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Abstract: The paper presents numerical solution to the problem of the symmetric quasi-static large-strain 
expansion of a cylindrical cavity in sand. The boundary value problem is solved with the use of 
a constitutive equation of hypoplasticity calibrated for a particular sand. As the radius of the cavity 
increases, the stresses and the density on the cavity surface asymptotically approach limit values which 
correspond to a so-called critical state of the sand. The limit values depend on the initial stresses and 
the initial density. The solutions are compared with experimental results for the same sand av ailable in 
the literature. A comparison is also made with numerical solutions obtained by other authors.
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1. Introduction
The problem of expansion of a cav'ty in a plastic body has various applications 

and has been extensively studied. The present paper deals with the expansion of a 
cyl >dr cal cavity in granular soil. Cylindrical and spherical cavities in soil were 
studied with the use of various elasto-plastk: models by Vesic [I], Carter et al. [2], 
Yu and Houlsby [3], Collins et al. [4], Shuttle and Jefferies [5] and others.

Investigations of the cylindrical or spherical cavity expansion problem for soils 
are in most cases aimed at finding the limit state which the soil at the cavity wall 
asymptotically approaches as the radius of the cavity increases. This problem 
involves both geometrical and physical nonlinearities. The limit state at the cavity 
wall is attained when the radius of the cavity becomes at least two-three times as 
large as the initial radius, depending on the density. It is therefore necessary to take 
into account the geometrical nonlinearity caused by the large deformations. Note 
that in certain cases, when using relatively simple elasto-plastic constitutive
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equations, it may be possible to obtain a semi-analytical solution for the expansion 
from zero to a finite radius and thus to find the limit state (Collins et al. [4]), 
Another diffculty consists in the fact that a soil is a physically nonlinear medium 
whose response essentially depends on the current stresses and density. Therefore, 
the constitutive equation used in the modelling must adequately describe the 
behaviour of the soil in the whole range of stresses and density covered during the 
cavity expansion.

The present paper presents a large-strain analysis of the symmetric quasi-static 
expansion of a cylindrical cavity in a cohesionlcss granular soil. The constitutive 
behaviour of the soil is described by a constitutive equation of hypoplasticity 
calibrated for a particular soil (Ticino sand). The expansion of a cavity is governed 
by a system of first-order partial differential equations. The boundary value problem 
is solved numerically by a finite-difference technique. The solutions are compared 
with experimental results on pressuremeter tests available in the literature. A 
comparison is also made with numerical solutions for the same sand obtained by 
other authors with the use of a different constitutive model. •

2. Constitutive equation
The mechanical behaviour of granular soils at strains over 10 5 — 10 4 is physically 

nonlinear and requires the use of a proper plasticity model. In many cases, where 
the deformation does not involve multi-cycle loading, it may be assumed that the 
state of a dry cohesionless soil is fully determined by the current Cauchy stress 
tensor T and the density, the latter being expressed in terms of the void ratio 
e = (V — F ) /  K , where K is the volume of the solid fraction and V is the total 
volume. This assumption forms the basis for the hypoplasticity theory [6-9], A 
hypoplastic constitutive equation establishes a relationship between the stress rate 
T (the material time derivative or, in general, an objective stress rate) and the rate 
of deformation D (the symmetric part of the velocity gradient):

+ = H (T, D,e). (1)

The tensor-valued function H in (1) involves the current stress tensor and the 
void ratio and is nonlinear in all the arguments. As distinct from elastic-plastic 
models, hypoplasticity describes the plastic behaviour of a material with the help of a 
single equation without resolution of the deformation into elastic and plastic parts and 
without introducing the notions of loading, unloading and yield surface.

The hypoplastic constitutive equation in the version of Wolffersdorff [8] is 
written as:

t  = f j e [f^D  + u 2 tr(TD)+ + f daF(T + T*)||D||], ( 2 )

where
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f  = —  , f * = f - - I ,  ||D|| = J tr(D D ) ,
trT  3 (3)

and I is the unit tensor. Function (2) is a modification of the relation given by 
Gudehus [6] and Bauer [7],

The coeffcients in (2) depend on the invariants of the stress tensor and on tire 
void ratio, which signifies the dependence of the stiffness on the current stresses 
and density. Since the function (2) is homogeneous of degree one in D, the 
behaviour of the material is rate-independent. The term ||D|| does not allow the 
constitutive function to be linearized in the vicinity of D = 0 and to be written in an 
incrementally linear form. A detailed representation of the coeffcients involved in (2) 
and the constitutive parameters of Ticino sand are given in the Appendix.

The constitutive equation (1) is an evolution equation for the stress tensor T(/) 
with the time-dependent parameter D(/). The void ratio e(t) is the other 
time-dependent parameter determined from the evolution equation:

e = (\ + c)trD  , (4)

which expresses the balance of mass. If the “direction” of deformation I) / ||D|| is 
kept constant and there is no volume change (tr D = 0), the function T(/) 
asymptotically approaches a certain value (a stationary point of the evolution 
equation (1)) which depends on the initial stress, density and the direction of 
deformation. In terms of soil mechanics, such stationary point is a so-called critical 
state [10-12] defined by the conditions:

t  = 0 , trD = 0 , (D * 0 ) . (5)

The void ratio e in a critical state and the corresponding pressure /; = -trT/3 
(trT < 0 for compression) are assumeted to be connected by the ralation:

ec =ecl)exp
f  i  33 p

(6 )

where e , h , n are material constans (see the Appendix). The critical void ratio at 
zero pressure # is taken equal to the quantity emm. which corresponds to the loostes 
state and is conventionally used in soil mechanics. The same pressure dependence is 
postulated for the minimal possible void ratio ed at a given pressure p\

ed -  ejo exP (7)

The material constant eM is the minimal void ratio at zero pressure that is taken 
equal to the void ratio e in the densest state obtained in the laboratory by the use 
of a standard technique. The relative density (also called the density index):

(8)
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usually used as a characteristic of density of a granular soil, does not imply pressure 
dependence of e and 9 . With (6) and (7) we can modify this quantity and
introduce the pressure-dependent relative density:

As an alternative to void ratio, this quantity will be used below asa characteristic 
of density of the material in the initial state at nonzero pressure prior to the 
expansion of the cavity. The modified relative density I*  is negative if the void ratio 
is higher than the critical void ratio for a given pressure.

3. Boundary value problem
Consider an infinitely long cylindrical cavity which expands quasi-statically and 

symmetrically, starting from an initial radius r" . The domain where the solution is 
sought is bounded by an outer cylindrical surface concentric with the cavity. In the 
cylindrical coordinates r, 0, z, the symmetric expansion of a cavity under the plane 
strain conditions is described by the velocity component or, the stress components 
Trr, Tgu, T__ and the void ratio e. All these quantities are functions of radius r and 
time t. The stretching tensor has two nonzero components Dn. - d o r ldr  and 
Dm = u_ !r. For brevity, we will write Tr , Tp, T , v, D ., Dy instead of TV, Tm , T_., 
C - D ’., D00.

Under the assumed symmetry, the process of deformation is governed by 
a system of five first-order partial differential equations for the unknown functions 
v, T , T , T and e. The system consists of the equilibrium equation:

dTr 1 , ,
* 5 ^ ; f j r - - r e ) = o» (10)

the constitutive equations (1):

dTr dTr
= **,

( do \
V

dt
+ u ' 

dr
TrJ e,T;

dr r (11)
\ /

dTn d T n

= H0
f do

N
V

dt
+ v  - 0 

dr T„Te ,Tz dr
,e

r (12)
\

dT. dT. = H_
( do u 1

dt
+ u -

dr

s
'

b dr
,e

r y
(13)

and the mass balance equation (4):

de
dt

de + v
dr

=(l + e) do
dr

+
o
r )

(14)
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Let r (t) and rh(t) be the radii of the inner and the outer cylindrical surfaces, 
respectively, which bound the domain where the solution is sought. The initial 
radii are denoted by r" and jr" . The case r"h = oc corresponds to a cavity in an 
infinite body.

The boundary value problem for the system (10) — (14) is formulated as follows: 
given initial conditions

(15)

at/=0, find the solution u(r. t), T (r, t), T (r, t), T? (r, t), c(r, t) for t > 0 with a given 
velocity at the inner boundary and a constant radial stress at the outer boundary, that 
is, with the boundary conditions:

t  ( 0 = uo > 0 and t  t 'W

The initial stresses in (15) must satisfy the equilibrium equation (10). In the 
calculations presented below the initial stresses and density are taken to be 
homogeneous: V'= T"0 , V] = V'J K with a coefficient K. In this case, as follows 
from the equations, the solution to the problem with /•" = °o and any r" can be 
obtained from the solution with rn = 1 merely by rescaling the /--axis. Since the 
behaviour of the material is rate-independent, the variable t plays the role of 
a loading parameter rather than physical time. For this reason, the value of u0 in (16) 
can be chosen arbitrarily. The second condition in (16) may be replaced with 
v(rh, t) = 0, which gives the same result i f /• = oo. However, in most calculations we 
used the condition of constant pressure because this was found to give a better 
approximation to an infinite body if rh is large but finite.

4. Numerical algorithm
The differentiation of the equilibrium equation (10) with respect to time and the 

use of the constitutive relations (11), (12) leads to the equation:

cH_
cr b

dT..
cr

Cu
or

0. (17)

This is a second-order ordinary differential equation for the velocity v(r, t) as 
functions of r at a fixed t. The integration of this equation requires two boundary 
conditions expressed in terms of velocity and/or its gradient d b / i r .  Namely, one 
needs either one boundary condition at each point /• and /• to solve the two-point 
boundary value problem, or two boundary conditions (velocity and its gradient) at 
one point to solve the Cauchy problem.

The solution of the whole problem involves two integration procedures: 1) the 
integration of (17) from ru to rh with the boundary conditions (16) to find the 
velocity at a fixed time; and 2) the integration of (11) —(14) with respect to time to 
find the functions T{t\ r), T0(r, t), T{>\ t) and e(r, t). The integration of ( 11) -  (14) 
does not require any boundary conditions.
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To integrate (17), the interval [r , r j  is divided into subintervals by introducing 
discretization points r , j  = 0,...N, where jr((|) = ro, r[N) = rh. These points are 
treated as material points so that their coordinates r are changed with the 
deformation. Rather than use boundary conditions at r and rh immediately as 
dictated by (16), we prescribe two boundary conditions at r , namely velocity and its 
gradient g = d v /d r . To satisfy the boundary condition at rh, the value of g at /• is 
varied in order to find the right one. With the use of the Newton method which is 
commonly used for the solution of nonlinear equations, only a few iterations are 
needed. The boundary value problem is thus reduced to a sequence of the Cauchy 
problems. The advantage of this approach is the following. To solve the boundary 
value problem immediately, it would be necessary to solve a nonlinear system of 
N equations in N variables u ,..., u . To solve the Cauchy problem, we start 
from the point r(0) = ra and proceed to the points r , rr ) ,... so that at each step we 
have to solve only one nonlinear equation in one variable (formula (19) below).

Equation (17) can be viewed as that of the first order with respect to //  . In 
order to obtain the velocity u(/+|) from given v(j) and g  and thus to perform the 
step-by-step integration with respect to /•, an implicit Euler scheme is applied to the
function H :/•

„  „  i m r
Hrth" r(/, + 2 dr

dll

(/) dr
>Ar ,

(/+!)

where Ar(/)= r( -  r{j). The use of (17) gives:

where we have denoted-

(18)

(19)

After substituting:

n  = - ( H 0 - H r) + ^ '
r dr

v
r (20)

u«w )=u<;» + 2 fe /> + ^(/>i))A/i/) (21)

into Q(/t|) and then fl into (19), we obtain a nonlinear equation in one unknown 
variable g ,+|). This equation can easily be solved by the Newton method.

To integrate Equations (11) — (14), the same implicit scheme is applied as for the 
spatial integration (the upper index stands for time):

77

y  i +1 
l0

( 2 2 )

(23)
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Tr' = t: + r r ' ) M , (24)

el+>= e'+ — (d'+e'"1 )A/. (25)

Equations (22)-(25) are written for a given material point. The coordinates of 
the material points are updated by the integration of the velocity:

+ — . (26)

The time derivatives in (22)-(25) are functions of T , Tfl, T . g. o. /• and c 
according to ( 11) -  (14). The system (22) -  (26) can be written as:

g ' ) ^ ^ 1. t f .  . ,2?)

where .Z7denotes the column of the five quantities 7’ , Tt), T . e, r. Given .Z- ', the 
system (27) can be solved for J 7' 1 via successive approximations:

H I + \ \ j r( r ,  tf. g )+ t / :1, g,j;' )}a / . (28)

where the lower index in square brackets refers to the iteration number. Each 
iteration involves the integration of (1 7) as described above.

Equation (17) from which the velocity is found was obtained by the differentiation 
of the equilibrium equation (10) with respect to time. This actually means that, when 
solving the problem, the condition of equilibrium for the stresses is replaced with the 
condition of equilibrium for the stress rates. Analytically, if the initial stresses at t -  0 
and the stress rates at / > 0 obey equilibrium, the stresses will also obey equilibrium 
at t > 0. However, during the numerical step-by-step time integration, if only the 
stress-rate equilibrium is controlled, the residual in the stress equilibrium may 
accumulate and thus lead to an increase in the error of the solution. In order to avoid 
this accumulation, at each time step, before solving (17), we calculate the stress 
residual, divide it by At to obtain the time derivative and substitute this quantity with 
the opposite sign into the right-hand side of (17).

5. Numerical solutions
An infinite body in the numerical calculations is modelled by taking /•" »  r j .  

The accuracy of the approximation to an infinite body depends on the ratio / " / / ". 
Whether the outer radius is large enough can be judged from the change in the 
circumferential and axial components of the stress tensor at rh (the radial stress is 
constant according to the boundary condition). The calculations showed that the 
minimum ratio r'.’/ r 0 which ensures a less than 0.1% variation in the axial andh a
circumferential stresses at rh upon a twofold increase in the cavity radius varies 
from 200 for loose sand (/* ~ 0) to 400 for dense sand (/* ~ 0.9). The number of
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the discretization points in the calculations is lip to 300, with a higher degree of 
discretization in the vicinity of the cavity. One time step corresponds to a relative 
increment of 10 4 to 5 x 10 4 in the cavity radius.

Figure 1 shows the pressure components and the void ratio at the cavity wall as 
functions of the cavity radius during the expansion from r" = 1 to i* = 5 calculated 
for Ticino sand with a hydrostatic initial pressure of 100 kPa. (We write p for 
pressure which is positive for compression.) Different curves correspond to 
different initial values of the relative density /* . As the cavity expands, the pressure 
components increase in magnitude and monotonically approach their limit values. As 
seen from the curves, for the stresses and the density at the cavity wall to reach the 
limit values with sufficient accuracy, the cavity has to expand up to r ~ 3 /-" for 
loose sand and up to ra ~ 4 r° for dense sand.

The fact that the stresses and the void ratio at the cavity wall approach certain 
values and do not change any more with the deformation signifies that the state of 
the sand approaches a critical state. The stresses in a critical state are determined 
by the conditions (5). Close inspection of the constitutive function reveals that the 
conditions (5) define only the ratios between the stress components in a critical 
state, while the absolute values of the stresses remain arbitrary. From this it follows 
that the ratios between the limit values of the pressure components are constants for 
a given soil and do not depend on the initial density and pressure.

Figure I. E xp a n sio n  o f  a cy lin d rica l ca v ity  in Ticino sand. The p ressu re  c o m p o n en ts  
a n d  the  vo id  ra tio  a t the  c a v ity  w a ll as fu n c tio n s  o f  the  c a v ity  rad ius



Po
 [M

Pa
]

Expansion o f a Cylindrical Cavity in Sand 42V

Figure 2. S p a tia l d is tr ib u tio n  o f  th e  p re ssu re  co m p o n en ts  a n d  the  v o id  ra tio  a fte r  
the  exp a n sio n  o f  a  cavity. I  ‘ = 0.6. p 0 = 0 .1 M P a

Figure 3. The lim it p re ssu re  p u . versus the  in itia l p re ssu re  p n 
fo r  d iffe re n t in itia l re la tive  d en sitie s  / ’ . K  -  1 .0
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Figure 4. The lim it p re ssu re  p  versus th e  in itia l p re ssu re  p  fo r  d iffe re n t va lues o f  K. 
I ’D = 0. 2 (on the left), l 'p = 0. R (on the  right)

If a cavity expands in an infinite body and the initial state is homogeneous, each 
material element follows the same strain-stress path as an element at the cavity 
wall. As the cavity begins to expand, the pressures p n and p_ in each point first 
slightly decrease and the material contracts. This occurs at small strains when the 
change in the coordinate r of the point does not exceed a few per cent. This range 
cannot be seen at the scale of Figure 1. However, this is seen in Figure-2 which 
shows the spatial distribution of the pressure components and the void ratio after the 
expansion of the cavity from /•" to r = 5 /•".

The ratio of the limit radial pressure /;| (. to the initial pressure p{] depends on the 
initial density: the higher the density, the bigger the pressure change. Figure 3 shows 
the limit radial pressure p i {. as a function of the initial pressure pH and the initial 
relative density I* .  The influence of the coefficient K = TVT"_ on the limit 
pressure is shown in Figure 4. At the same initial mean pressure, the limit pressure is 
lower for a smaller K.

6. Comparison with experiments
The problem of expansion of a cylindrical cavity may serve as a model of the 

deformation of the soil during so-called pressuremeter tests. These tests arc widely 
used in geotechnical practice for the evaluation of the state of soil in the field. 
Pressuremeter tests can also be conducted in the laboratory in large calibration 
chambers where the initial state of the soil is known. Experimental data of such tests 
available in the literature allow us to compare the results of the theoretical modelling 
with the corresponding values measured in the experiments.

The use of the symmetric cavity expansion problem considered above implies 
that we neglect possible loss of symmetry due to the shear band formation that may 
occur in the vicinity of the cavity, and assume that the length of the pressuremeter is 
large enough for the plane-strain conditions to be satisfied.
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5. C om parison  o f  the  m e a su red  a n d  the  c a lc u la te d  ra d ia l p re ssu re s  
f o r  0 .0 1 < A r j r ' l  < 0.1

Plc [MPa]
Figure 6. C om parison  o f  the  m e a su red  a n d  the  c a lc u la te d  lim it p re ssu re s
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There are two difficulties in comparing numerical solutions to the cavity 
expansion problem with experimental data on pressuremeter tests. First, the 
installation of a pressuremeter in the soil inevitably leads to the disturbance of the 
soil around the pressuremeter. As a consequence, the initial state of the soil 
becomes inhomogeneous and actually unknown. The disturbance of the soil is 
minimized on the “ideal" installation when a pressuremeter is put in an empty 
calibration chamber which is then tilled with soil. The second difficulty in the 
interpretation of experimental results consists in the fact that the maximum 
achievable increase in the cavity radius in pressuremeter tests is usually too small to 
reach and measure the limit pressure. The maximum possible increase in the cavity 
radius depends on the type of pressuremeter; it ranges from 20 % for self-boring 
pressuremeters to 100 % for cone pressuremeters. Since the limit pressure cannot 
be measured directly, its determination requires special extrapolation methods 
(Baguclin et al. [13]), which leads to an uncertainty in the estimation.

Figures 5, 6 compare the numerical solutions to the cavity expansion problem 
considered above with the experimental data on pressuremeter tests conducted by 
Bellotti et al. [14] and Manassero [15] for Ticino sand in large calibration chambers 
with a self-boring pressuremeter. Figure 5 compares the calculated and the 
measured radial pressures at different stages at the beginning of the expansion in the 
range 0.01 < A /• //•"<  0.1. The points in the figure encompass various initial 
stresses and densities. As expected, the scatter of the points about the bisectrix is 
wider for the usual installation than for the ideal installation. The limit pressures 
obtained from the experimental pressure-expansion curves by extrapolation 
(Manassero [15]) are compared in Figure 6 with the calculated values. Except for 
two points, the agreement is better than in Figure 5 and does not depend on the 
installation technique. This indicates that the disturbance introduced in the state of 
the soil during the installation of a self-boring pressuremeter has no considerable 
effect on the limit pressure.

7, Comparison with another model
In this section, for comparison purposes, we discuss the solutions to the cavity 

expansion problem obtained by Collins et al. [4] with the use of a critical-state 
elastic-plastic model based on the concept of state parameter (Been and Jefferies 
[16]). Like the hypoplasticity constitutive relation, that model describes the main 
features of the behaviour of granular materials under monotonic loading, including 
pressure and density dependent dilatancy, stiffness and critical states. The critical 
state line e ( p), where e is the critical void ratio and p is the mean pressure, is a 
straight line in the (e. In /;)-planc:

et = T — A In (/z / p ,) (29)

with parameters T, A and the reference pressure p t = 1 kPa. The behaviour of the 
material depends on both the mean pressure and the void ratio through the state 
parameter 2 defined as:
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% = e -e ( , (30)

where e is given by (29). The sign of the plastic volumetric strain in shear is 
determined by the sign of £ so that the stale of the material tends to a critical state. 
The difference between the angles of internal friction in a given state, <p. and in 
a critical state, (/> , is assumed to be in the form (Been and Jefferies f 16]):

(p-(pt =A[c\p ( -£ ) - l] ,  (31)

where A is a parameter in the range 0.6-0.95, and the angles are measured in 
radians. The flow rule is defined by the dilation angle vj/ taken to be equal to 
(5/4)(</?—fj ). The shear modulus in the elastic zone is assumed to vary with the 
mean pressure and the void ratio according to an empirical relation proposed by 
Richart et at. [17].

Collins ct at. [4J considered the expansion of a cavity from zero radius with 
K = T"/T"= 1 and obtained a self-similar solution. In this case the pressure at the 
cavity wall may be viewed as the limit pressure for a cavity which expands from 
a finite radius. The limit pressure /;[( calculated for a cylindrical cavity as a function 
of the initial values of the void ratio e{) and the mean pressure p() is approximated by 
the formula:

Figure 7. The lim it p re ssu re  p l( . f o r  a cy lin d rica l ca v ity  versus the  in itia l p re ssu re  p f 
f o r  d ifferen t in itia l s ta te  p a ra m ete rs  c a lc u la te d  f o r  Ticino sa n d  h v  C o llin s  c t at. [4\
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0 1 2 3 4 5 6 7  8 9  10
Plc [MPa]

Figure 8. The lim it p re ssu re  g  c a lc u la te d  h y  C o llins e l al. 14] versus  
the exp erim en ta l values p t fro m  P M T

------= c , / v  exp (—c4u0), (32)
Pa

where u()= 1 + e(r pt) is in kPa, and the constants cr ..., c4 for Ticino sand in the 
range 25 kPa</;()< 1000 kPa, -0.5 < s 0< 0.1 are the following: c; = 5.453 x 10\ 
c: = —0.702, c, = 0.268, c4 = 5.142.

Figure 7 shows the limit pressure pLC calculated with (32) as a function of the 
initial mean pressure pn and the state parameter g (). As in the hypoplastic model, 
see Figure 3, the limit pressure increases with increasing initial density and pressure. 
Figure 8 shows the limit pressure (32) predicted by the elastic-plastic model in 
comparison with the experimental values (the experimental data are the same as in 
Figure 6, with A'« 1). The calculated limit pressures are higher than the measured 
ones by a factor of 1.6 to 2.0. Assuming that the solution reproduced here is correct, 
the discrepancy is to be attributed to the constitutive model. The main reason for the 
error is that the constitutive theory and, specifically, relation (31) used for the 
calculations are based on triaxial compression tests with constant radial pressure. 
The stress-strain path of a material element during the expansion of 
a cavity, either spherical or cylindrical, differs from that in a triaxial compression test 
with constant radial pressure. Since the behaviour of granular materials is strongly 
path-dependent, the use of (31) may result in a large error. Other sources of the 
emor may be the compression law (29) which holds true only for pressures below 1 MPa
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(Been et al. [18], Konrad [19], Ishihara [20]), and the empirical formula of Richart 
el al. [17] used for the evaluation of the state-dependent elastic shear modulus.

The problem of the symmetric quasi-static large-strain expansion of a cylindrical 
cavity in sand is solved with the constitutive equation of hypoplasticity. As the cavity 
expands, the stresses and the density at the cavity wall asymptotically approach limit 
values which correspond to a critical state of the sand. For given sand, the limit 
values depend on the initial stresses and the initial density. The limit pressures 
calculated for Ticino sand are in good agreement with the experimental results of 
pressuremeter tests for the same sand. The dependence of the limit pressure on the 
initial state makes it possible to use the cavity expansion problem in geotechnical 
applications for the evaluation of the state of soil in the field from the results of 
pressuremeter tests [24].

Appendix
Here we write the formulae for the coefficients in the constitutive function (2). 

For a detailed discussion see [6-8].
The factor a is determined by the friction angle varphic in critical states:

Three characteristic void ratios are specified as functions of the mean pressure: 
the void ratio of maximal densification, e., the critical void ratio, e , and the voida c
ratio in the loosest state, e.. The pressure dependence of these void ratios is postulated 
in the form:

8. Conclusion

(33|

The factor F i s a  function of T*:

(34)

where

(35)

(36)

with the corresponding reference values c (), c (|, ed[) for zero pressure (<?.()> e (|> vM). 
The constants ej{), ec(t, edl) together with ht , n are material parameters. The factors
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V * J
L  =

e -  e.
e -  e.

Y

are called the pycnotropy functions, and the factor:

(37)

/: = Kn
I +

e.

V f - trT
h

X
3 + fl2 — \/3< (38)

is called the barotropy function, where a and /3are material parameters.
The calibration procedure for the determination of the constitutive parameters is 

described by Herle and Gudehus [9] and Hcrle [21], For purposes of the present 
study the constitutive function (2) was calibrated for Ticino sand with the use of the 
experimental data of Been [22] and Giuliano [23]. The constitutive parameters of 
Ticino sand are given in the table below.

/[M Pa] n e* fa <p[°] a P

250 0.68 0.94 0.59 1.11 31 0.11 1.0

References
[1] Vcsic A. S . , Expansion o f  cavities in infinite soil m ass, J. Soil Mech. Found. Div.,

Proc. ASCE 98.265,1972
[2] Carter J. P„ Booker J. R. and Yeung S. K., Cavity expansion in cohesive frictional 

soils. Geotechnique 36,349, 1986
[3] Yu H. S. and Houlsby G. T., Finite cavity expansion in dilatant soils: loading 

analysis. Geotechnique 41, 173. 1991
[4] Collins I.. Pender M. and Yan W., Cavity expansion in sands under drained loading  

conditions, lnt. J. Num. Anal. Mcth. Gcomech. 16, 3, 1992
[5] Shuttle D. and Jefferies M., Dimensionless and unbiased C PT interpretation in sand. 

Int. J. Num. Anal. Meth. Geomech. 22,351, 1998
[6] Gudehus G , A comprehensive constitutive equation for granular materials, it Soils 

and Foundations 36, 1, 1996
[7] Bauer E., Calibration o f  a comprehensive hypoplastic mode! for granular materials. 

Soils and Foundations 36, 13, 1996
[8] von WolffersdorlT P. A., A hypoplastic relation for granular materials with a 

predefined limit state surface, Mechanics o f  cohesive-frictional materials 1 .251, 1996
[9] Merle 1. and Gudehus G., Determination o f  parameters o f  a hypoplastic constitutive 

m odel from properties o f  grain assemblies. Mechanics o f  Cohesive-lrictional 
Materials 4,461, 1999

[10] Schofield A. N. and Wroth C. P., Critical State Soil M echanics, M cGraw-Hill, London. 
1968

[11] Been K., Jefferies M. G. and Hachey J., The critical state o f  sands. Geotechnique 41, 
365,1991



Expansion o f a Cylindrical Cavity in Sattd AJ 7

[12] Poulos S. J., The steady state o f  deformation,'}. Geotech. Eng. D iv ., Proc. ASCE 107.
( i 15.553.1981

[13] Baguelin F ., Jezequel J. F. and Shields D. H., The Pressuremeter and Foundation  
Engineering, Trans. Tech. Publication, Clausthall, 1978

[14] Bcllotti R., Ghionna V.. Jamiolkowski M., Robertson P. K. and Peterson R. W., 
Interpretation o f  moduli from self-boring pressurem eter tests in sand, it Geotechnique 
39.269. 1989

[15] Manassero M., Calibration chamber correlations for horizontal in situ stress 
assessment using self-boring pressuremeter and cone penetration tests. In A. IT 
Huang (editor), Calibration chamber testing, Elsevier, 237, 1991

[16] Been K., Jefferies M., A state param eter for sands, Geotechniquc 35, 99. 1985
[17] Richart F. E., Hall J. R. and Woods R. D., Vibrations o f  soils and foundations. Prentice- 

Hall, Englewood Cliffs, 1970
[18] Been K., JcfferiesM . G. and Hachey J., The critical state o f  sands, Geotechniquc 41. 

365,1991
[19] Konrad J. M., In situ sand state from CPT: evaluation o f  a unified approach at two 

CANLEXsites. Can. Geotech. Journal 34, 120, 1997
[20] Ishihara K., Liquefaction and flow  failure during earthquakes, Geotechniquc 43. 351, 

1993
[21] Herle E, Hvpoplastizitdt und Granulometric einfacher Korngcriiste,

Veroffentlichungen dcs Institutes fur Bodcnmechanik und Felsmechanik der 
Universitat Karlsruhe, 142, 1997

[22] Been K., private communication. 1996
[23] Giuliano G., Analisi della comprimibilita delle sabbie del ticino e di H okksund da 

prove triassiali. Tesi di Laurea, Dipartimento di Ingegneria Strutturale, Faculta di 
Ingegneria, Politecnico di Torino. Torino, 1987

[24] Cudmani R. and Osinov V. A., The cavity expansion problem for the interpretation o f  
cone penetration and pressuremeter tests (submitted)


