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Abstract: Numecrical studies of the evolution of strain localisation and polar effects within a planc layer
of a granular material under monotonic shearing are presented. Herein a micro-polar approach is formulated
within the framework of a hypoplastic Cosscrat continuum to describe the essential propertics of a dry
and cohesionless granular material like sand. The constitutive model is based on incremental non-lincar
tensor-valued functions and captures the influence of the pressure, the void ratio, the mean grain diameter
and the rotation resistance of the grains on the evolution of the stresses and couple stresses. The Cosserat
boundary conditions are suitable to model the rotation resistance at the interface between the granular
layer and the surfaces adjoining the boundaries of the granular body. The numerical investigations show
that the location, thickness and cvolution of strain localisation within the shear layer are strongly
influenced by the boundary conditions and the initial state quantities.
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1. Introduction

The concentration of shear deformations in narrow zones called shear bands is a
well-known phenomenon found in granular materials. The location, orientation and
thickness of a shear band are determined by the mechanical properties of the
material and the boundary conditions. For large shearing dilatancy, strain softening
and polar effects, i.e. pronounced grain rotations, can be observed (¢.g. Bogdanova-
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Bontcheva and Lippmann 1975, Oda 1993). The results of shear tests with sand
specimens show that the thickness of the localised deformation zone is not
a material constant. The thickness mainly depends upon the grain distribution, grain
shape, stress level, initial density, dilatancy resistance of the boundarics and
the roughness of the surfaces adjoining the boundaries of the granular body
(e.g. Miihlhaus and Vardoulakis 1987, Gudchus 1993, Vardoulakis and Sulem 1995,
Oda et al. 1996, Tejchman 1997, Uesugi et al. 1998). For an initially dense sand
specimen the void ratios within the localised zone may increase beyond the critical
value obtained from the standard test (Oda ez al. 1997). It is worth noting that for
numerical investigations an internal length must be included in the constitutive model.
Otherwisc the thickness of the localised zone in finite clement calculations is scaled
by the clement size. As a result, the predicted load-displacement curves are
unreliable in the post-bifurcation regime (e.g. de Borst eral. 1992). A polar
continuum or so-called Cosserat continuum offers the possibility to include the mean
grain diameter as an internal length in a physical natural manner (Miihlhaus 1986,
Tejchman 1989). To this end a particular hypoplastic constitutive model according to
Gudehus (1996) and Bauer (1996) based on the concept of a simplc material was
extended by quantities which are characteristic of a polar continuum (Bauer and
Tejchman 1995, Tejchman and Bauer 1996, Tejchman 1997). The extended model
takes into account Cosscrat rotations, couple stresses, the mean grain diameter and
the current void ratio which is related to the pressure-dependent maximum, minimum
and critical void ratios. The constitutive equations for the stresses and couple
stresses are incrementally non-linear tensor-valued functions which model anclastic
behaviour. The model captures the influence of the pressure level and the current
density on the incremental stiffness for both contractant or dilatant deformations
using a single set of constitutive constants. All constitutive constants have a clear
physical meaning and they can be determined from simple index and element tests
(e.g. Herle and Gudehus 1999). Due to the presence of an internal length the
boundary value problems are mathematically well-posed (de Borst et «/. 1992) and
the predicted thickness of the shear zone is not sensitive to the element size provided
that the element size is small enough (Tejchman 1997). Based on this mode!
numerical calculations were carried out for different boundary value problems
involving the appearance of zoncs with localised deformations. The results show
acceptable agreement with the experiments (e.g. Herle and Tejchman 1997, Wehr,

Tejchman, Herle and Gudehus 1997). Further aspects referring to the capacity of
the polar hypoplastic model have been outlined for instance by Gudehus (1997) and

Tejchman and Gudehus (1999). In this paper a slightly modified version proposed by

Bauer and Huang (1999) is used. In particular the stress limit condition is formulated

as a function of the symmetric part of the stress deviator. Morcover, in the

constitutive equation for the couple stresses the polar constant is placed in a similar

way as the stress limit condition in the constitutive equation for the shear and normal

stresses. For the finite element calculation a four-node element with a so-called

selective reduced integration technique is used to alleviate volumetric locking.
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The focus of the investigation is on studying the influecnce of the boundary
conditions on the evolution of strain localisation and polar effects within a granular
layer between two parallel plates under plane shearing. In contrast to a classical
continuum the displacement-field across the shear layer is non-linear from the
beginning of shearing even though the material is homogeneous in the initial state.
Strain localisation may appear for large monotonic shearing cither in the middle of
the granular layer or close to one of the boundary plates. The location within the
granular body is strongly influenced by the boundary conditions. Only with respect to
the symmetry condition for an infinite shear layer the displacement ficld is
independent of the co-ordinate in the direction of shearing. Otherwise the
deformations become rather heterogeneous. The thickness of the localised zone is
mainly determined by the mean grain diameter, the initial density, the pressure level
and by the polar parameter which reflects the shape and surface roughness of the
grains. If the localised zone occurs closc to one of the bounding plates then the
thickness is also influenced by the roughness of the plates, ie. the interface
behaviour is determined by the sliding and the rotation resistance of particles at the
bounding surface. In this paper the interface behaviour is modelled with the
Cosserat rotation prescribed at the boundaries of the granular layer. Herein an
empirical formula proposed by Tejchman (1997) is used to relate the Cosserat
rotations at the boundary to the surface roughness, the mean grain diameter and to
the relative displacement. The numerical simulations show that for shearing under a
constant vertical pressure the thickness of the localised zone is independent of the
height of the layer, which is in accordance with the experimental observations.

2. Hypoplastic Cosserat model

In a Cosserat continuum a material point possesses displacement degrees of
freedom u, (i =1, 2, 3) and rotational degrees of freedom which are called Cosscrat
rotations ¢ (i =1, 2, 3). The gradient of thc rotations Fw ¢ /(?.\f/ corresponds to the
curvatures K, which are associated with the couple stresses M, . As a consequence,
the deformation tensor and the stress tensor are nonsymmetric. The ratc of
deformation D¢ and the rate of curvature r'c(/_ arc defined as:

D, =D, +W,~W;, &, =0da/éx,,

with
D, = [61'1,./0)(,, +0u, /0x, :’/2 ,
W, =[ i, /ex, - éu, jox, |2
and

¢ s s
’/V;'[ - eAl/ O)k N

Herein u, denotes the velocity, D, and W, are the symmetric and nonsymmetric

parts of the velocity gradient respectively w5 is the polar spin, ¢ the rate of
Cosserat rotation and €5 is the permutation tensor.
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The proposed hypoplastic Cosserat model includes three state variables, i.e. the
stress tensor o, the couple stress tensor g and the void ratio e. The evolution of the
components of these state variables is described by the following equations:

6,=J [&zD;; (6,05 + ik, )6, + £, (5, +6; WD D; +E'A,,r?'k,}, )
=dyf.|a l: [‘ (ék/D/i) + Ky +2 1, a.+ Dy, D, +k.—k/K;AI )}’ (2)

e=(1+e)D, , 3)
with the abbreviations:
G;=0,/0y, 6;=6,-6;/3, f,=p,1(dyo,) and k,=d.K,.

Herein the objectives stress rate & and objective couple stress rate 1 is rlated to the
Jaumann derivative, i.e.:

0, =0, —W,o,+0,W,, f;=p, ~W,u, +u,W,.

1

The mean grain diameter d_, enters the constitutive equations as the internal
length and 5 denotes the Kronecker delta. The tensor-valued functions of the
objective stress rate 0' in Equation (1) and the objective couple stress rate y
Equation (2) are non- lmear in the rate of deformation and the rate of the cu1vature
Equation (3) implies the assumption that the volume change of the grains can be
neglected. Thus, the rate of the void ratio is proportional to the volume strain rate
D,,. Factor a in Equation (1) and factor a_ in Equation (2) are related to stationary
states which can be reached asymptotically under large shearing. In a stationary
state the stress ratio becomes higher for a higher a. Factor a depends on the
so-called angle of internal friction ¢ , and on the tensor o-“ , which represents
the symmetric part of the normalised stress deviator, i.e. G, = (O’,\, +0, )/2 The

proposed function for a reads:

. s ars A A Ak
. sing, 8/3-3 (Gk/ Gy +6y Glm Ok )
a=-"

oy A

. P K Sk
3-sing, —30“‘0,*‘ ‘/(G“‘ A,‘) . 4)

m m/\

a is embedded in the constitutive Equation (1) and therefore always effective, e.g.

for isotropic state (" = 0) a value of:

N Jg sing,
3 3-sing,

is obtained. The influence of the mean pressure and the current void ratio on the
response of the constitutive Equations (1) and (2) is taken into account with the
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stiffness factor f and the density factor f,. The cvolution of dilatancy, the peak
stress ratio, strain softening and the shear zone thickness mainly depend on the
density factor f,, which represents a relation between the current void ratio e, the
critical void ratio e_and the minimum void ratio e, L.e.

o
e—e,
Jo= s (3)

e(‘ - e{l

where a < 0.5 is a constitutive constant. The stiffness factor f is proportional to the
parameter & and depends on the stress level o, and on the void ratio e, which is
related to the maximum void ratio e, , i.e.:

I-n

B
_| & h, (1+e)( o,
/. _[ ] nh,( ' (6)

e G,64) ¢ h

with
8sin’ @, e 22sing, (e, —e,,

h; = " :
(3—sin Q. )ﬁ 3-sing, | e, —¢,

i

Herein 3 > 1 is a constitutive constant and the maximum void ratio e , is assumed to
decrease with the mean pressure o,, according to the compression rclation (Bauer
19953):

e =e, exp[—(cu /h, )'] (7)

Herein the constants By s h( and n are related to an isotropic compression test
starting from the loosest state of the grain material. It was postulated by Gudchus
(1996) that e_and e, in Equation (5) decrcase with the mean pressure like B, ditt.s

€0 € € ’ (s
where ¢, , e, and e, denote the values of e , ¢ , and ¢, for o, = 0.

Altogether the constitutive model includes 11 constants which are closely related
to granular properties, i.e. they can be estimated from the grain size distribution, the
grain shape and grain hardness (e.g. Herle and Gudchus 1999). For the present
numerical investigations the following material constants are used:

e,=12, ¢,=051, e, =082, ¢._=30° h =190MPa,
a=0.11, =105 n=04, d;,=0.5mm, a =1.0.

It can be noted that for purely coaxial homogeneous deformations starting from
an initially symmetric stress tensor or for d,, — 0 there are no polar effects, i.e.
m,=m,=0, W, =W, o =0 and 6, =0, so that the polar hypoplastic modcl

reduces to the non-polar one given by Gudehus (1996) and Bauer (1996), i.e.:

ji o
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G, =/, [dzDi/ +6; (S Dy )+ fdd(dff + 6":‘)\/ Dty ]

e=(1+e)D,.

3. Modelling of the interface behaviour

Besides the stress and displacement boundary conditions of a non-polar
continuum additional non-standard boundary conditions, i.e. couple stresses and
Cosserat rotation boundary conditions, must also be taken into account. Along the
walls of bounding structures in motion the slide and rotation resistance of the
particles in contact is mainly determined by the interaction between the wall
roughness and the size, shape and roughness of the grains. Very rough walls can
capture the adjoining small grains so that neither sliding nor rotating may occur. Then
the relative displacement and the Cosserat rotation at the boundary of the granular
body is zero. For rough and medium rough boundaries and quasi-static processes the
following assumptions are made to model the interface behaviour in a simplified
manner:

1) Boundary particles of the granular body are permanently in contact with the
adjoining structure. Therefore the relative displacement u, of the particles
perpendicular to the adjoining structure surface is zero, i.e.:

u, =0. 9)

ii) The tangential displacement u, of the particles along the surface of the
adjoining structure is equal to or less than the displacements of the adjoining
structure u_, i.e.:

si®

Up) = Jubhy- (10)
Herein the dimensionless factor 0 <f <1 denotes the fraction of #, which
is transmitted to the boundary of the granular body. Then the relative
displaccment u, between the boundary surfaces reads:

y =ty —U, =(1= 1, )uy. (1)

iii) The cosserat rotation w: at the boundary of the granular body can be
rclated to the displacement u_ according to the relation proposed by
Tejchman (1997), i.e.:

w/::j;u_’ (]2)

50

2

where the dimensionless factor f, denotes the fraction of u , which is
transmitted as rotation. For the special case of pure rolling the relative
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displacement is u, = @, d., /2 =u, /2, factor f, becomes 1/2 and an
upper limit of f =1 can be derived.

With respect to relations (10) and (11) @, can alternatively be represented
as a function of the boundary displacement u, of the granular layer, i.e.:

o = Ju Un -
' Ju dsy o
or as a function of the relative displacement u, , i.e.:
e Jo Uy
w, = . (14)
l_fu dsn

4. Finite element analysis of plane shearing

For numerical simulations of plane shcaring the present hypoplastic Cosserat
model was implemented in the finite element code ABAQUS (5.8-1) using the
user-clement interface UEL. A four-node element with bilinear shape functions was
used to describe the displacements and Cosserat rotations within the element. For
the case of planc strain only three degrees of freedom remain for cach node, i.e.
u, U, and @5, as shown in Figure 1. A so-called selective reduced intcgration
technique was adopted to alleviate volumetric locking (Nagtegaal, Parks and Rice
1974). A Newton iteration procedure is used to solve the non-linear equation system
and an implicit time integration technique is applied to compute the stress and couple
stress increments. Since the material behaviour to be described is ratc-independent
the time increment can, for instance, be related to the increment of the initiated
shear displacement.

A2
HEIGHT
OF THE Us
GRANULAR w’ .
rps 1
LAYER ! To
vy | BOTTOM "I \f
0 - e

Y e AR

Figure 1. Modelling a plane shear laver of granular material with a Cosserat continuum
(displacements u,, Cosserat rotation @5, stresses o, and couple stresses p,)
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4.1 Influence of the lateral boundary conditions

The distribution of the deformation and void ratio within a shear specimen is
shown in Figure 2 for different boundary conditions described at the lateral
boundaries of the specimen. All calculations are carried out under plane strain
conditions starting from an initially homogencous isotropic state with e = 0.6,
o,=—-100 kPa and m =0. At the top boundary the vertical stress o,, is kept
constant and a shear displacement is initiated by prescribed horizontal node
displacemets, while the vertical displacement is obtained as a result of dilatancy
behaviour within the whole specimen. The node displacements are locked at the
bottom and the rotation degrees of freedom are locked for both bottom nodes and
top nodes.

In order to model the lateral boundary conditions of the classical plane simple
shear test a linear displacement field must be prescribed on both sides of the

Figure 2. Influence of prescribed lateral boundary conditions on the distribution of the void ratio
within a shear layer for: (a) and (b) lateral linear displacement fields; (c) lateral constant pressures;
(d) and (e) symmetric conditions of an infinite shear laver
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specimen (Figures 2a and 2b). The numerical investigation shows that in contrast to
a classical continuum the distribution of the state quantities within the specimen
obtained for a polar continuum becomes strongly heterogencous from the beginning
of shearing. The brighter bands indicate a higher void ratio and consequently the
location where failure starts. The zones are cccentrically located and slightly
inclined, which also reflects the experimental obscrvation made with the so-called
simple shear apparatus of the Cambridge type on sand specimens (Rosce 1973).
The distribution of the void ratio changes with the horizontal co-ordinate and it is also
influenced by the length of the specimen as can clearly be scen by comparing
Figure 2a with Figure 2b. For shecaring under a constant latcral pressure the
deformation field is also rather hetcrogencous as shown in Figure 2c¢. It is obvious
that the lateral boundary conditions assumed in Figures 2a, 2b, 2¢ have a significant
influence on the cvolution of the state quantity, i.e. the quantitics change with the
horizontal co-ordinate and their distribution is influenced by the gcometrical
dimension of the specimen. The results are independent of the horizontal co-ordinate
(Figure 2d) if the symmetry conditions for an infinite shear layer are introduced
(Bauer and Huang 1999). The symmetry condition can be modclled by applying
constraint conditions to the side nodes of the finite element mesh, i.e. cach node on
the left boundary is controlled to have the same displacements and Cosserat rotation
as the corresponding node with the same vertical co-ordinate on the right boundary.
Thus, for a finitc element calculation of an infinitc shear laycr a single column of
clements is sufficient (Figure 2e).

4.2 Behaviour of an infinite shear layer

In the following the influence of the Cosserat boundary conditions at the top
surface of an infinite shear layer is discussed. All the finite clement calculations arc
performed for a shear layer with a height of 4 cm starting from the same
homogencous and isotropic initial states as described in Section 4.1. The kinematical
boundary conditions at the bottom are u,, = u,, =0 and w3, = 0. At the top surfacc
the wvertical pressure of o,,=-100 kPa is kept constant and the horizontal
displacement . and the Cosserat rotation w§,=~f, u,, /d,, are described.

e a T T T g.]__—z‘ T T Y
- 022 s} i
inside

7 -
A —
outside
8 4 2 1
i e e ] o A A 1
(1] 1 2 3 b o 1 2 3
(a) U7 [em) (b) U7 [cm]

Figure 3. Plane shearing of an infinite layer: (a) void ratio inside and outside of the localisation zone;
(b) stress ratio at the top surface versus shear displacement u,,
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Figure 4. Plane shearing between two very rough surfaces under a constant vertical pressure
of o ,, = =100 kPa: (a) horizontal displacements u, . (b) void ratio e, and (c) Cosserat rotation
wacross the height of the layer for shear deformation of u,, = 0.4, 1, 2, 3 cm; (d) normal stresses,
(e) shear stresses, and (f) couple stresses for a shear deformation at the top boundary of u, = 3 cm

For symmetric Cosserat boundary conditions, i.e. locked Cosserat rotations at
the bottom and top surfaces, the deformation for large shearing is localised within
a narrow zone in the middle of the layer (Figure 2d). The light strip indicates
a higher void ratio as a result of dilatancy within the localised zone. Figure 3a shows
the evolution of the void ratio in an element inside and outside of the localiscd zone.
At the beginning of shearing the void ratio slightly decreases and then increases,
which means that the material first becomes denser and shows dilatancy with
advanced deformation. However, before the stress peak is reached the void ratio
curves branch out. The void ratio inside the localised zone increases very strongly
and tends towards a stationary value while the void ratio outside the localised zone
slightly incrcases and becomes almost constant for continuous shearing. This
indicates that for a continuous shearing the material outside the localised zonc
behaves like a rigid body after the stress peak. The horizontal shear resistance
versus the horizontal displacement at the top is shown in Figure 3b. First the shear
resistance increases up to a peak state and afterwards the value decreases and

tends towards a stationary state.
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Figure 5. Plane shearing between a very rough bottom and a medium rough top surface under
a constant vertical pressure of o ,, = =100 kPa: (a) horizontal displacements
(h) void ratio ¢ and (c) Cosserat rotation @' across the height of the layer
Jor shear deformation of u,. = 0.4, 1, 2. 3 cm; (d) normal stresses, (e) shear stresses,
and (f) couple stresses for a shear deformation at the top boundary of u,, = 3 em

For a shear displacement of 0.4, 1, 2 and 3 cm at the top of the layer the
distribution of the horizontal displacements u, , the void ratio e and the Cosscrat
rotations ¢ across the height of the layer are shown in Figures 4a, 4b and 4c. It can
clearly be scen that the void ratio e and the Cosserat rotation @} increases within
the localised zone, while outside this zone these quantities remain almost unchanged.
The distribution of the stress components o, and o,, is influenced by polar effect
while o,, and o, arc constant as it is required for the equilibrium (Figure 4d and
Figure 4e). Since o, # o, the stress tensor in the frame of a polar continuum
is nonsymmetric. It can be pointed out that the couple stress g, is very small
(Figure 4f), but it does not vanish across the shear layer duc to the contribution of
the Jaumann terms.

For different Cosscrat boundary conditions at the bottom and at the top boundarics
the zone of strain localisation is no longer located in the middle of the shear layer. The
results in Figure 5 were found for a smoother top surface which was modelled
by prescribing the Cosserat rotation at the top boundary using relation (13) with
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@y == 0.025 ulr/dso. It is obvious that the zone of strain localisation is located
ncar the smoother boundary and the distribution of the state quantities is different
to the results obtained for symmetric Cosserat boundary conditions. Furthermore, the
thickness of the localised zone is smaller than the value found for the symmetric case.
Independent of the assumed boundary condition for @ o the normal stresses and the
void ratio in the middle of the localised zone tend towards the same stationary value
that is obtained from the non-polar hypoplastic model under plane shearing (Bauer
2000), ie. the state quantities tend towards 7, =T,,=T,, and e=ec¢. At the
boundary of the localised zone the stresses and couple stresses are extremal and the
void ratio in this zonc becomes greater than the critical one. Thus, an initially isotropic

matcrial gets a transversely isotropic structure during shearing.

4.3 Influence of the initial state quantities on the thickness
of the localised zone

For symmetric Cosserat boundary conditions i.e. w; =05 =0, the influence
of the initial state on the thickness of localised zone is shown in Figure 6. The results
for different vertical pressures (Figure 6a) and initial void ratios (Figure 6b) indicates
that the thickness ¢ of the localised zone increases with an increase of the pressure
Ty s the initial void ratio e and the mean grain diameter dso. For non-symmetric

¢ T T { m T T
dso »| | dso

®F Loy = —100 kPa 1
40 F =
< m 3 7

[ . ' T ' e [ 1 e i
[} 400 800 1200 5 8 J 8

(a) ~022 [kPa] (b) (;'o

Figure 6. Influence of the initial state on the thickness t of the localised zone: (a) t /d 5 VOISus

vertical pressure o,, for e = 0.6; (b) t /d, versus initial void ratio e, foroc,,=—100kPa

t T A T .2 T
dw [ ooy = —100 kPal |
ol €, = 0.6 ]
10 + 4

u 1. 3 L3

0 1 2 3

a.

Figure 7. Influence of the polar constant a_on the shear band thickness
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Cosserat boundary conditions the thickness of the localised zone is smaller. as was
already mentioned in Scction 4.2. The foregoing investigations werc carricd out for
a_=1.0. The polar constant a_in the evolution Equation (2) for the couple stresses
takes into account the influence of the grain shape and grain roughness on the
rotation resistance of particles. The investigations show that a_ influcnces the shear
band thickness and it is dircctly related to the Cosserat quantitics in a stationary
state. The thickness of the shear band decreases with an increase of a, (Figure 7).

S. Conclusion

Polar cffects resulting from grain rotation and couple stresses in a granular
material can be accounted for with the presented polar hypoplastic model. Finite
clement calculations were performed to study the response of an infinite laycr of
granular material under plane shearing. Proper constraints were used to model the
symmetry conditions of an infinite layer with respect to a polar continuum. IFrom the
numerical investigations it follows that polar cffects within shear zones arc
noticeable. Their influence on the evolution of the current stress and void ratio is
significant. For large shearing the deformation is localised within a narrow zone. The
thickness of the zone is higher for an initially higher void ratio and is also influenced
by the roughness of the boundaries, the mean grain diameter and the pressure level.
For symmetric boundary conditions at the top and at the bottom of the shear layer
the localised zone occurs in the middle of the shear layer, otherwise it is located near
the smoother boundary.
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