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Abstract: In this paper a hypoplastic model proposed by Gudchus and Bauer is presented which is apt
to describe the mechanical behaviour of loose and dense sand within a wide range of pressures and
densitics using a single sct of constants. State changes are assumed to depend on the current void ratio,
the Cauchy stress tensor and the stretching tensor. The constitutive Equation is of the rate type and basced
on non-lincar tensor-valued functions. By including a pressure dependent relative density the hypoplastic
model describes the influence of pressure and density on the incremental stiffness, the peak friction angle
and on the void ratio in a stationary state. The performance of the hypoplastic models 1s discussed and
the results of numerical simulations are compared with experiments.
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1. Introduction

The term hypoplasticity was originally introduced by Dafalias (1986) for
incremental constitutive relations for which, in contrast to the classic clastoplastic
concept, the plastic strain rate is defined without a reference to any plastic potential
surface. Concerning this genecral definition of hypoplasticity many constitutive
models discussed in the literature can be included in this class although their physical
concepts may be rather different, e.g. the models proposed by Darve (1974, 1982),
Kolymbas (1977, 1985, 1991), Chambon (1979), Valanis (1982), Wang (1990),
Bardet (1990), Wu and Bauer (1992) and others. The present hypoplastic constitutive
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model is orientated towards the basic concept of the Kolymbas type, where the
evolution of the stress state is described by an isotropic and incrementally non-lincar
tensor-valued function depending on the current state variables and the stretching
tensor. The tensor-valued function consists of a part which is linear in the stretching
and of a part which is non-linear in the stretching. Since the constitutive Equation is
incrementally non-linear an irreversible behaviour is modelled with a single
constitutive relation.

It is experimentally evident that the peak friction angle strongly depends on the
density, the mean pressure and on the direction of the stress deviator (e.g. Matsuoka
and Nakai 1974, Bouvard and Stutz 1986). The peak stress ratio is higher for
a densc sand under low pressure and decrcases with an increase of the mean
pressure (e.g. Wu 1992). Under deviatoric loading dense sand tends to dilate while
an initially very loose sand tends to contract up to the limit statc. Within the
framework of hypoplasticity, Wu and Bauer (1992) were the first to model such
behaviour using a pressure dependent relative void ratio. The efforst by Gudchus
(1996), Bauer (1996) and von Wolffersdorff (1996) led to a more comprehensive
version with a consistent description of so-called SOM-states, which also allows an
easicer calibration of the material parameters involved. The hypoplastic model covers
a broad range of densities and pressures and is applicable to contractant and
dilatant material behaviour using a single set of constants. Stationary states or
so-called critical states (Casagrande 1936, Schofield and Wroth 1968, Poulos 1981,
Been, Jefferies and Hachey 1991) arc included in the constitutive equation for
a simultancous vanishing of the stress rate and volume strain rate which can be
achicved by unlimited monotonic shearing. In a recent work by Baucr (2000),
general requirements for a consistent embedding of stationary states in this
hypoplastic model are presented in detail. The range of possible void ratios for
a simple grain skeleton is bounded by the maximum and the minimum void ratio
which decreases with the mcan pressure. The ratio of the current void ratio to the
limit void ratios and to the critical void ratio is mainly responsible for modelling
contractancy or dilatancy behaviour, the peak friction angle, strain softening and
stationary states. With the hypoplastic model various boundary value problems have
been solved and compared with experiments (e.g. Hiigel 1995, von Wolffersdorff
1997, Bauer and Huang 1997, Herle and Tejchman 1997). Capacity, limitations and
possible extensions of the hypoplastic model have been discussed for instance by
Bauer and Wu (1993, 1995), Gudchus (1996), Tejchman and Bauer (1996), Gudchus
(1997), Niemunis and Herle (1997) and by Tejchman and Gudehus (1999).

Throughout the paper compressive stress and strain are negative as in the sign
convention of continuum mechanics. Bold letters and calligraphic letters denote
second order and fourth order tensors, respectively. The following tensor operations
are used: A-B = A,.j B,w A:B :A,_j Bij’ A:B :A”_H B, rA=4_, the summation
convention over repeated indices being employed. A superimposed dot indicates

a time derivative and the quantity ”A“ =,/4;4; denotes the Euclidean norm of A.
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2. Pressure dependence of the relative void ratio

In the following it is assumed that a dry and cohesionless simple grain skeleton can
be sufficiently characterised by the void ratio e, i.e. the ratio of the volume of the
voids to the volume of the grains, and the Cauchy stress tensor T. State changes are
dictated by the current quantities of the state variables (e, T) and the ratc of
deformation D, which represents the symmetric part of the gradient of the mean field
velocity v of the grain skeleton, i.e. D=[Vv=(Vv)7]/2. The void ratio mainly
changes due to a rearrangement of grains within the grain skeleton caused by
compression, extension or shearing of the the granular body and may also be
accompanied by deformations, abrasion and the crushing of grains. For granular
materials like quartz sand the volume change of the grains is negligible so the rate of
the void ratio is proportional to the volume strain rate tr D, i.e.:

e=(1+e)trD. (1

Starting from a known initial value e, the void ratio e after a certain volume
strain & of the granular body can be obtained by integration of Equation (1), which
leads to the following relation:

e=(1+e,)exple, }-1. (2)

Herein a negative value to £ means a compaction of the grain skelcton, i.e. the
void ratio decreases, while for a positive value to ¢, the void ratio increascs. It is
experimentally evident that for granular matcerials there is no unique relation between
the void ratio and the pressure. This mcans that for the same pressure there exists
a certain range of possible void ratios which is bounded by a maximum and
a minimum void ratio. For simple grain skeletons the limit void ratios arc pressure
dependent as sketched out in Figure | in the so-called phase diagram of grain
skeletons (Gudehus 1997). Herein the maximum void ratio ¢, and the minimum void
ratio e, decrcase with the mean pressure p = —tr T/3.
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Figure 1. Pressure dependence of the limit void ratios e, and e and the critical void ratio ¢,



370 E. Bauer

The upper bound e, can be related to an isotropic compression starting from the
loosest possible skeleton with grain contacts, ie. there exists no homogencous
deformation which goes beyond e = e, With the exponential function (Bauer 1995):

U
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the isotropic compression behaviour of sand can be approximated for a wide range
of pressures. Herein e, denotes the maximum void ratio for granular material under
p = 0, the exponent n is a dimensionless constant and the constant and the constant
h_has the dimension of a stress. Values of the lower bound e, will be achicved by
cyclic shearing with very low amplitudes. By contrast, large monotonic deformations
lead to a stationary state or so-called critical state, in which the grain skeleton can
continuously be deformed at a stationary critical stress and at a corresponding
stationary critical void ratio e_. It is experimentally evident that the critical void ratio
is higher for a lower pressure (e.g. Bouvard and Stutz 1986). For the constitutive
modelling a similar pressure dependence for e, and e, as for e, was postulated by
Gudehus (1996), i.e.:

n
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wherein e, and e, are the corresponding void ratios for a nearly stress free statc.
Relation (3) defines the range of possible void ratios e depending on the pressure
level, i.e. e>e >e, and therefore e, 2e2e, holds for 0 <p <o, as shown in
Figure 1.

In order to model the interaction between the void ratio and the stress level it is
convenient to relate the current void ratio to the pressure dependent limit void ratios
{Wu and Bauer 1992, Wu et al. 1996, Bauer 1996, Gudchus 1996). In particular, the
relations:

ei
Fo=— (5)
e
and
7 €—¢€,
d e —e, ’ (6)

are suitable quantities, which are incorporated in the present constitutive equation
(Section 3). For states which are related to e,, e_, or e, the corresponding quantities
for r_ and r, are independent of the mean pressure, i.e. for:
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3. The hypoplastic model

Stress changes are described by a constitutive equation of the rate type, i.e.:
T=F(¢,T,D). (7)

where the objective stress rate tensor T is represented by an isotropic tensor-valued
function F depending on the current void ratio e, the Cauchy stress tensor T and the
rate of deformation tensor D. The general framework of hypoplasticity requires that
function F in Equation (7) is not differentiable for and only for D=0 (Wu and
Kolymbas 1990). This can be fulfilled by decomposing F into two parts, i.¢.:

T=.A4(e,T):D+B(e,T)|D]. (8)

Herein A(e, T) : D is lincar in D, while the term B(e, T)||D|| is non-lincar in D with
respect to the Euclidean norm of the rate of deformation, ie. |D||=vD:D. Both
functions are positively homogencous of the first degree in D and the material
behaviour to be described is therefore rate-independent.

In order to visualise the incremental non-lincarity of the constitutive Equation (8)
Figure 2 sketches, for an axisymmetric problem. the stress rates obtained for
a known state (T , e ) and two particular stretching rates D and D, with the same
magnitudes but opposite principal dircctions, ie. |[D ||=|ID,]| and D =-D,. The
stress rates from the first part of Equation (8) show an incrementally lincar
behaviour, ie. A:D =-A:D,, while the responscsof the sccond part of
Equation (5). i.e. B{D ||=B|D,|l. arc indcpendent of the stretching. The sums
of the corresponding parts have different magnitudes and different directions,
ie. T“ =T(c,T,.D,)= —Th =T(e,T,D,. Therefore incremental nonlincarity is
accounted for with a single constitutive equation and there is no nced to distinguish
between loading and unloading explicitly.
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Figure 2. Responses of the constitutive Equation (9) for the deformation rates D and D, = -D

under an axisymmetric stress state: (a) Particular stretching rates O and D,
(b) Stress rate response T and T,
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In order to make a specific representation of the hypoplastic model more
transparent and the calibration easier a factorised representation of (7) was
proposed by Gudehus (1996) and Bauer (1996), which reads:

T=/, (e,uT)| £(T): D+ £, (e.rT)N(T)|D] | (9)

Herein [("i") and N("i") are dimensionless tensor functions depending on the
normalised tensor T = T/trT. The stiffness factor /_ has the dimension of stress and
the dimensionless density factor f, is related to a pressure dependent relative void
ratio. The terms in the factorised form (9) are not restricted to a certain
representation but they have to fulfil several conditions for consistency.

3.1 Proposed functions for £ and N

For a consistent description of stationary states the isotropic tensor-
-valued functions [(i‘) : D and N("i) in Equation (9) have to fulfil the condition for
a simultaneous vanishing of the stress rate and the volume strain rate independent
of the direction of the deviatoric stress as discussed by Bauer (1995, 1996) and
von Wolftersdorf (1996). This requirement is fulfiled for the proposed version
by Bauer (1995), i.e.:

£(T):D=d"D+T tr(TD), (10)

N(T):&(T+T‘), (11)

which represents a modification of the version proposed by Wu (1992). Herein
T'=T-(1/3) denotes the deviator of T, I denotes the unit tensor. The

dimensionless scalar a is rclated to stationary states and includes at least one
constant which can be expressed by the so-called critical friction angle ¢@_(Scction 3.3).

3.2 Density factor f, and stiffness factor f,

In the constitutive Equation (9) the influence of the void ratio e and the
mean pressure p is taken into account by the so-called density factor f, and the
so-called stiffness factor f . The former is related to the relative void ratio factor r,
in Equation (4) by: '

f:,=r;’=[e_e” j : (12)

ec - e{l

where a < 0.5 is a positive constant and the critical void ratio e, and the minimum void
ratio e, are pressure dependent as defined in (4).

With the factor f, the dependence of the peak friction angle and the dilatancy
behaviour on the density and pressure are included in the present model as sketched
out in Figure 3 for shearings starting from different initial void ratios. For ¢ <e,
Equation (11) yields f, < 1 while for e, >e_a value of f,> 1 is obtained. The pcak
friction angle (Figure 3a) is higher for a lower void ratio because the influence of the
part f N|[D| of the constitutive Equation (9) decrcases if f,<1. After the pcak
strain softening can be observed as a consequence of dilatancy and with advanced
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Figure 3. Homogeneous monotonic shearing under constant mean pressure for different initial void
ratios e, and e, (a) mobilised friction angle @ versus shear strain &: (b) void ratio ¢ versus shear
strain & (¢) void ratio e versus density factor f, ; (d) void ratio e versus mean pressure p

monotonic shearing the density factor tends towards f, =1 (Figure 3c¢). For e,
the material shows contractancy up to the critical state (Figure 3b) and for ¢ = ¢ lhc
value of the density factor again becomes f, =1 (Figure 3c). (ons_cquunly. in
a critical state the valuc of the density factor is independent of the initial void ratio
and the pressure level. This means that for unlimited monotonic shearing a stationary
state can be reached asymptotically both for an initially dense and for an initially
loose state.

The stiffness factor /. in Equation (9) can be decomposed into three parts:

fo= L1 T (13)

Herein /) is the density dependent part (Bauer 1996), i.e.:

V4
. ; e,
fo=rl=1=, (14)
e
with the constant §2> 1. A decrease of the void ratio e results in an increase in_/(',.
i.e. the incremental stiffiess increases. The second part, i.e.:

. |
= S 5
5 7 (15)
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takes into account a decrease of the incremental stiffness with an increase of T
(von Wolffersdorff 1996). For an isotropic state f "= 3. A more general form of [,
which also accounts for the dependence on the deviatoric stress direction reads
(Bauer 2000):

A =(1+”'i"”[ol +¢5 cos(}@)jl)il. (16)

Herein H"i"’” denotes the norm of the deviatoric stress ratio and @ denotes the Lode
angle. The dimensionless factors ¢, and ¢, in Equation (16) are constants or
functions of T. It can be noticed that rclatxon (15) is included in (16) for the special
cXpressions ¢, = [Ir(T*) —1]/||T andc,=0

An increase of the incremental stiffness with the pressure level is taken into
account with the pressure dependent part f, in Equation (13), which can be directly
derived from a consistency condition (Gudehus 1996). For isotropic compression
starting from the maximum void ratio e, the rate of the mean pressure calculated
from (3), i.e.:

|-

6 h [ 3p
e nl h
and the rate of the mean pressure from (9), i.e.:

- e

3p=fuh S,

(1+e)
must coincide. Thus, factor £, can be obtained as:

1-n

£t 1He) 3P
nh e b ] (17

with the constant:
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Herein a, denotes the value of hata for isotropic stress states (Section 3.3).

3.3 Adaptation of a to stationary stress states

With the special representation for the tensor functions £ and N in (10) and (11)
the hypoplastic model by Gudehus and Bauer is apt to describe stationary states, i.c.
states in which a grain aggregate can continuously be deformed at a constant stress
and a constant volume under a certain rate of deformation. The corresponding state
variables T_and e = e, arc called critical stress and critical void ratio, respectively
(Casagrande 1936, Schofield and Wroth 1968). With respect to e =e_ the density
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factor in (12) becomes f, = 1 and for a vanishing stress rate, i.e. Tl_ = (), the stiffness
factor f has no influence so that the constitutive Equation (9) reduces to:

D, +T (T, D, )+a (T, +T) D |=0. (18)

Dividing relation (18) by D # 0 and using the dimensionless tensor D = l)/”l)!!

leads to:

.
a;

2 = 2 I 2 ,A“
Ta(T.-D,)-—[T +T]. 9
« 3 ¢ a L [4 ¢ (l )
For stationary states the volume strain rate must also be  vanishing
simultancously with the stress rate, i.e.:
- | - R 1 -
rD, =-—uT (T D )-—[uT +uoT |=o0.

a a

« ¢

and with respect to tr T :Ir('i"‘ /trT‘ ):l and tri:’ =tr(T /tr T —13)=1-1=0 the
equation reduces to:
tr("i" -l')()+d‘ =0. (20)

Substituting (20) into Equation (19) yiclds:
D =-_T, 21

which reflects coaxiality between D _and T for stationary states. Since trT* =0
holds independent of T7, relation (21) also fulfils the requirement for a vanishing
volume strain rate, i.e.:

- ] .
II'D‘ =—-— t]'T[ =0. (22)
a

«

Inserting (21) into the identity [lb||3= t(D?) =1 leads to an equation for the
stationary stress surface (Bauer 1995), i.e.:

%

T

(;=|
(«

With respect to the identity 1A": =T /uT, —(1/3)1 it is obvious that the
stationary stress surface is a cone with its apex at the origin of the principal stress
component space (Figure 4a). Herein the dimensionless factor (3( determines the
shape of the stationary stress surface and can be expressed as a function of the
Lode-angle 0. i.e. a, = a (0)(Figure 4b).

In contrast to the clasto-plastic concept, where the limit condition is treated as
a scparate equation, the limit condition in hypoplasticity is embedded in the
constitutive equation by the functiona and therefore always active. As a conscquence,
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Figure 4. («) Stationary stress surface in the space of principal stress components,
(h) contour of the stationary stress surface in the g-plune

the response of the constitutive equation is influenced by the value for « also for
states which are far from a stationary one so the representation of @ has to fulfil
several requirements (Bauer 2000). For instance the function for @ must not vanish
for any stress and it must not show a jump for stress paths crossing the isotropic
state. The latter means that the value of @ ("i“) may be differcent to the critical value
(AI( (F) Thus, a = c?( only holds for T:T Such behaviour can be modelled by a
suitable interpolation function depending on both the Lode angle and the magnitude
of the stress deviator. For instance a suitable adaptation of a to the limit condition
given by Matsuoka and Nakai (1977) reads:

o sing, |pey (63T + W6 2T cos(30)
a<0)_3—sin<ﬂ‘. |7 1++/3/2| T cos(30) B

Herein @ denotes the Lode angle, which 1s defined as:

tr(T°)
cos(30)=-\/gm- (25)

For isotropic stress states, i.e. T' =0, factor ¢ reads:

< \/5 sing,
a{) = . 2
8 3—-sing,

and for T' = T relation (25) represents the limit condition by Matsuoka and Nakai.

The only constant in (25) is the critical friction angle ¢_. It can be related to the
stationary state in a standard triaxial compression test, in which a specimen is
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compressed axially at a constant latcral stress 7, = T,. With respect to the principal
=—T_ the critical friction angle is defincd as:

stresses =1, >-T, =—T,
q'n (p 7—;( - T’(‘
si =—c =, 5
© T+, (20)

With respect to the normalised representation of stresses, i.c. 7 =T/
(T, + T, +T,) the limit condition by Matsuoka and Nakai yields for the following
boundary conditions:

(1) Isobaric axisymmetric compression (T,= T}):
i : L o .
.': = "i. :—2, 7']“. = ! +\/Ea“ . T,‘_ = Th- = ! —\/Ta(‘ . a.= \/5 Nn.(p‘

I, T, 3 V3 ) T3 Y6 8 3-sing,

(i) Isobaric axisymmetric extension (7,= T)):

7.% = 7}: :—2, 7:;(_ = ] —\/E(}L . T,(‘ :7:;(_ = ] +\/le N (}‘ :\/§ Sln.(/)’
3 V3 -7 3 V6 8 3+sing,

>

(iv) Coaxial planc strain extension (D, =1, D, =0):

T S I R

8sin” ¢

Tl =h R0 =gt e eyt Bemye 4m 9(3+sin’g, )
(v) Plane shearing under a constant vertical pressure (7,,= T,, . D, = 0):
— with respect to a fixed co-ordinate system:
A A A
3 V2
— with respect to normalised principal stresses:
- 1 a - a1 8sin® ¢,

7}( = + ’ T:’c = - ’ 7‘31' = ? c 3 .
3 V20 3 27 3 9(3+sin*g, )

The comparison of (iif) and (v) shows that the normalised principal stresses
obtained under plane shearing coincide with the normalised stresses for coaxial
plane compression in a stationary state. Substituting this result in Equation (25) yiclds
for planc shearing and biaxial compression a Lode angle of 0= m/6. which is
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independent of factor a . With respect to the principal stresses the friction angle ¢,

in biaxial compression is related to factor a, and to the critical friction angle ¢
according to:

sing, = 2

le

3.4 Constitutive constants

The present hypoplastic model includes 8 constants which can be determined
from simple index and eclement tests (e.g. Bauer 1996, Herle 1997 and Herle and
Gudchus 1999): ii_and n are determined by the compression behaviour, ¢ and ¢
are related to the critical state in triaxial compression, o and f depend on the peak
friction angle, and ¢, and ¢, are the limit void ratios. Since the current void ratio ¢
is related to the limit void ratios by the pressure dependent functions / and f,. the
constitutive constants arc not restricted to a certain initial density. As long as the
mechanical bchaviour does not change substantially by grain abrasion the
parameters of the hypoplastic model remain constant for one granular material and
the mechanical behaviour of initially dense or initially loose sand can be described
using a single set of constitutive constants.

For the numerical investigations in Section 4 the calibration of the constants is
based on data from compression tests and triaxial tests for medium quartz sand. The
following values are used:

o, =30, n=04, h =190MPa, a=0.11,
B =1.05, e, =1.2, e,, =0.51, e, =0.82.

4, Numerical simulation of element tests

In this section the performance of the present hypoplastic model is demonstrated
with numerical simulations of several homogencous element deformations under
drained and undrained conditions.

First ocdometric compressions and extensions are considered, which are
characterised by zero radial dcformation, i.e. D,,=D, = 0. Figure 5 shows the
loading and unloading responses of the constitutive model for a specimen with an initial
void ratio of e = 0.55 and Figure 6 the results obtained for ¢ = 0.77. As can be seen
by comparing the numerical results with the experimental data, the stress paths and
stress-strain curves for loose and dense sand are well reproduced. For virgin loading
the stress paths (Figures S5a and 6a) are almost lincar. During unloading the axial stress
decrecases more rapidly than the lateral one. However, the so-called carth pressure at
rest, i.e. the stress ratio K = Tyl Ty for the virgin loading, is not a material constant.
K, is higher for the initially loosc sand than for the denser one. The relationship
between K, and e is shown in Figure 7 together with the experimental data which
were obtained using the so-called soft-oedometer device (Kolymbas and Bauer 1993).
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Fioure 5. Ocdometric compression and extension of dense sand (e, =0:53): (a) latcral stress
£al . 0
vs. axial stress: (b) void ratio vs. axial stress; experimental data by Bauer (1992)

Figure 8 shows the simulation of triaxial compression tests for various latcral
pressures and initial densities starting from an isotropic stress state. For initially
dense states and lower mean pressures the peak stress ratio is higher than for loose
states and higher mean pressures (Figure 8a). With advanced deformation the stress
ratio tends towards a stationary value which is independent of the lateral pressure
and the initial void ratio. The volume change is initially contractant and subscquently
dilatant (Figure 8b). The dilatancy is more pronounced for a lower pressure and an
initially dense state. The void ratio asymptotically reaches a pressure dependent
critical value, which is higher for a lower pressure but it is independent of the initial
void ratio.

For an initially dense state the dependence of the peak states on the pressure
level in the Rendulic-plane is shown in Figure 9. The curve of peak states is not a
straight line and lies beyond the critical stress surface. The distance between the
curve of peak states and the critical stress surface increases with the mean
pressure. However, numerical investigations show that for very high pressures the
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Figure 6. Ocdometric compression and extension on loose sand (e, =0.77): (a) radial stress
vs. axial stress; (b) void ratio vs. axial stress; experimental data by Bauer (1992)
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Figure 7. Dependence of K, on the void ratio e; experimental data by Bauer (1992)
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Figure 8. Triaxial compression under drained conditions for various initial densities and lateral
pressures: (a) stress ratio vs. axial strain; (b) void ratio vs. axial strain

peak states asymptotically approach the critical stress surface. A comparison of the
experimental data of triaxial compression tests with numerical simulations in
Figure 10 shows that the behaviour for loose and dense samples can be well
approximated with a single set of constitutive constants. The lower limit of the peak
friction angle ¢, refers to critical states and initial void ratios ¢ > e . Fore ~ ¢ the
maximum value of the peak friction angle is reached, which is higher for a lower
consolidation pressure. For higher consolidation pressures the differences between
the maximum peak friction angle and the critical value become smaller. This mecans
that the peak friction angle of dense sand under very high pressures is close to the
value obtained for loose sand.
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Cyclic numerical tests for simple shcaring with a constant normal stress
of T,,=- 0.1 MPa were also performed (Figure 11 and Figure 12). In all the tests
an initial void ratio of ¢ =0.6 was assumed. With a shear angle of tan y= 0.1
(Figure 11) the volumetric strain is contractant immediately after shearing reversal
and becomes dilatant with advanced deformation. With an increasing number of
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Figure 11. Simple shearing (e, = 0.6, T,, =~ 0.1 MPa) with a large shear amplitude (tan y = +0.1):
(a) shear stress vs. shear angle; (b) void ratio vs. shear angle

cycles the total volumetric strain is dilatant and becomes nearly stationary. The
maximum magnitude of the stress ratio decreases in cach cycle and gradually
approaches a limit value. For a smaller shear angle of tan y=+0.01 (Figure 12) the
material becomes denser, and after scveral cycles a shake-down is reached. A
similar behaviour of sand in simple shear experiments was obscrved by Wood and
Budhu (1980).

The results obtained for a water-saturated specimen under cyclic shearing
without drainage are shown in Figure 13. Herein an initially isotropic state, i.c.
I,=71,=T,=-0.15MPa, and a void ratio of ¢=0.65 was assumed. In
accordance with the principle of cffective stress, the total stress tensor is assumed
to be the sum of the intergranular stress tensor and an isotropic tensor representing
the fluid pressure in the voids. With full saturation and incompressibility of the grains

and the fluid, i.e. e =0, the change of the intergranular stress is determined by the
constitutive Equation. The change in the fluid pressurc can be obtained from the
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Figure 12. Simple shearing (¢, =0.6, T,, = =0.1 MPa) with a smull shear amplitude (tan y = +0.01):
(a) shear stress vs. shear angle; (h) void ratio vs. shear angle

static boundary condition. Cyclic shearing leads to the so-called cyclic mobility.
which was experimentally observed by several authors, ¢.g. Tatsuoka (1988).

5. Conclusions

A hypoplastic model has been presented to describe the incrementally nonlinear,
pressurce and density dependent behaviour of granular materials. In order to make
the hypoplastic concept more comprehensive a factorised representation of the
general form of the constitutive equation has been developed. This factorised form
supports the sclection of suitable approximation functions describing the limit
condition for stationary states and the influence of pressure and density on the
incremental stiffness and the peak friction angle. In particular it is shown that with
a pressure dependent relative void ratio the model can be applied for a wider range
of pressures and densities using only one sct of constitutive constants. The
numerical simulation of clement tests shows that the model appears to be capable of
reproducing the salient features of granular material under both drained and
undrained conditions.
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