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Abstract: In this article we study three-dimensional mixing of an incompressible viscous fluid

subjected to the force of rotating blades in a vessel, with a low Reynolds number. The results

obtained with the lattice Boltzmann method are compared with the ones previously obtained using

the finite element method. All the qualitative and quantitative parameters of the two simulations

agree.
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1. Introduction

Lattice Boltzmann models (LBM) [1, 2] are revolutionary models in Computa-

tional Fluid Dynamics (CFD). They can be seen as an evolution of Cellular Automata

(CA) approaches, computational methods offering flexibility and efficiency in model-

ling complex phenomena capable of providing simple models of complex systems [3, 4].

The most important feature of LBMs is their ability to simulate the collective behavior

of the systems considered by describing microscopic interactions of particles through

simple laws. They allow a drastic reduction of the computational time due to the

simplicity of evolution rules and an easily implementable parallelization, based on the

classical technique of domain decomposition.

Unlike conventional methods, which solve the discretized macroscopic Navier-

Stokes equations, the philosophy of LBM is to construct simple models that observe

these macroscopic equations and describe the microscopic details of a phenomenon.

LBMs achieve this by replacing the explicit interactions of particles with a law that

describes the relaxation of the system towards an ideal local equilibrium distribution.

This can be formally obtained by partitioning the real domain with a regular and

symmetric lattice and applying the equation of motion at each node of the grid.
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Figure 1. Lattice velocities of D3Q19

D3Q19 is the lattice that shows more stability and, therefore, the one we use in the

simulation.

In the D3Q19 model we have a regular grid with 18 links at each grid node. At

each node we have 19 possible velocities vi whose directions are showed in Figure 1.

Namely, let:

ei=







(0,0,0), i=0,
(±1,0,0) or (0,±1,0) or (0,0,±1), i=1, .. . ,6,
(±1,±1,0) or (0,±1,±1) or (±1,0,±1), i=7, .. . ,18,

(1)

then vi= cei is the velocity of each particle along each node direction, where c= δx/δt
is the lattice velocity defined using the lattice space-step δx and the lattice time-

step δt. For each i= 0, .. .,18 we denote by fi(x ,t) the distribution function of the

mass having velocity vi starting from node of coordinates x =(x,y,z) at time t. From

these microscopic quantities we can obtain the following macroscopic variables:

• mass density

ρ=
18
∑

i=0

fi(x ,t), (2)

• hydrodynamic momentum

j = ρu =

18
∑

i=0

vifi(x ,t), (3)

where u(x ,t) is the fluid velocity in position x at time t.

The evolution step E can be obtained through a composition of two phases,
collision C and streaming S, that is:

E =S ◦C. (4)

Using the BGK (Bhatnagar, Gross and Krook, 1954) equation [5], the evolution step E
can be espressed in the following simpler manner:

fi(x +viδt,t+δt)= fi(x ,t)−ω(fi(x ,t)−f (eq)i (x ,t)), (5)

where ω is the relaxation parameter and f
(eq)
i is the equilibrium distribution.

Passing from the discrete setting to the continuous one, we let [0,T ] be the

observation time interval and Ω – the simulation domain. From the second-order
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expansion of the equilibrium distribution by the lattice gas method of Frisch et al. [6]

it is possible to obtain the equations of motion:

• continuity
∂ρ

∂t
+∇·(ρu)= 0, (6)

• Navier-Stokes
∂(ρu)

∂t
+ρu ·(∇u)=−∇p+ ρ

Re
∇2u , (7)

where t ∈ [0,T ], x = (x,y,z) ∈ Ω, u(x ,t) = (u1(x ,t),u2(x ,t),u3(x ,t)) is the fluid
velocity in Ω× [0,T ] ⊂ IR3 × IR, Re is the adimensional Reynolds number that
characterizes the fluid, and p is pressure.

We notice that the derivation of (6) and (7) from (2), (3) and (5) makes sense

only for a low Mach number Ma :=U/cs, where p= c
2
sρ is the pressure of an ideal gas,

cs= c/
√
3= δx/(δt

√
3) is the speed of sound.

The Reynolds number is defined as:

Re=
UL

ν
, (8)

where ν is the cinematic viscosity, while U and L are respectively the characteristic

speed and length of the stream.

The kinematic viscosity ν is related with the parameters of LBM by:

1

ν
=
3

δtc2

(

1

ω
− 1
2

)−1

. (9)

Assuming that the fluid is incompressible (i.e. ρ is constant versus time) Equations (6)

and (7) become:

∇·u =0, (10)

∂u

∂t
+u ·(∇u)=−∇p

ρ
+
1

Re
∇2u . (11)

Conditions (10) and (11) are obtained assuming that the microscopic quantities

fi(x ,t) respect the conservation of mass, ρ, and momentum, j , during the simulation.

These assumptions are the base of the method and are fulfilled if we use the following

expression for the equilibrium distribution in Equation (5) [1]:

f
(eq)
i = 13ρ

[

1− 32u2
]

, i=0,

f
(eq)
i = 118ρ

[

1+3(vi ·u)+ 92 (vi ·u)2− 32u2
]

, i=1,. . .,6,

f
(eq)
i = 136ρ

[

1+3(vi ·u)+ 92 (vi ·u)2− 32u2
]

, i=7,. . .,18.

(12)

2. Mathematical formulation of fluid mixing

2.1. Domain

In our simulation we suppose that Equations (10) and (11) are satisfied in the

region Ω× [0,T ], where Ω∈ IR3 is defined as:

Ω=TC \C, (13)
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8 N. Egidi, L. Misici, R. Piergallini and F. Tosi

with

TC =

{

(x,y,z)∈ IR3 : 0<z <zs,x2+y2<
(

rs−ri
zs
z+ri

)2
}

(14)

and

C =
{

(x,y,z)∈ IR3 : zm≤ z≤ zM ,x2+y2≤ (rC)2
}

. (15)

In the latter definitions zs is the height of the frustum of the right circular cone TC ,

ri and rs are its lower and upper base radii, respectively, while rC is the radius of the

circular cylinder C and (zM −zm) is its height.

(a) (b)

Figure 2. Geometries used in the mixing simulation

Moreover, we have:

ri> 0, rs> 0,

zs>zM >zm> 0, (16)
rs−ri
zs
zm+ri>rC > 0.

Now we can choose ri < rs or ri > rs, which yields geometries shown in Figure 2a

or 2b.

2.2. Boundary conditions

Our aim is a simulation of fluid motion in Ω= TC \C under the action of the
force of blades rotating inside C. So, we have to impose on ∂Ω=Γ1∪Γ0 =Γ, where
Γ1= ∂C and Γ0= ∂TC , the following Dirichlet boundary conditions:

u(x ,t)=

{

g(x ,t), ∀x ∈Γ1,∀t,
0, ∀x ∈Γ0,∀t.

(17)

Γ0 is treated as a solid boundary, so we suppose to have no-slip conditions. Instead,

on Γ1, the particles are forced by the rotating blades using a particular g function

that we assume to be initially null and has to fulfil:
∫

∂Ω

g ·ndS=0. (18)

Below, we give a precise mathematical formulation of the g function which simulates

the flux in C, the region containing the rotating blades. We can express this

function as:

g(x ,t)= (−yf(θ),xf(θ),−(z−z0)f ′(θ)+h(θ)ϕ(ρ)), (19)

tq108a-e/8 9IV2004 BOP s.c., http://www.bop.com.pl



The Lattice Boltzmann Method for Fluid Mixing.. . 9

where x is particle position expressed as (x,y,z) and (ρ,θ,z) in Cartesian and

cylindrical coordinates, respectively, and z0=(zm+zM )/2. In definition (19) we have:






f(θ)= s(t)
(

ωf +
∑3
i=0fi(θ,t)

)

,

h(θ)= s(t)
(

∑3
i=0hi(θ,t)

)

,
(20)

where

fi(θ,t)= l
(

0,ωb−ωf ,
π

4
,θ−θi(t)

)

,

hi(θ,t)=

{

l(0,vi,π,θ−θi(t)), if sin(θ−θi(t))< 0,
l(0,vi,

π
4 ,θ−θi(t)), if sin(θ−θi(t))≥ 0,

ϕ(ρ)=

{
(

1−cos
(

πρ

lb

))

2 , if ρ< lb,
1, if ρ≥ lb .

Moreover, ωb is the angular speed of the blades, lb is the blades’ length, ωf lb is the

drag velocity of the fluid, vi = (−1)is̃. In our simulation we fixed ωb = 8π, ωf = 2π,
lb= rC and s̃=5.

To complete the definition of g , we introduce the following periodic function:

l(l1,l0,A,a)=

{

l1+
l0−l1
2

(

cos
(

2πa
A

)

+1
)

, if cos(a)≥ cos(A/2),
l1, if cos(a)< cos(A/2).

(21)

(Please note that if a=0 then l= l0.)

The initial position of each blade is given by θi = (iπ)/2, i= 0, .. . ,3, while at

time t their position is given by θi(t)= θi+ωbt.

The function s(t),

s(t)=

{

1−cos(2πt)
2 , if t≤ 0.5,

1, if t> 0.5,
(22)

allows us to progress from the initial condition with null velocity to the final stationary

velocity at the time t = 0.5. In fact, using s(t) when t ≥ 0.5, the drag velocity is
effectively ωf lb, to which we add the radial velocity along the blades. For further

explanations about all mathematical properties of the g function see [7].

3. The setting for LB simulation

To apply the LB method to our domain we approximate it considering a paral-

lelepiped

P =
{

(x,y,z)∈ IR3 :−rm≤x,y≤ rm,0≤ z≤ zs
}

⊃Ω, (23)

circumscribed to Ω, as shown in Figure 3. We suppose zs = nz ·δx, 2rm = nx ·δx and
rm=max{ri,rs}. In P we consider a cubic and homogeneous lattice grid made up of
(nx+1)×(ny+1)×(nz+1) nodes, where ny =nx.

In particular, the nodes of the lattice are in:

G= {(xi,yj ,zk) :xi=−rm+ iδx, yj =−rm+jδx, zk = kδx,
i=0, .. .,nx, j=0, . .. ,ny, k=0, .. . ,nz}.

(24)

Thus (xi,yj ,zk) are the coordinates of the node (i,j,k). Using this notation we

can say that (i,j,k) is an internal node if (xi,yj ,zk)∈Ω; otherwise we say that (i,j,k)
is a boundary node.
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10 N. Egidi, L. Misici, R. Piergallini and F. Tosi

Figure 3. Parallelepiped containing the domain

Additionally, we subdivide the temporal interval [0,T ] of our simulation in NT
time-steps, so that δt=

T
NT
.

For t = 0, we put fi(x ,0) = f
eq
i (x ,0). Then the evolution takes place using

Equations (5) and (12) at each lattice node, except for the boundary ones.

The boundary nodes are handled differently, depending on whether they belong

to Γ0 or C. For the nodes in Γ0, the collision is replaced by the classical bounce-

back rule (see [1]), which leaves unchanged the velocity modulus, but in the opposite

direction. This means that in Γ0 particle velocity is null (u =0). At the nodes in C,

the particles are forced by rotating blades. This is implemented using Equations (5)

and (12), but in Equation (12) we use the g function instead of u .

The details given in the previous paragraphs are enough to build an algorithm

that lets us solve the mixing problem and obtain a simulation of the process. This

simulation was carried out for a testing period of T = 14 seconds and by choosing

NT = 14000. Considering the domain, we partitioned P by setting nx = ny = 44

and nz = 56. Moreover, we made the simulation in a region with the following real

dimensions: min{ri,rs}=0.45, max{ri,rs}=0.66, zs=1.68, lb= rC =0.275, zm=0.27
and zM =0.36. The fluid submitted to rotating blades is characterized by a Reynolds

number of Re = 250. This value determines unambiguosly the parameter ω as we

decided to measure lengths in meters [m] and time in seconds [s], obtaining L=0.1m

and U =0.1m/s.

As a result of our LB simulation we know the velocity field at each lattice node

for each time-step. The velocity at a generic point of Ω is computed by interpolation,

while we remember that in C the velocity field is given by the g function.

We are thus able to follow a particle and calculate its trajectories during motion.

In fact, let ξq(t) be the position of a generic particle q at time t and ξq0 be its

initial position. To obtain the trajectory of particle q we have to solve the following

differential equations:
{

dξq

dt
= v(ξq,t), ∀t∈ [0,T ],

ξq(0)= ξq0,
(25)
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where v(ξq,t) is the velocity of particle q that at time t is in ξq and is given by:

v(x ,t)=

{

u(x ,t), ∀t∈ [0,T ],∀x ∈Ω,
g(x ,t), ∀t∈ [0,T ],∀x ∈C . (26)

To solve these equations we use a second-order Adams-Bashforth method, subsetting

the temporal domain [0,T ] in NT sub-intervals, so that:

∆t=
10T

NT
, tn=n∆t, 0≤n≤ NT

10
, (27)

obtaining

ξq(tn+1)= ξ
q(tn)+

∆t

2
(3v(ξq(tn),tn)−v(ξq(tn−1),tn−1)), ∀1≤n≤

NT
10
. (28)

We decide to follow only a part of the total fluid and to calculate the trajectories of

these particles during motion. Thus we know the position of each particle forced by

the blades.

We denote with Q the set of particles we follow. At the time t=0 these particles

are in S∩G, where:

S= {x ∈Ω∪C : zm+zM
2

−0.135≤ z≤ zm+zM
2

+0.135, 0.0≤x,y≤ rm}. (29)

The mixing phenomenon can be shown to represent the iso-surface of the function

δ :G−→ IR, defined as:
δ(g)=

∑

q∈Q

δq(g), (30)

with

δq(g)=

{

exp
dg,q
dg,q−ε

, if dg,q <ε

0, if dg,q ≥ ε
, (31)

where dg,q = d(g,ξ
q) = ξq − g is the distance of the position of particle q from

point g, and ε= 2δx. Thus, we obtain the qualitative measure of motion. To obtain

its quantitative measure, we define the following set:

Bs=

{(

id1 cos

(

kπ

8

)

, id1 sin

(

kπ

8

)

, jd2+
d2
2

)

: 0≤ k≤ 7,

3+6k≤ i≤ 50, 3+12(s−1)≤ j≤ 3+12s−1
}

,

(32)

where s= 1, .. .,12, d1 =
rm
75 and d2 =

zs
150 . Setting Ps as the set of particles that are

initially (t=0) in Bs, ∀s=1,. .. ,12, we can consider a further split of Ω∪C in a N totb
of little boxes (in our simulation N totb =1100) which measure 0.13×0.13×2d2. Each
box is occupied if there is at least one particle of Ptot, with Ptot=∪12s=1Ps; otherwise
the box is empty. Setting Nb(t) as the total number of occupied boxes, we can define

the dispersion index σ(t) as follows:

σ(t)=
Nb(t)

N totb
. (33)

We can consider a further subdivision of Ω∪C in a total number Ltot of layers Lk (in
our simulation Ltot=72) defined as follows:

Lk =

{

x ∈Ω∪C :
(

2k+
3

2

)

d2≤ z <
(

2k+
7

2

)

d2

}

k=1,. .. ,Ltot. (34)
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Putting Ns(t,k) as the number of particles of Ps that are in Lk at time t, we can

define the diffusion index, ρs(t,k), as:

ρs(t,k)=
Ns(t,k)

10Vk
, (35)

where Vk is the volume of each layer, Lk.

4. Experimental results and conclusion

In our analysis we chose all the geometrical and temporal quantities so as to

be able to make a comparison with the numerical simulations of the same mixing

problems solved using the finite element method (FEM) in [7]. We have thus obtained

the qualitative comparisons shown in Figure 5 and the quantitative ones given by the

dispersion index shown in Figure 4 and the diffusion index shown in Figure 6. Similar

results have been obtained for the domain shown in Figure 2b. The following figures

show that the qualitative and quantitative results obtained using the LBM and the

FEM are very similar. We have noted that the dispersion index obtained with the LBM

is much greater than the one obtained by the FEM, due to intrinsic properties of the

lattice Boltzmann method. The fundamental difference between the two methods is

greatly reduced computational time, due to the simplicity of the LBM updating rules.

In fact, both methods were implemented in Fortran 90 and run in WS Digital 500

(a)

(b)

Figure 4. Dispersion index, σ(t); the grey and black curves are obtained by using the finite

element method and the lattice Boltzmann method, respectively
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Isosurface δ(g)= 0.61 at different times for the domain shown in Figure 2a:

(a) LBM, t=0.5s; (b) FEM, t=0.5s; (c) LBM, t=1s; (d) FEM, t=1s;

(e) LBM, t=3s; (f) FEM, t=3s
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Diffusion index for the domain shown in Figure 2a, represented as a density

function of time in the x axis (100=1s) and of the layers in the y axis:

(a) LBM, ρ2(t,k); (b) FEM ρ2(t,k); (c) LBM, ρ4(t,k); (d) FEM ρ4(t,k);

(e) LBM, ρ6(t,k); (f) FEM ρ6(t,k)
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AU/256Mb. To obtain the illustrated results using the FEM we needed 28 minutes of

CPU for each simulation describing 0.01 seconds of fluid motion, while using the LBM

we needed only 4s of CPU for each simulation describing 0.01s of fluid motion.

Our next goal is to make the parallelism for the complete simulation by utilizing

the lattice Boltzmann method for two miscible identical fluids with different colors.

We can conclude that all the parameters of the two simulations for the same

problem, using the lattice Boltzmann method and the finite element method, agree,

but in velocity field evaluation the computational time of the lattice Boltzmann

method is smaller than that of the finite element method.
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