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Abstract: The so called phase diagram of grain skeletons illustrates the range of possible void ratios 
between the pressure dependent bounds e. and et . It can be shown that in the framework of the actual 
hypoplastic model these bounds can be surpassed by particular deformation paths. This inconsistency 
is particularly acute in recently proposed FF.-calculations with density fluctuations. Here wc propose 
a Modification to render the formulation consistent.
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1. Introduction
The theory of hypoplasticity has been developed by Kolymbas and Gudelnis and 

their associates since the late seventies [7, 8, 10, 13, 9, 3, 1, 12 ]. Extensions of the 
hypoplastic model enabled to challenge real engineering problems. In the recent 
version described in detail in the article by Herle and Gudehus [5] a realistic 
description of initially dense and initially lose grain skeletons for a wide range of 
pressure with a single set of parameters related to physical properties is obtained. 
Therein the range of possible void ratios is bounded by pressure dependent limit void 
ratios forming a surface in the e-trT  space. However, using these extensions we 
are often confronted with the lack of robustness of the numerical calculation. 
Although for some deformation paths a surpassing of the bounds may be physically
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accurate [2] the transition requires a change in the material model. However, these 
kind of problems are not very well understood so far. We propose a small 
modification to improve the lack of numerical robustness caused by surpassing the 
density limits. A local violation of the validity range of the constitutive law should not 
abruptly break the calculation. The error should be clearly reported, but in our 
opinion, it should be the user who decides whether to interrupt the program or not.

In this paper we assume that the reader is familiar with the recent version of the 
hypoplastic model [5] and with its extension for small strains [14], For completeness 
we repeat briefly all the formulas of the hypoplastic model in the next section.

2. The reference version of hypoplastic model

2.1 The basic equations of the hypoplastic model
The hypoplastic constitutive model is generally described by a single nonlinear 

ten so rial equation that yields the stress rate T (objective) with the stretching 
rate D [11]:

T = L :D  + ./;,N |D |. (1)

Multiplication L : D corresponds to L Dkl in index notation. The relation between 
the Cauchy stress rate T and the objective (Zaremba-Jaumann) stress rate T is:

t  = t +  W T - T  W , (2)

where W denotes the spin tensor [11] and the multiplication W • T corresponds to 
W.J' in index notation. The constitutive tensors L(T. e) and N(T. e) are functions 
of stress and void ratio. These functions are of essential importance for the quality 
of predictions by hypoplastic model. The mathematical representation of L(T, e) 
and N(T, e) following Herle and Gudehus [5] reads:

L - / , / ; t t ( r = z + »=TT) , (3)

N - Z J ^ t r + T ) ,  . (4)

T = T trT , t - t - ' l ,
3 (5)

V3(3-siny>( )
2\/2 sinyy (6)

F = - ta n : y/ + 2 — tan21//
2 + \ f l  tan t// cos 30 W i ' m v - (7)
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[ t * : t * ] ? 2 (8)

Symbol 1  denotes the fourth order unit tensor with components I = . The
multiplication T T  denotes the outer product. It reads T.TU in index notation, for 
T* = 0 is F= 1. The parameter cpc corresponds to the critical friction angle. The 
scalar factors f h, f  and f  take into account the influence of mean pressure 
(barotropy) and density (pyknotropy) [3, 1]:

tan i// = yfi ||t * II , cos3(9 = -V6

f„ =
\P h. 1 + e. - trT 3 + a2 -a -J3

\"
(9)

V V

Y

J
(10)

L  =
e-e ,.
e. -  e, ( 1 1 )

Three characteristic void ratios — e. (during isotropic compression at the 
minimum density), e (critical void ratio) and ed (maximum density) — decrease with 
mean pressure according to a heuristic relation by Bauer [1]:

= exp -trT = /?(trT)
( 12)

The range of admissible void ratios is limited by e. and <?r All material properties 
of the hypoplastic relation can be determined from simple tests [4],

2.2 Intergranular strain
A modified stress-strain relation has been proposed by Niemunis and Merle [14 ] 

in order to avoid ratcheting and to improve the small strain behaviour of the model. 
The general stress-strain relation:

T = M : D , (13)

wherein the fourth order tensor M represents stiffness and is calculated from the 
hypoplastic tensors M(T, <?) and N(T, e), which may be modified (increased) by 
scalar multipliers (material constants) mT and mR, depending on the so called in 
tergranular strain h and the direction of stretching D. Using the definitions /> -  ||h||//? 
and h = h/||h|| we calculate the stiffness M from the following formula:

M = [p xmT + (1 -  p x)mR] L +
p Y l- /» 7) L :hh + P"Nh 

p x(mR - m T) L : hh

for h : I) > 0 

for h : D < 0.
(14)
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wherein x  and R are material constants.
The evolution equation of the intergranular strain tensor h reads:

• \(1  - h h p ^ ): D for h : D > 0
h =  . (15)

[D for h : D < 0 ,

where h is the objective rate of intergranular strain to be supplemented by 
Zaremba-Jaumann terms if necessary. The exponent /} is a material constant.

3. Barotropy factor f h
Early versions of hypoplastic constitutive model were first-order homogeneous 

functions of stress, i.e. T(AT, D) = AT(T, D) . This implied that the stiffness 
vanished for T -> 0 and unrealistically large strains were needed to approach the 
stress free state. Moreover the calculated void ratio could become negative for 
extremely high pressures. In order to eliminate these shortcomings Gudchus and 
Bauer [3, 1] rewrote the hypoplastic equation in terms of dimensionless stress 
T = T /trT  and multiplied it by so called barotropy factor . The factor fh is 
a stress function /^(trT) that renders the hypoplastic model compatible with the 
following empirical approach:

e = e,= exp
( 16)

with 3p = - trT  . It describes the special case of isotropic compression that starts at 
the “percolation limit” p = 0 and e = e and continue for p > 0. Due to this 
modification the stiffness does not vanish with trT = 0 and e remains positive for 
trT —> oo. The state e = e. is assumed to be the loosest possible state of a simple 
granulate (without macropores), meaning that e > e. cannot be reached in a process 
of homogeneous deformation. This will be verified in the following text.

An additional empirical factor f  = {e le)p called pyknotropy factor has been 
proposed [3, 1] in order to make the stiffness density dependent. The function e (T) 
is a pressure dependent critical void ratio and /f is a material constant. In the special 
case of isotropic compression of a granulate in the loosest state e = e we have 
f  = (e / e y  = (e . / e n)p -  const.

Let us derive such function / fc(trT) that the Equation (16) holds for isotropic 
compression. We consider monotonic loading only so the intergranular strain can be 
neglected.

Let us write the isotropic compression/extension in terms of p and e with:

■ S TU ‘I e = (\ + e)DuSk Du = 3(1 + e)
D

3(1 + e)
v/3. (17)

The state of stress T remains isotropic so:
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f  = -PSii,XxT = -3p,Tii =^5„ , 7;; =7; = 0 , t : t  = I I< V \  = y  (IS)

The constitutive equation for isotropic compression can be written in the 
following equivalent forms:

T = (L : D + / rf/N ||D||),

P = ^  /.  f  ( A , ■ A/ + L Nn ||D|) = -  —  X— Yfs,h  {l-wA f  + fmN„ V3,H) .

I

9(l + e)

/ ,V  V3A).
■ b )  v  7

(19)9(l + <?)'

wherein the value of fd. denotes the factorf d(e, trT) function calculated at e = e . i.e.:

ft, =
(  A"e.n -  e.„,

e. n -  e , ( 2 0 )

We calculate now scalar Lm = S.L^S^  for the hypoplastic model by von
Wolffersdorff:

Ljik, =1 :L :1  = J ^ 1  ■.[ F l I  + a 2l j \ .  \ = —  8 
M T : T '  > 1/3

L„u =3(3 + fl2). ( 21)

Note that due to the isotropic stress state we may substitute F = 1. Now we 
proceed similarly with N.. = S. N.. keeping F = 1:" ‘J U

N„= 1: N = - ^  1: (t  + 1*) = 4 - f ,  3aSu -  5, -  3a . ( 22)

Finally we set the expressions for L..kk and'/V. in to the constitutive Equation (19):

P = (3(3 + ^  )* + • (23)

For isotropic compression with e < 0 holds, and:

1
P = — f b L  ((3+«2) - . /> V 3)3(1 + e)

Time differentiation of the compression curve (16) results in:

( 24 )

e -  em exp
v /?w

HO 3/>

v ^  ,

3 (  A"
P

3p
Itv ■' y

3/?e,

or
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P = 3P
hv * 3 ne-

e , (25)

which can be compared with the final fonn (24) of the constitutive equation yielding:

./b r
J  ei

f 3 P ""3(1 + # , /
h 3/ie '\  ' j ‘

e one obta:1

f3 p ^ "3(1 + € ,) /! ,

l /!J 3 ne, '

(26)

P ( 3 + a ' - h a & j \ ID

which is identical with the expression given in the first section.

4. Consistency of the upper bound e = e.
Now we examine if there is a direct! >n of str: m D for which the void ratio 

becomes larger than the upper bound e.. Let us rewrite the (hypothetical as yet) 
upper bound surface ii i e - t rT  space in the following form:

Fj {<e, tr T) = e -  emb( tr T) = 0.

The vector

M1,’(trT,e) = [A/y),A/J/,] = 5F]_ dFi 
i e 'd t r T

normal to this surface, see figure 1, has two components:

M«' = dFl= \,  
de

( ! ) 8 F i

5trT

/ trT
h J

(28)

(29)

(30)

(31)

Figure 1. Definition of vector M in the e -  trT space on e
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Any process of deformation described in terms of e and trT must satisfy the 
following condition:

n p' PjF
Ain = — ±e + — M r(T )< 0 , 

Be £ trT (32)

A"' = A/'/’ tr D(l +e) + M'p tr (L : D + /,N |D ||) < 0, (33)

for all strain rates D. The scalar product A(,> must not be positive at e = c . 
otherwise the bound surface can be surpassed.

First we calculate the strain rated D = D for which the product Au> reaches the 
maximum under condition j|D|| = 1. With other words, among all strain rates such 
that ||D|| = 1 we seek the most dilatant one keeping in mind that the density limit is 
pressure-dependent. From the system of 7 equations (disregarding the symmetric 
components of D):

( ? [ / ! " '  +  A ( ! | D j | - l ) ]

II Dll

0

we find the most dilatant direction:

D,, ~ A/’/'O + e)Srs + M'pS Lijrs

in which:

L- ^ 5"
r) 5 + a2 --<5 <5 

' 33 'V J J j

\  (
8n + a - -5 r

3

so Drs is an isotropic deformation:

(34)

(35)

(36)

(37)

Since the function fh has been derived for such isotropic deformation, it 
automatically constitutes the upper bound. Note that this result holds for the 
particular form of L only and disregards the intergranular strain. In Section 7 we 
demonstrate a special zig-zag strain path that goes beyond the c-limit due to the 
effects of the intergranular strain.

5. Consistency of the lower bound e = e,v a
We proceed now to examine the complementary lower bound e = e in a similar 

way. The nonlinear part N of the hypoplastic model is multiplied by the factor:

/ „  =
(  Y

e ~ ej
(38)
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Figure 2. Definition of vector M in the e — trT space on e

so this part must vanish at the vicinity of e = ed (because of f  = 0) and instead of 
(1) we obtain:

+ ~ L : D . (39)

In order to keep the void ratio above the lower bound e = <?rf(trT):

wherein:
e = ed = ^ 0  /?(trT ),

3(trT) = exp
/  V'( - t r T l

(40)

(41)

we require that for any rate of deformation D the increment of the void ratio must 
be suficiently large. Let us rewrite the lower bound surface' in e -  trT space in the 
following fonn:

Fd(e, trT) s  e -  e,n A(trT) = 0.
The vector:

M (trT =
SFd dFd 
de ’ 5 trT

normal to this surface, see Figure 2, has two components:

M[d)= dFd =1,
de

* c =  dF" = - e"„
3 trT h

(

\

-trT
h.

m

(43)

(44)

(45)

Any process of deformation described in terms of e and trT  must satisfy the 
following condition:
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Aun = + > 0,
de StrT (46)

for all strain rates D. The scalar product A must be positive at e = e r  otherwise 
the bound surface can be surpassed. This condition is not fulfilled by the current 
hypoplastic model. Usage of (39) is inconsistent and may result in numerical 
problems. Computation is simply halted whenever expression (38) is evaluated 
with e < ea

In order to establish the consistency condition at the maximum density limit we 
modify the expression (38) for f d. We seek such f d that the inequality:

Au,) = A/'‘ntrD(l +e) + A /^ ’tr (L : D */,N |[D ||)>  0 (47)

holds for all D at e = e . For simplicity we have assumed that the tensors L and IN 
contain the barotropy and pyknotropy multipliers already. First we calculate 
the strain rated D = D, for which the product A reaches the minimum under 
condition ||D|| = 1:

'f5[,4',/| + A (||D ||-l)]

< d D n

INI
we find the most contractant direction:

Dn ~M[:,\ \  + e)8rs + M {TJ)8llLiirs, (49)

0

1.
(48)

in which:

<5 L • L =
' T # r - ‘i i r x  I l l 's

(
A, , 2  1 1 X

II /•’ O rj 11 I 'V S 5 J
~ H J i.

2 1 " ■a —d
3 (50)

so L>ra is an isotropic deformation:

(51)

6. Modified expression for f d to establish consistency
We modify the stiffness of the hypoplastic constitutive model according to the 

lower bound (42) for e - e d. In our proposition we follow the principle “first, do no 
harm” (primum non nocerc) and we modify as little as possible, namely we change 
merely the expression for the density factor f . The required value of 7/ = / )(cO 
follows directly from the condition A{J)(D) = 0 i.e .:

M(d>trD(l + ,)  + < ' . r ( L : B) _ + « T 0 4 ( W )
Mf',,trN||D M r U f a

(52)
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This value of/^-factor (usually less than zero) applies at e -  ed only. In order to 
keep the rest of the hypoplastic model intact we replace the expression (38) for fl 
with the following interpolation rule:

L  = +
Y

)
(53)

The remaining elements of hypoplastic model need not be changed. Despite this 
precaution the void ratio may numerically become smaller than ed due to large 
strain increments. Therefore, for a better numerical stability we prefer to calculate:

f ,  = sign (<?-<?,,)
e - e A \«

+ - sign (e -  ed)
e - e . \ a

L (54)

7. Numerical examples

7.1 A path that goes below the lower bound
Neglecting intergranular strain we consider isotropic deformation in the vicinity 

of the lower bound <?.. In the range of all allowed constitutive constants the lower 
bound cannot be surpassed by deformations with increasing pressure (Merle [6]). 
However, a change in the deformation path from isotropic compression to isotropic 
extension can lead to a violation of the condition e > ed (see Figure 3a). Including the 
proposed modification of scalar f  the lower bound cannot be surpassed anymore as 
illustrated in Figure 3b.

Figure 3. (a) Violation of the condition e > ed while decreasing p  in reference version, (h) the lower 
hound cannot he surpassed in modified formulation o f f

7.2 A path that goes beyond the upper bound
The initial state of single homogeneous soil element with uniquely defined T, e. D 

and intergranular strain h was assumed to be in an isotropic stress state. The
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intergranular strain was initialized with h = ft. Stress-controlled cycles along the 
p-axes were applied to the soil sample with typical parameters. The amplitude of the 
zig-zag stresses were increased proportionally to the number of cycles. Due to the 
intergranular strain extension of the hypoplastic model the upper bound is surpassed 
as illustrated in Figure 4 p-axes.

p [kPa) 3010

Figure 4. Violation o f the condition e < e (left) by a zig-zag stress path along the p-a.\es (right)

8. Conclusion
In the framwork of hypoplasticity limiting void ratios were proposed. Since 

particular deformation paths violate these boundaries, a consistency conditions was 
derived. Therefore the factor/', in the constitutive model w;as slightly modified. The 
entire mathematical representation was given. A verification shows the behaviour of 
the modified model.
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