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Abstract: In turbulent media, both sound wave sources and the speed of sound can be stochastic

variables. By means of numerical simulations of one-dimensional Euler equations with random source

terms we have studied two cases in a homogeneous stochastic random medium for which the speed

of sound and sound sources are: (1) correlated and (2) uncorrelated. The numerical simulations

indicate that, if the source and the speed of sound fluctuations are uncorrelated, the acoustic field

is incoherent, with a zero expectation value. The mean field is non-zero in the correlated case. The

correlated and uncorrelated cases are clearly distinguishable by the mean field, but also – to some

extent – in the power spectrum, which displays a modified Lorentzian profile with a shift in frequency.
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1. Introduction

Motivated by the problem of the origin of waves, we discuss the generation of

sound waves by random fields (e.g. Gough [1]). This subject has been investigated to

understand the complex physical phenomena which occur in the presence of random

fields and their influence on sound waves. From this point of view, simple models

attract considerable attention as they allow one to separate and quantify the effects

of various stochastic fields on frequencies and amplitudes of these oscillations. Indeed,

the analytical and numerical study of sound waves in a space-dependent random

mass density field reveals that these waves are accelerated and attenuated (Nocera

et al. [2]). At the same time, the effect of a time-dependent random mass density field

is acceleration and amplification of sound waves (Murawski et al. [3]).

The above-mentioned studies are made for sound waves which are launched in

a random medium but their origin is not discussed. The problem of random wave

generation was discussed recently by Skartlien [4], whose analytical conclusions were

drawn on the basis of an assumption of singly and doubly scattered field components
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in cross power. The purpose of this paper is to verify and extend this first-order theory

beyond the region of its validity. An ideal tool for such verification is numerical

simulation. We assume 1D geometry for clarity of demonstration, but the general

results will be valid for 2D and 3D as well.

The paper is organized as follows. Section 2 presents the numerical model.

Section 3 contains results of the numerical simulations. This paper is concluded with

Section 4.

2. Numerical model

We limit our discussion to magnetic-free one-dimensional plasma which is

described by hydrodynamic equations:

∂%

∂t
+
∂(%V )

∂x
=S%, (1)

∂(%V )

∂t
+
∂(%V 2+p)

∂x
=V S%+%SV , (2)

∂E

∂t
+
∂[V (E+p)]

∂x
=
1

2
V 2S%+%V SV . (3)

Here,

E=
p

γ−1
+
1

2
%V 2 (4)

is the total energy, % is mass density, V is flow velocity, p is pressure, γ is the adiabatic

index, and S% and SV are the source terms which can be used for seeding corresponding

random fields (Murawski et al. [3]).

To perform numerical simulations for Equations (1)–(3) we had adapted the

CLAWPACK code (LeVeque [5]), which is a packet of Fortran routines for solving

hyperbolic equations (e.g. Murawski [6]). We performed the simulations with the use

of homogeneous grids to discretize x and t. These simulations were carried out from

t=0 up to t=262.144 with the time step ∆t=0.001. This means that we performed

262144 iterations in time. A spatial interval was extended from x=0 to x=16π with

the length of numerical cell ∆x=0.122718. As a consequence of the application of the

Fast Fourier Tranform (FFT) method we had to use a number of grid points which

was a power of 2. The periodic boundary conditions were applied at the edges of the

simulation region.

Initially, at t = 0, we set all the plasma quantities at their equilibrium val-

ues, viz.:

%e(x,t=0)= %0+%r(x,t=0), Ve=0, pe= p0, (5)

where %0 and p0 denote background mass density and pressure which are constant,

and %r(x,t) is a random mass density which is seeded with the use of the source term

S% in Equation (1). The method of seeding has been described by Murawski et al. [3].

2.1. Random fields and sources

Random fields can be generated in various ways. The simplest case we can

envisage is a factorised random mass density field:

%r(x,t)= %x(x)%t(t). (6)
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The source term SV in Equation (2) is given as:

SV (x,t)=Sx(x)St(t), (7)

with

Sx(x)= exp
[

−(x−x0)
2
]

, St(t)∼ %t(t). (8)

As the cross-correlation:

〈SV %r〉=0 (9)

this case can be called the uncorrelated case.
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Figure 1. Numerically obtained cross-correlations for the correlated case (solid line)

and the uncorrelated case (dashed line)

The second case we discuss is factorizations (6) and (7), but now:

Sx(x)∼ exp
[

−(x−x0)
2
]

%x(x), St(t)∼ %t(t). (10)

This case is called the correlated case as the cross-correlation:

〈SV %r〉 6=0. (11)

We choose a random field %r(x,t) to be Gaussian in the way that its Fourier transform

E(k,ω) is:

E(k,ω)=
σ2lxlt
π2
e−k

2l2
xe−ω

2l2
t , (12)

where σ corresponds to a strength of the random field, lx and lt are the correlation

length and the correlation time, respectively.

The cross-correlation functions which are given by Equations (9) and (11) are

presented in Figure 1 both for the uncorrelated (dashed line) and the correlated (solid

line) cases. These functions are obtained numerically by ensemble averaging over 90

realizations of a random field %r. This number of realizations is sufficient to discuss

the results but it is not enough to represent the analytical Gaussian profile exactly. It

is discernible that the cross-correlation is much lower in the case of the uncorrelated

case than in the correlated case.

We have also tried the unfactorized choices of %r(x,t) and SV (x,t), with no

essential difference in the numerical results. So, we limit our discussion to the above

simple cases.

tq108p-e/111 9IV2004 BOP s.c., http://www.bop.com.pl



112 K. Murawski and M. Selwa

〈V
〉

−3 ·10−5

−2 ·10−5

−1 ·10−5

0

1 ·10−5

2 ·10−5

3 ·10−5

4 ·10−5

0 5 10 15 20 25 30 35 40 45 50
x

Figure 2. Numerically obtained averaged signal for uncorrelated (dashed line)

and correlated (solid line) mass density fields
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Figure 3. Numerically obtained averaged signal in the correlated case

at tend/2 (left) and tend (right)

3. Numerical results

In this part of the paper we present the results of numerical simulations. We

choose and hold fixed an amplitude of the oscillator of σ=0.05.

The wave generation mechanism will be modeled by setting the source term

SV (x,t) in the momentum equation of Equation (2). Analytical results for weak

random fields in the linear approximation show that a source term SV correlated

with %r generates a coherent wave field in the system (Skartlien [4]). Let us remind

that our intention is to verify this finding.

The dashed line in Figure 2 shows that a random source SV that is uncorrelated

with %r generates a low averaged signal which dies with a number of realizations

over which the ensamble averaging is performed. Consequently, we claim that such

a random source is unable to generate a coherent field. The solid line in Figure 2 shows

a similar field but for correlated %r(x,t) and SV (x,t). As the averaged signal is about

2 orders of magnitude higher in the case of correlated random fields, we claim that

the analytical results (Skartlien [4]) have been confirmed by these numerical findings.

Figure 3 shows the time evolution of averaged signals corresponding to the

correlated case. It is interesting that a significant amount of energy propagates in the

form of waves which possess steep wave fronts and almost rectangular profiles.
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Figure 4. Numerically obtained power spectra for the correlated case
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Figure 5. Relative frequency correction for the correlated case (for which SV 6=0, left)

and for a free medium (for which SV =0, right)

Figure 4 shows wave spectra both in wavenumber k (the bottom right panel)

and frequency ω (for different k) become wider for a narrower source term Sx(x)

(a lower value of ω). As there is a number of characteristic lines in the frequency

spectra, we claim that these spectra are discrete while the wavenumber spectra are

continuons. The power spectrum displays a modified Lorentzian profile in both cases,

with enhanced width and a shift in wavenumber and frequency. Indeed, the left panel

of Figure 5 shows that frequencies of the excited sound waves are essentially reduced

in comparison to the sound wave in a deterministic medium. It is noteworthy that free

random sound waves (for which SV =0) experience a frequency increase in agreement

with Fermat’s principle.

4. Summary

In this paper we have studied numerically the stochastic excitation of sound

waves in a random medium in which both sound wave sources and the speed of sound

can be random variables. We considered numerically two cases in a homogeneous one-

dimensional stochastic medium, in which the speed of sound and sound sources are

either correlated or uncorrelated. The main conclusion of our investigation is that if

the source and the speed-of-sound fluctuations are uncorrelated, the acoustic field is

incoherent, with a zero expectation value (a zero mean field) but the mean field is

nonzero in the correlated case. The two cases are clearly distinguishable by the mean

field, but also – to some extent – in the power spectrum. In both cases the power

spectrum displays a modified Lorentzian profile, with enhanced width and a shift in

wavenumber and frequency.
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