:

• Linear separability problem I:

Find the smallest feature subset Fl[n
′] (4) which still allows for linear separa-

tion (8) of sets G+l and G
−

l (5).

• Linear separability problem II:

Find such a feature subset Fl[n
′] (4) with the number of elements no greater

than n0, which gives the largest distance between the linearly separable sets

G+l and G
−

l (5).

Solutions to the above feature selection problem could have very important

applications in gene selection from genomic data [7].

6. Concluding remarks

The cost sensitive criterion Φ∗l (32), which is based on the minimisation of the

CPL function Φλ(v) (25), constitutes the general framework for the feature selection
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problem. By an adequate choice of costs γi (25) we are able to formulate a variety

of specifications of the feature selection problem. It is also possible to find optimal

hyperplanes Hl(v
∗

λ) which best separate the G
+ and G− sets. In particular, a special

choice (34) of costs γi (25) allows us to find a solution similar to the SVM solution (35).

The basic exchange algorithms allow us to find efficiently the minimal value (26)

of the Φλ(v) criterion function (25) with fixed parameter λ and fixed costs γi [9]. This

technique allows us not only to compute the value of the separability measures for

a given feature subspace Fl[n
′] (4), but also to compare different subspaces Fl[n

′] (4)

providing linear separabilty.

The technique of feature selection based on the minimization of CPL functions

has been applied by us in the Hepar medical diagnosis support system [2]. The

future applications of this technique to gene selection problems appear to be very

promising [7].
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