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Abstract: Numerical studies of the evolution of strain localisation and polar effects within a plane layer 
of a granular material under monotonic shearing are presented. Herein a micro-polar approach is formulated 
within the framework of a hypoplastic Cosscrat continuum to describe the essential properties of a dry 
and cohesionlcss granular material like sand. The constitutive model is based on incremental non-linear 
tensor-valued functions and captures the influence of the pressure, the void ratio, the mean grain diameter 
and the rotation resistance of the grains on the evolution of the stresses and couple stresses. The C'osserat 
boundary conditions are suitable to model the rotation resistance at the interface between the granular 
layer and the surfaces adjoining the boundaries of the granular body. The numerical investigations show 
that the location, thickness and evolution of strain localisation within the shear layer are strongly 
influenced by the boundary conditions and the initial state quantities.
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1. Introduction
The concentration of shear deformations in narrow zones called shear bands is a 

well-known phenomenon found in granular materials. The location, orientation and 
thickness of a shear band are determined by the mechanical properties of the 
material and the boundary conditions. For large shearing dilatancy, strain softening 
and polar effects, i.e. pronounced grain rotations, can be observed (e.g. Bogdanova-
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Bontcheva and Lippmann 1975, Oda 1993). The results of shear tests with sand 
specimens show that the thickness of the localised deformation zone is not 
a material constant. The thickness mainly depends upon the grain distribution, grain 
shape, stress level, initial density, dilatancy resistance of the boundaries and 
the roughness of the surfaces adjoining the boundaries of the granular body 
(e.g. Miihlhaus and Vardoulakis 1987, Gudchus 1993, Vardoulakis and Sulem 1995, 
Oda et at. 1996, Tejchman 1997, Uesugi et al. 1998). For an initially dense sand 
specimen the void ratios within the localised zone may increase beyond the critical 
value obtained from the standard test (Oda et al. 1997). It is worth noting that for 
numerical investigations an internal length must be included in the constitutive model. 
Otherwise the thickness of the localised zone in finite clement calculations is sealed 
by the element size. As a result, the predicted load-displacement curves arc 
unreliable in the post-bifurcation regime (e.g. de Borst et al. 1992). A polar 
continuum or so-called Cosserat continuum offers the possibility to include the mean 
grain diameter as ar internal length in a physical natural manner (Miihlhaus 1986, 
Tejchman 1989). To this end a particular hypoplastic constitutive model according to 
Gudehus (1996) and Bauer (1996) based on the concept of a simple material was 
extended by quantities which are characteristic of a polar continuum (Bauer and 
Tejchman 1995, Tejchman and Bauer 1996, Tejchman 1997). The extended model 
takes into account Cosserat rotations, couple stresses, the mean grain diameter and 
the current void ratio which is related to the pressure-dependent maximum, minimum 
and critical void ratios. The constitutive equations for the stresses and couple 
stresses are incrementally non-linear tensor-valued functions which model anelastic 
behaviour. The model captures the influence of the pressure level and the current 
density on the incremental stiffness for both contractant or cilatant deformations 
using a single set of constitutive constants. All constitutive constants have a clear 
physical meaning and they can be determined fiom simple index and element tests 
(e.g. Herle and Gudehus 1999). Due to the presence of an internal length the 
boundary value problems are mathematically well-posed (de Borst et al. 1992) and 
the predicted thickness of the shear zone is not sensitive to the element size provided 
that the element size is small enough (Tejchman 1997). Based on this model 
numerical calculations were carried out for different boundary value problems 
involving the appearance of zones with localised deformations. The results show 
acceptable agreement with the experiments (e.g. Herle and Tejchman 1997, Wchr. 
Tejchman, Herle and Gudehus 1997). Further aspects referring to the capacity of 
the polar hypoplastic model have been outlined for instance by Gudehus (1997) and 
Tejchman and Gudehus (1999). In this paper a slightly modified version proposed by 
Bauer and Huang (1999) is used. In part ular the stress limit cord tion is formulated 
as a function of the symmetric part of the stress deviator. Moreover, in the 
constitutive equation for the couple stresses the polar constant is placed in a similar 
way as the stress limit condition in the constitutive equation for the shear and normal 
stresses. For the finite element calculation a four-node element with a so-called 
selective reduced integration technique is used to alleviate volumetric locking.
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The focus of the investigation is on studying the influence of the boundary 
conditions on the evolution of strain localisation and polar effects within a granular 
layer between two parallel plates under plane shearing. In contrast to a classical 
continuum the displacement-field across the shear layer is non-linear from the 
beginning of shearing even though the material is homogeneous in the initial state. 
Strain localisation may appear for large monotonic shearing cither in the middle of 
the granular layer or close to one of the boundary plates. The location w ithin the 
granular body is strongly influenced by the boundary conditions. Only with respect to 
the symmetry condition for an infinite shear layer the displacement field is 
independent of the co-ordinate in the direction of shearing. Otherwise the 
deformations become rather heterogeneous. The thickness of the localised zone is 
mainly determined by the mean grain diameter, the initial density, the pressure level 
and by the polar parameter which reflects the shape and surface roughness of the 
grains. If the localised zone occurs close to one of the bounding plates then the 
thickness is also influenced by the roughness of the plates, /'.<?. the interface 
behaviour is determined by the sliding and the rotation resistance of particles at the 
bounding surface. In this paper the interface behaviour is modelled with the 
Cosserat rotation prescribed at the boundaries of the granular layer. Herein an 
empirical formula proposed by Tejchman (1997) is used to relate the Cosscrat 
rotations at the boundary to the surface roughness, the mean grain diameter and to 
the relative displacement. The numerical simulations show that for shearing under a 
constant vertical pressure the thickness of the localised zone is independent of the 
height of the layer, which is in accordance with the experimental observations.

In a Cosserat continuum a material point possesses displacement degrees of 
freedom u. (i = 1,2, 3) and rotational degrees of freedom which are called Cosserat 
rotations (o‘ (/ = 1,2, 3). The gradient of the rotations d to ' Idx corresponds to the 
curvatures k which are associated with the couple stresses fi As a consequence, 
the deformation tensor and the stress tensor are nonsymmetric. The rate of 
deformation D‘ and the rate of curvature k  are defined as:

Herein it. denotes the velocity, D and W are the symmetric and nonsymmetric 
parts of the velocity gradient respectively IVc.. is the polar spin, coL. the rate of 
Cosserat rotation and e is the permutation tensor.

2. Hypoplastic Cosserat model

with

and
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The proposed hypoplastic Cosserat model includes three state variables, i.e. the 
stress tensor <7, the couple stress tensor fj. and the void ratio e. The evolution of the 
components of these state variables is described by the following equations:

°ij = f s  a2D‘j + (6 klD'kl + fik,Kkl )d y + fd a (d,; + d* ) ^ D ‘klDlkl +Kklx ki

4  = acKij + Ay + + 2f t/ ac^D klDkl +Kk/Ku j

( 1)

( 2 )

e = (\ + e)Dkk, (3)

with the abbreviations:

<T/=CT„ /o-u , d* = d (.-<5v/3, A = ^ (//(4b<J*) and A, = 4 ,  A, ■

Herein the objectives stress rate d  and objective couple stress rate /; is rlated to the 
Jaumann derivative, /.e.:

d v = d,; -  + g jk Wkj, d,/ = A  ~ A*%  + / % •

The mean grain diameter r/50 enters the constitutive equations as the internal 
length and <5. denotes the Kronecker delta. The tensor-valued functions of the 
objective stress rate cry in Equation (1) and the objective couple stress rate /r in 
Equation (2) are non-linear in the rate of deformation and the rate of the curvature. 
Equation (3) implies the assumption that the volume change of the grains can be 
neglected. Thus, the rate of the void ratio is proportional to the volume strain rate 
Dkk. Factor a in Equation (1) and factor ac in Equation (2) are related to stationary 
states which can be reached asymptotically under large shearing. In a stationary 
state the stress ratio becomes higher for a higher a . Factor a depends on the 
so-called angle of internal friction <pc , and on the tensor , which represents 
the symmetric part of the normalised stress deviator, i.e. a** = + G *k. ) /2  . The
proposed function for a reads:

sin <p 
a =

3 — s i n r/?
18 /3 -3  (d ;; d ;; + d ;/ d;„; d * ;)

* *s A *S A-3(7,, (T,„, G \l^kl <*kl
' kl 'J ln u mk . (4)

a is embedded in the constitutive Equation (1) and therefore always effective, e.g. 

for isotropic state ( d* = 0 ) a value of:

18 sin <p ci = . /---------- -—
V 3 3 -  sin (pc

is obtained. The influence of the mean pressure and the current void ratio on the 
response of the constitutive Equations (1) and (2) is taken into account with the



stiffness factor and the density factor f  The evolution of dilatancy, the peak 
stress ratio, strain softening and the shear zone thickness mainly depend on the 
density factor/^, which represents a relation between the current void ratio e, the 
critical void ratio e and the minimum void ratio e ,, i.e.:

C (t
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f t  =
T

)
(5)

where a  < 0.5 is a constitutive constant. The stiffness factor / ’ is proportional to the 
parameter hs and depends on the stress level rrkk and on the void ratio e, which is 
related to the maximum void ratio e , i.e.:I

f s  =
' e . ±

\ e J

<7i
\]

e ,

with

( 6 )

h = 8sin>,. + j _ 2>/2sinipt. f  en)- e m Y
(3 - s in (pcf  3 - s i n ^ '

Herein (i > 1 is a constitutive constant and the maximum void ratio e , is assumed to 
decrease with the mean pressure akk according to the compression relation (Bauer 
1995):

<?, = em exp ( 7 )

Herein the constants e.{) , hs and n are related to an isotropic compression test 
starting from the loosest state of the grain material. It was postulated by Gudehus 
(1996) that et and ed in Equation (5) decrease with the mean pressure like e , i.e.:

where e ,,, e , and e denote the values of e , e , and e , for a,, = 0.10  ’  t’O </0 I ’  c ’  d kk

Altogether the constitutive model includes 11 constants which are closely related 
to granular properties, i.e. they can be estimated from the grain size distribution, the 
grain shape and grain hardness (e.g. Herle and Gudehus 1999). For the present 
numerical investigations the following material constants are used:

em = 1.2, ed„ = 0.51, e e = 0.82, tpc = 30°, ip = 190MPa,

a  =0.11, p = \.05, n = 0.4, r/5()=0.5mm, fl =1.0.

It can be noted that for purely coaxial homogeneous deformations starting from 
an initially symmetric stress tensor or for d}0 —> 0 there arc no polar effects, i.e. 
mii = ihti =0, Wn =fVi, o'* =cr*. and cr() =cr;V, so that the polar hypoplastic model 
reduces to the non-polar one given by Gudehus (1996) and Bauer (1996), i.e.:
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a , y  =  f  [a 2Dv + t u (6 klD„ )  +  +  f x *  ) J d uDu

e = (\ + e)Dkk.

3. Modelling of the interface behaviour
Besides the stress and displacement boundary conditions of a non-polar 

con nuum additional non-standard boundary conditions, i.e. couple stresses and 
Cosserat rotation boundary conditions, must also be taken into account. Along the 
walls of bounding structures in motion the slide and rotation resistance of the 
particles in contact is mainly determined by the interaction between the wall 
roughness and the size, shape and roughness of the grains. Very rough walls can 
capture the adjoining small grains so that neither sl iding nor rotating may occur. Then 
the relative displacement and the Cosserat rotation at the boundary of the granular 
body is zero. For rough and medium rough bounda~:es and quasi-static processes the 
following assumptions are made to model the interface behaviour in a simplified 
manner:

i) Boundary particles of the granular body are permanently in contact with the 
adjoining structure. Therefore the relative displacement url of the particles 
perpendicular to the adje'r ng structure surface is zero, i.e.\

ur l = 0. (9)

j) The tangential displacement u of the particles along the surface of the 
adjoining structure is equal to or less than the displacements of the adjoining
structure u , i.e.:A

u 4 m f , , u s r  ( 10)

Herein the d’mensionless factor 0 < ' < 1 denotes the fraction of u which■' U \j:
is transmitted to the boundary of the granular body. Then the relative 
displacement i<H between the boundary surfaces reads:

‘C i='C|-w,i i= 0 - X k ir  (ID

iii) The cosserat rotation co‘ at the boundary of the granular body can be 
related to the displacement u according to the relation proposed by 
Tejchman (1997), i.e.:

o f  = /  -3 -,/) J (O i ’ ( 12)

where the dimensionless factor f  denotes the frac. m of u „ which isJ (0 .v[|
transmitted as rotation. For the special case of pure rolling the relative
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displacement is ur] = a>‘p c/?0/ 2 = tts f  2 , factor f u becomes 1/2 and an 
upper limit of / ’ = 1 can be derived.
With respect to relations (10) and (11) (W ean alternatively be represented 
as a function of the boundary displacement m of the granular layer, i.e.:

(0n =
L 'U
Ju 5̂C

(13)

or as a function of the relative displacement ur]], i.e.:

= L  Ur\\
1 - f „  d,o'

(14)

4. Finite element analysis of plane shearing
For numerical simulations of plane shearing the present hypoplastic Cosserat 

model was implemented in the finite element code ABAQUS (5.8-1) using the 
user-element interface UEL. A four-node element with bilinear shape functions was 
used to describe the displacements and Cosserat rotations within the element. For 
the case of plane strain only three degrees of freedom remain for each node, i.e. 
if , it, and (0( , as shown in Figure 1. A so-called selective reduced integration 
technique was adopted to alleviate volumetric locking (Nagtegaal, Parks and Rice 
1974). A Newton iteration procedure is used to solve the non-linear equation system 
and an implicit time integration technique is applied to compute the stress and couple 
stress increments. Since the material behaviour to be described is rate-independent 
the time increment can, for instance, be related to the increment of the initiated 
shear displacement.

Figure 1. Modelling a plane shear layer o f granular material with a Cosserat continuum 
(displacements m , Cosserat rotation a>j, stresses er and couple stresses p..)
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4.1 Influence of the lateral boundary conditions
The distribution of the deformalion and void ratio within a shear specimen is 

hown in Figure 2 for different boundary conditions described at the lateral 
boundaries of the specimen. All calculations are carried out under plane strain 
conditions starting from an initially homogeneous isotropic state with e -  0.6, 
or = -100 kPa and mo = 0. At the top boundary the vertical stress cr,, is kept 
constant and a shear displacement is initiated by prescribed horizontal node 
displacemets, while the vertical displacement is obtained as a result of dilatancy 
behaviour within the whole specimen. The node displacements are locked at the 
bottom and the rotation degrees of freedom are locked for both bottom nodes and 
top nodes.

In order to model the lateral boundary cond'dons of the classical plane simple 
shear test a linear displacement field must be prescribed on both sides of the

-o >1

c)

•l'2
A

- > . r ,

-------- 3

-O'-1

Figure 2. Influence o f prescribed lateral boundary conditions on the distribution o f the void ratio 
within a shear layer for: (a) and (b) lateral linear displacement fields: (c) lateral constant pressures; 

(d) and (e) symmetric conditions o f an infinite shear layer
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specimen (Figures 2a and 2b). The numerical investigation shows that in contrast to 
a classical continuum the distribution of the state quantities within the specimen 
obtained for a polar continuum becomes strongly heterogeneous from the beginning 
of shearing. The brighter bands indicate a higher void ratio and consequently the 
location where failure starts. The zones arc eccentrically located and slightly 
inclined, which also reflects the experimental observation made with the so-called 
simple shear apparatus of the Cambridge type on sand specimens (Rosce 1973). 
The distribution of the void ratio changes with the horizontal co-ordinate and it is also 
influenced by the length of the specimen as can clearly be seen by comparing 
Figure 2a with Figure 2b. For shearing under a constant lateral pressure the 
deformation field is also rather heterogeneous as shown in Figure 2c. It is obvious 
that the lateral boundary conditions assumed in Figures 2a, 2b, 2c have a significant 
influence on the evolution of the state quantity, i.e. the quantities change with the 
horizontal co-ordinate and their distribution is influenced by the geometrical 
dimension of the specimen. The results are independent of the horizontal co-ordinate 
(Figure 2d) if the symmetry conditions for an infinite shear layer are introduced 
(Bauer and Huang 1999). The symmetry condition can be modelled by applying 
constraint conditions to the side nodes of the finite element mesh, i.e. each node on 
the left boundary is controlled to have the same displacements and Cosserat rotation 
as the corresponding node with the same vertical co-ordinate on the right boundary. 
Thus, for a finite element calculation of an infinite shear layer a single column of 
elements is sufficient (Figure 2e).

4.2 Behaviour o f  an infinite shear layer
In the following the influence of the Cosserat boundary conditions at the top 

surface of an infinite shear layer is discussed. All the finite element calculations arc 
performed for a shear layer with a height of 4 cm starting from the same 
homogeneous and isotropic initial states as described in Section 4.1. The kincmatical 
boundary conditions at the bottom are u]fj = »2/; = 0 and coc}/l = 0. At the top surface 
the vertical pressure of <r = -100 kPa is kept constant and the horizontal 
displacement urr and the Cosserat rotation (oc}j. = - fgutj./dig are described.

Figure 3. Plane shearing o f an infinite layer: (a) void ratio inside and outside o f the localisation zone: 
(b) stress ratio at the top surface versus shear displacement i//f
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(a) Uj [cm] (b) ( c ) ^3 [rad]

x 2
'ml

(d) [kPa] (e) [k Pa] (f) [kN/m]

Figure 4. Plane shearing between two very rough surfaces under a constant vertical pressure 
of a  ,2 = -100 kPa: (a) horizontal displacements u]. (b) void ratio e. and (c) Cosserat rotation 

to j across the height o f the layer for shear deformation o f u,T = 0.4, 1, 2, 3 cm; (d) normal stresses, 
(e) shear stresses, and (j) couple stresses for a shear deformation at the top boundary o f u,T = 3 cm

For symmetric Cosserat boundary conditions, i.e. locked Cosserat rotations at 
the bottom and top surfaces, the deformation for large shearing is localised within 
a narrow zone in the middle of the layer (Figure 2d). The light strip indicates 
a higher void ratio as a result of dilatancy within the localised zone. Figure 3a shows 
the evolution of the void ratio in an element inside and outside of the localised zone. 
At the beginning of shearing the void ratio slightly decreases and then increases, 
which means that the material first becomes denser and shows dilatancy with 
advanced deformation. However, before the stress peak is reached the void ratio 
curves branch out. The void ratio inside the localised zone increases very strongly 
and tends towards a stationary value while the void ratio outside the localised zone 
slightly increases and becomes almost constant for continuous shearing. This 
indicates that for a continuous shearing the material outside the localised zone 
behaves like a rigid body after the stress peak. The horizontal shear resistance 
versus the horizontal displacement at the top is shown in Figure 3b. First the shear 
resistance increases up to a peak state and afterwards the value decreases and 
tends towards a stationary state.
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0.4 1 2 3

(a) Ui [cm] (b)

(e) [kPa] (f)

Figure 5. Plane shearing between a very rough bottom and a medium rough top surface under 
a constant vertical pressure o f a  ,, = -11)0 kPa: (a) horizontal displac ements ip ,

(b) void ratio e and (c) Cosserat rotation <o'}acr'Oss the height o ff he Inver 
for shear deformation of ft, T = 0.4, I, 2, 3 cm: (d) normal stresses, (e) shear stresses, 

and (f) couple stresses for a shear deformation at the top boundary o f u,T = 3 cm

For a shear displacement of 0.4, 1, 2 and 3 cm at the top of the layer the 
distribution of the horizontal displacements if , the void ratio e and the Cosserat 
rotations ®' across the height of the layer are shown in Figures 4a, 4b and 4c. It can 
clearly be seen that the void ratio e and the Cosserat rotation (o‘} increases within 
the localised zone, while outside this zone these quantities remain almost unchanged. 
The distribution of the stress components crn and <r2| is influenced by polar effect 
while <r„ and <r|2 are constant as it is required for the equilibrium (Figure 4d and 
Figure 4e). Since rr|2 * a2l the stress tensor in the frame of a polar continuum 
is nonsymmetric. It can be pointed out that the couple stress // is very small 
(Figure 40, but it does not vanish across the shear layer due to the contribution of 
the Jaumann terms.

For different Cosserat boundary conditions at the bottom and at the top boundaries 
the zone of strain localisation is no longer located in the middle of the shear layer. The 
results in Figure 5 were found for a smoother top surface which was modelled 
by prescribing the Cosserat rotation at the top boundary using relation (13) with
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co'' = -0 .0 2 5  u, Id... It is obvious that the zone of strain localisation is located 
near the sm oother boundary and the distribution of the state quantities is different 
to the results obtained for symmetric Cosserat boundary conditions. Furthermore, the 
thickness of the localised zone is smaller than the value found for the symmetric case. 
Independent of the assumed boundary condition for to'1 the normal stresses and the 
void ratio in the middle of the localised zone tend towards the same stationary value 
that is obtained from the non-polar hypoplastic model under plane shearing (Bauer 
2000), i.e. the state quantities tend towards TU= T  =T  and e = e .  At the 
boundary of the localised zone the stresses and couple stresses are extremal and the 
void ratio in this zone becomes greater than the critical one. Thus, an initially isotropic 
mate-ial gets a transversely isotropic structure during shearing.

4.3 Influence of the initial state quantities on the thickness
of the localised zone
For symmetric Cosserat boundary conditions i.e. co‘} = ft>‘3 = 0, the influence 

of the initial state on the thickness of localised zone is shown in F gure 6. The results 
for different *fertical pressures (Figure 6a) and initial void ratios (Figure 6b) indicates 
that the thickness t of the localised zone increases with an increase of the pressure 
cr22, the initial void ratio eo and the mean grain diameter d . For non-symmetric

Figure 6. Influence o f the initial state on the thickness t o f the localised zone: (a) t hi versus 
vertical pressure a2, for eo = 0.6; (h) t/d}0 versus initial void ratio ea for a,2 = -100 k l’it

Figure 7. Influence o f the polar constant <7 on the shear hand thickness



C'osserat boundary conditions the thickness of the localised zone is smaller, as was 
already mentioned in Section 4 2. The foregoing investigations were carried out for 
a = 1.0. The polar constant a in the evolution Equation (2) for the couple stresses 
takes into account the influence of the grain shape and grain roughness on the 
rotation resistance of particles. The investigations show that r/ influences the shear 
band thickness and it is directly related to the Cosserat quantities in a stationary 
state. The thickness of the shear band decreases with an increase of o (Figure 7).

5, Conclusion
Polar effects resulting from grain rotation and couple stresses in a granular 

material can be accounted for with the presented polar hypoplastic model. Finite 
element calculations were performed to study the response of an infinite layer of 
granular material under plane shearing. Proper constraints were used to model the 
symmetry conditions of an infinite layer with respect to a polar continuum. From the 
numerical investigations it follows that polar effects within shear zones are 
noticeable. Their influence on the evolution of the current stress and void ratio is 
sig' ificant. For large shearing the deformation is localised within a narrow one. The 
thickness of the zone is higher for an initially higher void ratio and is also influenced 
by the roughness of the boundaries, the mean grain diameter and the pressure lev el. 
For symmetric boundary conditions at the top and at the bottom of the shear layer 
the localised zone occurs in the middle of the shear layer, otherw ise it is located near 
the smoother boundary.
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