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Abstract: We examine by analytical and numerical means sound waves which propagate in a space-

and time-dependent random mass density field in the form of dispersionless wave noise of its spectrum

E(k,ω)∼E(k)δ(ω−crk), where cr is a random speed. Numerical simulations are in agreement with
the analytical theory which shows that at cr =ω/k resonance occurs and the cyclic frequency ω tends

to infinity. For values of cr which are close to the resonance point, the sound waves are slowed down

and attenuated (accelerated and amplified) for cr <ω/k (cr >ω/k).
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1. Introduction

It is known that the dimensionless wave vector K = klx and the dimensionless

frequency Ω=ωlx/c0 of small-amplitude sound waves propagating in a weak random

mass density field %r(x,t) satisfy the following dispersion relation [1, 2]:

Ω2−K2=Ω2
∞
∫

−∞

∞
∫

−∞

Ω̂2E(K̂−K,Ω̂−Ω)
Ω̂2−K̂2

dK̂dΩ̂. (1)

Here, lx is the correlation length, c0=
√

γp0/%0 is the speed of sound at the equilib-

rium, and E is the Fourier transform of the correlation function 〈%r(x,t)%r(X,T )〉/%20,
where %r(x,t) is a statistically homogeneous random density [3] with a vanishing en-

semble average 〈%r〉.
It follows from the dispersion relation of Equation (1) that the random sound

waves are no longer dispersionless as they experience not only a frequency shift but

also an amplitude alteration due to the presence of the random field.

Special limits of Equation (1) have already been considered in the literature.

The case of a space-dependent random field %r = %r(x) was discussed by [1]. The main
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conclusion was that sound waves were attenuated by any random field. For Gaussian

statistics:

E(K)=
σ2

π
exp(−K2), (2)

sound wave frequencies were increased. Here, σ2 � 1 is a small parameter which
enforces the weakness of random density fluctuations.

The case of a time-dependent random field %r = %r(t) was discussed by [2], who

showed that such a random field leads to energy transfer from the random field to

the sound waves and consequently to wave amplification. Moreover, for a Gaussian

random field the frequencies of the sound waves were increased, similarly as in the

case of a space-dependent random field.

It is then natural to inquire about the properties of sound waves propagating

through the medium of a space- and time-dependent random mass density field. In

the following section of this work, we concentrate on the simpler case of wave noise.

The paper is organized as follows. In Section 2 we present the dispersion relation

for sound waves in wave noise and investigate the influence of random mass densities

on frequencies and amplitudes of these waves. Numerical simulations are described

in the following part of the paper and their results are presented in Section 4. This

paper is concluded with a presentation of the main results in Section 5.

2. Frequency and amplitude alteration by wave noise

We define wave noise through the spectrum:

E(K,Ω)=
σ2

π
E(K)δ(Ω−Ωr(K)), (3)

where Ωr is the K-dependent frequency of random density fluctuations, and specialize

to dispersionless noise:

Ωr(K)= crK, (4)

where cr is the phase speed of random noise. For such noise, the initial random

mass density profile %r(x,t = 0) is translated in time t by the distance crt such

that %r(x,t) = %r(x−crt,t=0). For practical applications, we shall use the Gaussian
spectrum of Equation (2) henceforth. Let us now consider a sound wave whose wave

number is K. In view of the smallness of σ2, its frequency, Ω, given by the dispersion

relation in Equation (1), can be expanded as:

Ω=K+σ2Ω2+ · ··. (5)

Substituting Equations (3)–(5) into Equation (1) and performing an integration, we

obtain:

Ω2=
1

8π3/2
K(2− i

√
πK), cr =−1, (6)

Ω2=
K

2π3/2

[

c2r
c2r−1

− cr−1
(cr+1)2

KD

(

2

cr+1
K

)]

+

i
K2

4π

[

1

cr−1
+

∣

∣

∣

∣

cr−1
cr+1

∣

∣

∣

∣

1

cr+1
exp

(

− 4K2

(cr+1)2

)]

, cr 6=±1. (7)

It follows from Equation (7) that resonance occurs at a place where the phase

speed of the wave noise equals the sound-wave speed. Figure 1 shows the resonance
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Figure 1. Real (solid line) and imaginary (dashed line) parts of the frequency reduction Ω2
as functions of cr for K =2

curve for K =2. For other values of K the curve is similar. Note that the resonance is

of the 1/cr-type; for cr =1
− (cr =1

+) the real and imaginary parts of the frequency

shift are negative (positive) and the sound waves are decelerated and attenuated

(accelerated and amplified) there. The wave deceleration and attenuation can be

explained on physical grounds, as for cr = 1
− the sound wave interacts with the

slower-propagating wave noise. This process is accompanied with an energy transfer

from the sound wave into the wave noise, leading to sound wave deceleration and

attenuation. At the same time, in the cr = 1
+ regime the wave noise moves quicker

than the sound wave and the energy is transferred into the latter. Consequently, the

sound wave is amplified and accelerated.

3. Numerical simulations for hydrodynamic equations

In this section, we present the results of the numerical simulations for the

following hydrodynamic equations:

∂%

∂t
+
∂(%V )

∂x
=S%, (8)

%

(

∂V

∂t
+V
∂V

∂x

)

=− ∂p
∂x
, (9)

∂p

∂t
+
∂(pV )

∂x
=(1−γ)p∂V

∂x
, (10)

where % is mass density, V is the x-component of flow velocity, p is pressure, γ is

the adiabatic index, and S% is a source term. These simulations are performed with

the CLAWPACK code [4], which is a packet of Fortran routines for solving hyperbolic

equations. The code utilizes a Godunov-type method [5].

3.1. The initial condition

We solve Euler Equations (8)–(10) numerically by adopting the appropriate

code from the CLAWPACK package [4]. This package uses modern shock capturing
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schemes for solving hyperbolic equations such as the Euler equations [4, 5]. Numerical

simulations are performed in the region:

0≤x≤ 200. (11)

Here, the spatial coordinate x is normalized by c0lt, and lt is the correlation time. At

x=0 and x=200 free boundary conditions are set in, so that a sound wave can freely

leave the simulation region. The simulations are carried over time:

0≤ t≤ 190 (12)

normalized by lt.

Initially, at t=0, an equilibrium state is set as follows:

%(x,t=0)= %0=const., p(x,t=0)= p0=const. (13)

This equilibrium is perturbed by a small pulse:

V (x,t=0)=10−3 ·exp
[

− (x−5)
2

4

]

, (14)

where we normalize velocity, V , by sound speed, c0. This pulse splits into two counter-

propagating pulses. In the non-random medium, for which σ=0, they are of identical

amplitude equal to 5·10−4. The left-ward propagating wave reaches the left boundary
of the simulation region at t=5 and is lost from sight as the boundary is transparent

for any outgoing signal.

The above pulse synthesizes from Fourier components whose spectrum is

Gaussian. As the shortest waves are most affected by a random field [2], we expect

that pulses will be altered by the presence of a random field. For instance, in a random

medium a pulse will generally be shifted to a different spatial position and its

amplitude will be altered.

3.2. Seeding the random field

The random field is seeded through the term S% in Equation (8), chosen so

that:

S%=
∂%r
∂t
,

%r(xm,t)= %r(xm−crt,t=0),

%r(xm,t=0)=

√

2

N
Re
N−1
∑

n=0

%̄(Kn)e
(−2iπm n

N
+iφn), (15)

with the amplitude %̄(Kn):

%̄(Kn)=
√

E(Kn), Kn=
2πn

N∆t
. (16)

Here, 0≤ φn ≤ 2π is a uniformly distributed random phase computed by the ran1
random number generator [6].

Space is sampled over N =4096 points such that:

0≤xn=n∆x≤xN−1=200, n=0,1,2,·· ·,N−1, ∆x=
xN−1
N
.

Figure 2 shows the initial random mass density obtained with Equation (15) for

a particular realization of the random density field at t=0.
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Figure 2. Random mass density as a function of time, x,

for a typical realization of a random medium
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Figure 3. The spatial profile of V (x,t=190) for cr =0.95 (left) and cr =1.05 (right);

the dashed line marks the spatial position of the non-random pulse

4. Numerical results

Figure 3 shows spatial profiles of ensemble averaged pulses for cr = 0.95 (left

panel) and cr =1.05 (right panel). For cr =0.95 the pulse decelerates and for cr =1.05

the pulse accelerates. It is discernible that the pulse amplitudes are reduced, but for

cr =1.05 the pulse is wider than in the case of cr =0.95. As these effects are fine, in

order to display numerical results we have introduced the coordinate of the geometrical

center:

xc≡

xN−1
∫

0

xV dx

xN−1
∫

x0

V dx

, (17)

which measures whether a packet of sound waves is accelerated or decelerated by

a random field. Figure 4 displays xc as a function of cr. It is discernible from this

figure that – in an agreement with the analytical findings of Figure 1 for cr < 1 (cr > 1)

– the wave pulses decelerate (accelerate).

5. Summary

In this paper we have studied numerically the propagation of sound impulses

in a random mass density field in the form of wave noise. The main conclusion of

our investigation is that these waves experience resonance when their phase speed,
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Figure 4. The coordinate of the geometrical center xc versus the wave noise speed cr;

the horizontal dashed line denotes xc for the pulse which propagates

in a non-random medium with σ=0

ω/k, equals the phase speed of the wave noise, cr. Close to this resonance but for

cr <ω/k (cr >ω/k) the sound waves decelerate and attenuate (are accelerated and

amplified) as they propagate. This possibility of amplification is akin to the case of

a time-dependent random density field discussed by [2].
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