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A b s tra c t: In this paper a hypoplastic model proposed by Gudchus and Bauer is presented which is apt 
to describe the mechanical behaviour of loose and dense sand within a w'idc range of pressures and 
densities using a single set of constants. State changes are assumed to depend on the current void ratio, 
the Cauchy stress tensor and the stretching tensor. The constitute c Equation is of the rate type and based 
on non-linear tensor-valued functions. By including a pressure dependent relative density the hypoplastic 
model describes the influence of pressure and density on the incremental stiffness, the peak friction angle 
and on the void ratio in a stationary state. The performance of the hypoplastic models is discussed and 
the results of numerical simulations are compared with experiments.
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1. Introduction
The term hypoplasticity was originally introduced by Dafaltas (1986) for 

i icremental constitutive relations for which, in contrast to the classic elastoplastic 
concept, the plastic strain rate is defined without a reference to any plastic potential 
surface. Concerning this general definition of hypoplasticity many constitu. ve 
models discussed in the literature can be mcluded in this class although their physical 
concepts may be rather different, e.g. the models proposed by Darve (1974, 1982), 
Kolymbas (1977, 1985, 1991), Chambon (1979), Valanis (1982), Wang (1990). 
Bardet (1990), Wu and Bauer (1992) and others. The present hypoplastic constitutive
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model is orientated towards the basic concept of the Kolymbas type, where the 
evolution of the stress state is described by an isotropic and incrementally non-linear 
tensor-valued function depending on the current state variables and the stretching 
tensor. The tensor-valued function consists of a part which is linear in the stretching 
and of a part which is non-linear in the stretching. Since the constitutive Equation is 
incrementally non-linear an irreversible behaviour is modelled with a single 
constitutive relation.

It is experimentally evident that the peak friction angle strongly depends on the 
density, the mean pressure and on the direction of the stress deviator (e.g. Matsuoka 
and Nakai 1974, Bouvard and Stutz 1986). The peak stress ratio is higher for 
a dense sand under low pressure and decreases with an increase of the mean 
pressure (e.g. Wu 1992). Under deviatoric loading dense sand tends to dilate while 
an initially very loose sand tends to contract up to the limit state. Within the 
framework of hypoplasticity, Wu and Bauer (1992) were the first to model such 
behaviour using a pressure dependent relative void ratio. The efforst by Gudehus
(1996) , Bauer (1996) and von Wolffersdorff (1996) led to a more comprehensive 
version with a consistent description of so-called SOM-states, which also allows an 
easier calibration of the material parameters involved. The hypoplastic model covers 
a broad range of densities and pressures and is applicable to contractant and 
dilatant material behaviour using a single set of constants. Stationary states or 
so-called critical states (Casagrande 1936, Schofield and Wroth 1968, Poulos 1981. 
Been, Jefferies and Hachcy 1991) are included in the constitutive equation for 
a simultaneous vanishing of the stress rate and volume strain rate which can be 
achieved by unlimited monotonic shearing. In a recent work by Bauer (2000), 
general requirements for a consistent embedding of stationary states in this 
hypoplastic model are presented in detail. The range of possible void ratios for 
a simple grain skeleton is bounded by the maximum and the minimum void ratio 
which decreases with the mean pressure. The ratio of the current void ratio to the 
limit void ratios and to the critical void ratio is mainly responsible for modelling 
contractancy or dilatancy behaviour, the peak friction angle, strain softening and 
stationary states. With the hypoplastic model various boundary value problems have 
been solved and compared with experiments (e.g. Hiigel 1995, von Wolffersdorff 
1997, Bauer and Huang 1997, Herle and Tejchman 1997). Capacity, limitations and 
possible extensions of the hypoplastic model have been discussed for instance by 
Bauer and Wu (1993, 1995), Gudehus (1996), Tejchman and Bauer (1996), Gudehus
(1997) , Niemunis and Herle (1997) and by Tejchman and Gudehus (1999).

Throughout the paper compressive stress and strain are negative as in the sign
convention of continuum mechanics. Bold letters and calligraphic letters denote 
second order and fourth order tensors, respectively. The following tensor operations 
are used: A ■ B = A B, , A : B = A. B.., A  : B = A.... Bu, trA = A.., the summation 
convention over repeated indices being employed. A superimposed dot indicates 
a time derivative and the quantity ||A|| = J^/Aj, denotes the Euclidean norm of A.
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2o Pressure dependence of the relative void ratio
In the following it is assumed that a dry and cohesionless simple grain skeleton can 

be sufficiently characterised by the void ratio e, i.e. the ratio of the volume of the 
voids to the volume of the grains, and the Cauchy stress tensor T. State changes arc 
dictated by the current quantities of the state variables (e , T) and the rate of 
deformation D, which represents the symmetric part of the gradient of the mean field 
velocity v of the grain skeleton, i.e. D = [Vv = (Vv)r]/2. The void ratio mainly 
changes due to a rearrangement of grains within the grain skeleton caused by 
compression, extension or shearing of the the granular body and may also be 
accompanied by defonnations, abrasion and the crushing of grains. For granular 
materials like quartz sand the volume change of the grains is negligible so the rate of 
the void ratio is proportional to the volume strain rate trD, i.e.:

e = (l+ e)trD . (1)

Starting from a known initial value eo the void ratio e after a certain volume 
strain l of the granular body can be obtained by integration of Equation (1). which 
leads to the following relation:

e - ( \  + eo )exp } -1 . (2)

Herein a negative value to £ means a compaction of the grai . skeleton, i.e. the 
void ratio decreases, while for a positive value to t  the void ratio increases. It is 
experimentally evident that for granular materials there is no unique relation between 
the void ratio and the pressure. This means that for the same pressure there exists 
a certain range of possible void ratios which is bounded by a maximum and 
a minimum void ratio. For simple grain skeletons the limit void ratios arc pressure 
dependent as sketched out in Figure 1 in the so-called phase diagram of grain 
skeletons (Gudehus 1997). Herein the maximum void rat'a e and the minimum void 
ratio ed decrease with the mean pressure p  - -trT /3.

Figure 1. Pressure dependence o f the limit void ratios e. and ed and the critical void ratio e
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The upper bound e. can be related to an ;sotrop;c compression starting from the 
loosest possible skeleton with grain contacts, i.e. there exists no homogeneous 
deformation which goes beyond e = e.. With the exponential function (Bauer 1995):

e, =e,oexP
r. j \"3 P

(3)

the isotropic compression behaviour of sand can be approximated for a wide range 
of pressures. Herein e denotes the maximum void ratio for granular material under 
p  « 0, the exponent n is a dimensionless constant and the constant and the constant 

has the dimension of a stress. Values of the lower bound g will be achieved by 
cyclic shearing with very low amplitudes. By contrast, large monotonic deformations 
lead to a stationary state or so-called critical state, in which the grain skeleton can 
continuously be deformed at a stationary critical stress and at a corresponding 
stationary critical void ratio e . It is experimentally evident that the critical void ratio 
is 1 'gher for a lower pressure (e.g. Bouvard and Stutz 1986). For the constitutive 
modelling a similar pressure dependence for ec and ed as for e was postulated by 
Gudehus (1996), i.e.:

e, ec e,l d i 5 3p "
—  = — = —2- = exp —
eio e,n e,m K\  ' 2

wherein e and eM are the corresponding void ratios for a nearly stress free state. 
Relation (3) defines the range of possible void ratios e depending on the pressure 
level, i.e. e > e  > e. and therefore e > e > e_, holds for 0 < p < oo, as shown in 
Figure 1.
In order to model the interaction between the void ratio and the stress level it is 
convenient to relate the current void ratio to the pressure dependent limit void ratios 
(Wu and Bauer 1992, Wu et al. 1996, Bauer 1996, Gudehus 1996). In particular, the 
relations:

and
e - e .

(5)

( 6)

are suitable quantities, which are incorporated in the present constitutive equation 
(Sectr in 3). For states which are related to ed, ec, or e the corresponding quantities 
for r and r are independent of the mean pressure, i.e. for:

e , i : d . =  — II o

e d0

AII

>:, =  l
e c 0

e ,i
e , : =  i; rd ~ > 1.
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3. The hypoplastic model
Stress changes are described by a constitutive equation of the rate type, i.c.:

T = F(e,T ,D ), (7)

where the objective stress rate tensor* is represented by an isotropic tensor-valued 
function F depending on the current void ratio e, the Cauchy stress tensor T and the 
rate of deformation tensor D. The general framework of hypoplasticity requires that 
function F in Equation (7) is not differentiable for and only for I) *= 0 (\Yu and 
Kolymbas 1990). This can be fulfilled by decomposing F into two parts, i.c. :

T=^(e,T):D+B(e,T)||D||. (X)

Herein A (P, T) : D is linear in D, while the term B(e, T)j|D|| is non-linear in I) with 
respect to the Euclidean norm of the rate of deformation, i.e. ||D|| = v D:D  . Both 
functions are positively homogeneous of the first degree in D and the material 
behaviour to be described is therefore rate-independent.

In order to visualise the ii cremental non-linearity of the constitutive Equation (X) 
Figure 2 sketches, for an axisymmctric problem, the stress rates obtained for 
a known state (T , e )  and tw'o particular stretching rates D and D/ with the same 
magnitudes but opposite principal directions, i.e. ||DJ| = ||DJj and U = -®  . flic 
stress rates from the first part of Equation (X) show an incrementally linear 
behaviour, i.e. A : I) = - A. : !), , while the rcsponscsof the second part of 
Equation (5), i.e. Bj|DJ| = B[|DJ|, arc independent of the stretching. The sums 
of the corresponding parts have different magnitudes and different directions. 
i.e. T = T(e , T , D ) * - T  = T(e , T , D.). Therefore incremental nonlinearitv is 
accounted for with a single constitutive equation and there is no need to distinguish 
between loading and unloading explicit y.

2

Da

D>, = —D0

Figure 2. Responses o f the eonstitutivc F.quation (9) fo r the deformation rates D  and I )  =  - 1) 
under an axisvmmetrie stress state: fa) ParticularI stretching rates I )  ami I )  ;

(h) Stress rate response I and '1'̂
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In order to make a specific representation of the hypoplastic model more 
transparent and the calibration easier a factorised representation of (7) was 
proposed by Gudehus (1996) and Bauer (1996), which reads:

t  -  / ,  (e’trT )[z ’( f ) :  B + (e, trT)N(T)||D]| (9)

Herein Z’(T) and N(T) are dimensionless tensor functions depending on the 
normalised tensorT = T /trT . The stiffness factor /̂  has the dimension of stress and 
the dimensionless density factor f  s related to a pressure dependent relative void 
ratio. The terms in the factorised form (9) are not restricted to a certain 
representation but they have to fulfil several conditions for consistency.

3.1 Proposed functions fo r £  and N
For a consistent description of stationary states the isotropic tensor- 

-valued functions Z’(T) : D and N(T) in Equation (9) have to fulfil the condition for 
a simultaneous vanishing of the stress rate and the volume strain rate independent 
of the direction of the deviatoric stress as discussed by Bauer (1995, 1996) and 
von Wolffersdcrf (1996). This requirement is fulfiled for the proposed version 
by Bauer (1995), i.e

Z '( t) :D  = d;iD + t  tr(TD), (10)

N ( f ) - # ( t + r ) ,  HD

which represents a modification of the version proposed by Wu (1992). Herein 
T* = T - (1 /3 ) I  denotes the deviator of T, I denotes the unit tensor. The 
dimensionless scalar a is related to stationary states and includes at least one 
constant which can be expressed by the so-called critical friction angle (pc (Section 3.3 .

3.2 Density factor f d and stiffness factor f
In the constitutive Equation (9) the influence of the void ratio e and the 

mean pressure p  is taken into account by the so-called density factor f  and the 
so-called stiffness factor/^. The former is related to the relative void ratio factor /• 
in Equation (4) by:

e - e . \ a

( 12)

where a  < 0.5 is a positive constant and the critical void ratio e and the minimum void 
ratio ed are pressure dependent as defined in (4).

With the factor f  the dependence of the peak friction angle and the dilatancy 
behaviour on the density and pressure are mcluded in the present model as sketched 
out in Figure 3 for shearings starting from different initial void ratios. For e < e. 
Equation (11) yields < 1 while for e > e  a value of f d> 1 is obtained. The peak 
fricti on angle (Figure 3a) is higher for a lower void ratio because the influence of the 
part /rfN||D|| of the constitutive Equation (9) decreases if f d < 1. After the peak 
strain softening can be observed as a consequence of ailatancy and with advanced
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Figure 3. Homogeneous monotonic shearing under constant mean pressure fo r  different initial void 
ratios e ( and e,: fa) mobilised friction angle <p versus shear strain i:: (h) void ratio e versus slmir 

strain k; (c) void ratio e versus density factor f  ; (d) void ratio c versus mean pressure p

monotonic shearing the density factor tends towards f  =■ 1 (Figure 3c). For ~> e 
the material shows contractancy up to the critical state (Figure 3b) and for e -■ c the 
value of the density factor again becomes /  = 1 (Figure 3c). Consequently, in 
a critical state the value of the density factor is independent of the initial void ratio 
and the pressure level. This means that for unlimited monotonic shearing a stationary 
state can be reached asymptotically both for an initially dense and for an initially 
loose state.

The stiffness factor f s in Equation (9) can be decomposed into three parts:

Herein/’ is the density dependent part (Bauer 1996),

\P
l  = ’f  =

\ e j

(13)

(14)

with the constant j3> 1. A decrease of the void ratio e results in an increase in /', 
i.e. the incremental stiffness increases. The second part, /.<?.:

/ >
1

f  : t ( 15)
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takes into account a decrease of the incremental stiffness with an increase of T 
(von Wolffersdorff 1996). For an isotropic s ta te /s*= 3. A more general form of / ’, 
whiJi also accounts for the dependence on the deviatoric stress direction reads 
(Bauer 2000):

/ ; = ( l  + | f r | | [ c 1+ c ,c o s ( 3 0 ) ] ) ’ '.  (16)

Here’ ||T*|| denotes the norm of the deviatoric stress ratio and 0 denotes the Lode 
angle. The dimensionless factors c and c in Equation (16) are constants or 
functions of T. It can be noticed that relation (15) is mcludcd in (16) for the special
expressions = [tr(T2) - l ] /  ||T*|| and c2 = 0.

An increase of the incremental stiffness with the pressure level is taken into 
account with the pressure dependent part f h in Equation (13), which can be directly 
derived from a consistency condition (Gudehus 1996). For isotropic compressior 
stai mg from the maximum void ratio e the rate of the mean pressure calculated 
from (3), i.e.:

3 P
e, li
e n

3P 
h

x'-"

and the rate of the mean pressure from (9), i.e.:

0  + *.)’
must coincide. Thus, factor/^ can be obtained as:

with the constant:

1+E f  ,  x>-»
3 p

ei hV •' y (17)

h  = 3 a] +1 -  s/3a,
X"

Herein an denotes the value of hata for isotropic stress states (Section 3.3).

3.3 Adaptation o f a to stationary stress states
With the special representation for the tensor functions £  and N in (10) and (11) 

the hypoplastic model by Gudehus and Bauer is apt to describe stationary states, i.e. 
states in which a grain aggregate can continuously be deformed at a constant stress 
and a constant volume under a certain rate of deformation. The corresponding state 
variables T and e = ec are called critical stress and critical void ratio, respectively 
(Casagrande 1936, Schofield and Wroth 1968). With respect to e = ec the density
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factor in (12) b e c o m e s = 1 and for a vanishing stress rate, i.e. T = 0, the stiffness 
factor^ has no influence so that the constitutive Equation (9) reduces to:

D + 1  tr(+  • D, ) + a, (+, + 1 ' ) ||D, | -  0. (IX)

Dividing relation (18) by D ^ 0  and using the dimensionless tensor D = I)/||l)j| 
leads to:

1
(19)

For stationary states the volume strain rate must also be vanishing 
simultaneously with the stress rate, i.e.:

tr D = —77 tr T t r ( f  • D ) - - ^ - [ t r  T  + t r t ’ ]  = 0 .

and with respect to trT  = tr| T / t r  T( ) = 1 and trT* = tr (T /trT  -1  3 ) = l - l  = 0 the 

equation reduces to:

tr(+ ,-D  ) + a =0. (20)

Substituting (20) into Equation (19) yields:

which reflects coaxiality between D and T* for stationary states. Since trT* = 0 
holds independent of T \ relation (21) also fulfils the requirement for a vanishing 
volume strain rate, i.e.:

trf) = —— trT* =0. n i \
at ' ’

Inserting (21) into the identity [|D||2 = trfD:) = 1 leads to an equation for the
stationary stress surface (Bauer 1995), i.e.:

4 ..= fr;||. (23)

With respect to the identity T* = T / trT  -(1/3) 1 it is obvious that the 
stationary stress surface is a cone with its apex at the origin of the principal stress 
component space (Figure 4a). Herein the dimensionless factor u determines the 
shape of the stationary stress surface and can be expressed as a function of the 
Lode-angle 0. i.e. r/ = « (0)(Figure 4b).

In contrast to the elasto-plastic concept, where the limit condition is treated as 
a separate equation, the limit condition in hypoplasticity is embedded in the 
constitutive equation by the function a and therefore always active. As a consequence.
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Figure 4. (a) Stationary stress surface in the s/Hice o f principal stress components: 
(h) contour o f the stationary stress surface in the ir-planc

the response of the constitutive equation is influenced by the value for a also for 
states which are far from a stationary one so the representation of a  has to fullil 
several requirements (Bauer 2000). For instance the function for a must not vanish 
for any stress and it must not show a jump for stress paths crossing the isotropic 
state. The latter means that the value of a (T ’) may be different to the critical value 
a (T*). Thus, a = a only holds far I = Tj. Such behaviour can be modelled by a 
suitable interpolation function depending on both the Lode angle and the magnitude 
of the stress deviator. For instance a suitable adaptation of a to the limit condition 
given by Matsuoka and Nakai (1977) reads:

» (» )=
sin i,pi

3 -sin  (pc
T -

(8 /3 )-  3 t* '+ (7 6 /2 ) t* cos (30)

1+ J J /2  lit*IIcos(30)

Herein 6 denotes the Lode angle, which is defined as:

l r ( t " )cos(30) = -Vf>

[ ^ ) I
For isotropic stress states, i.e. T* = 0 , factor a reads:

13 sin <pr 
8 3-sing)( ’

(24)

15)

and for T* = T* relation (25) represents the limit condition by Matsuoka and Nakai. 
The only constant h  (25) is the critical friction angle <p It can be related to the 
stationary state in a standard triaxNl compression test, in which a specimen is
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compressed axially at a constant lateral stress 7", = T . With respect to the principal 
stresses - T  > -T v = the critical friction angle is defined as:

sin </?( 72
T. + Ll( _c

(26)

With respect to the normalised representation of stresses, i.e. Tu -Tu /
( [  + T + T ) the limit condition by Matsuoka and Nakai yields for the following 
boundary conditions:

(i) Isobaric axisymmetric compression (7  ̂= T,).

K
t

K
K

=_? a =
3 simp,
8 3-sin<pi

(ii) Isobaric axisymmetric extension (T2= T,):

Th. Tu - 1 2 .  - « 1 1. .- = - = -2 , 7, = - .  a , / , = / , =  + . a , a =
Tl Tl \  \ 3  ‘ 3 V 6 ‘

3 simp,.
8 3 + sin</>.

(iii) Coaxial plane strain compression (D, = -1, D, = 0):

= - l ,  7t =0. - i a.
7̂ , — + A-. 

3 42
T  =  -  ‘

2‘ 3 , /2 ’
(7 = 18 sin' </)

9^3 + sin’'<p( )

(iv) Coaxial plane strain extension (D = 1, D, = 0):

7',
‘ = - l ,  r* = 0 , 7; = - r, = +

3 4 l '  3 V2 ’ 7 » - a =
I S s iir^
■ 9(3 + siiv <pf )

(v) Plane shearing under a constant vertical pressure (T = T , D -  0):

-  w'ith respect to a fixed co-ordinate system:

%If
I
3 ’

T
4 i

-  with respect to nonnal sed principal stresses:

+ 1 ert -  V *, - 1 8sin: <pt7j — + , r, — — j—, t, — .
3 ‘ 3 V2 3 y 9(3 + sin" <p(.)

The comparison of (iii) and (v) shows that the normalised principal stresses 
obtained under plane shearing coincide with the normalised stresses for coaxial 
plane compression in a stationary state. Substituting this result in Equation (25) yields 
for plane shearing and biaxial compression a Lode angle of 0 = n ! 6, which is
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independent of factor <7 . With respect to the principal stresses the friction angle tj>h 
in biaxial compression is related to factor a and to the critical friction angle (/> 
according to:

3.4 Constitutive constants
The present hypoplastic model includes 8 constants which can be determined 

from simple index and element tests (e.g. Bauer 1996, Hcrle 1997 and Merle and 
Gudehus 1999): ht and 11 are determined by the compression behaviour, <p and e () 
are related to the critical state in triaxial compression, a  and 0 depend on the peak 
friction an<ile, and <?„ and e „ are the limit void ratios. Since the current void ratio e 
is related to the limit void ratios by the pressure dependent functions f  and / ',  the 
constitutive constants arc not restricted to a certain initial density. As long as the 
mechanical behaviour does not change substantially by grain abrasion the 
parameters of the hypoplastic model remain constant for one granular material and 
the mechanical behaviour of initially dense or initially loose sand can be described 
using a single set of constitutive constants.

For the numerical investigations in Section 4 the calibra ;on of the constants is 
based on data from compression tests and tr' ixial tests for medium quartz sand. The 
following values are used:

In this section the performance of the present hypoplastic model is demonstrated 
with numerical simulations of several homogeneous element deformations under 
dramed and undrained conditions.

First ocdometric compressions and extensions are considered, which are 
characterised by zero radial deformation, i.e. = 0. Figure 5 shows the
loading and unloading responses of the constitutive model for a specimen with an initial 
void ratio of eo = 0.55 and Figure 6 the results obtained for e = 0.77. As can be seen 
by comparing the numerical results with the experimental data, the stress paths and 
stress-strain curves for loose and dense sand are well reproduced. For virgin loading 
the stress paths (Figures 5a and 6a) are almost linear. During unloading the axial stress 
decreases more rap;dly than the lateral one. However, the so-called earth pressure at 
rest, i.e. the stress ratio Kn = T,,/ T for the virgin loading, is not a material constant. 
K„ is higher for the initially loose sand than for the denser one. The relationship 
between K(l and e  is shown in Figure 7 together with the experimental data which 
were obtained using the so-called soft-oedometer device (Kolymbas and Bauer 1993).

^  =30", n = 0.4, hs = 190 M Pa, a  = 0.11,
0  = 1.05, em = 1.2, eJQ = 0.51, eiO = 0.82.

4. Numerical simulation of element tests
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Figure 5. Oedometric compression and extension o f  dense sand (ea =  0:55): (a) lateral stress 
vs. axial stress: (h) void ratio vs. axial stress: experimental data by Bauer (1992)

Figure 8 shows the simulation of triaxial compression tests for various lateral 
pressures and initial densities starting from an isotropic stress state. For initially 
dense states and lower mean pressures the peak stress ratio is higher than for loose 
states and higher mean pressures (Figure 8a). With advanced deformation the stress 
ratio tends towards a stationary value which is independent of the lateral pressure 
and the initial void ratio. The volume change is initially contractant and subsequently 
dilatant (Figure 8b). The dilatancy is more pronounced for a lower pressure and an 
initially dense state. The void ratio asymptotically reaches a pressure dependent 
critical value, which is higher for a lower pressure but it is independent of the initial 
void ratio.

For an initially dense state the dependence of the peak states on the pressure 
level in the Rendulic-plane is shown in Figure 9. The curve of peak states is not a 
straight line and lies beyond the critical stress surface. The distance between the 
curve of peak states and the critical stress surface increases with the mean 
pressure. However, numerical investigations show that for very high pressures the
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Figure 6. Oedometric compression and extension on loose sand fen = 0. 77): (a) radial stress 
vs. axial stress: (b) void ratio vs. axial stress: experimental data by Bauer (1992)

Figure 7. Dependence p fK g on the void ratio e: experimental data by Bauer (1992)
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Figure 8. Triaxial compression under drained conditions for various initial densities and lateral 
pressures: (a) stress ratio vs. axial strain: (h) void ratio vs. axial strain

peak states asymptotically approach the critical stress surface. A comparison of the 
experimental data of triaxial compression tests with numerical simulations in 
Figure 10 shows that the behaviour for loose and dense samples can be well 
approximated with a single set of constitu te  constants. The lower limit of the peak 
friction angle tpp refers to critical states and initial void ratios eu > e . For e - the 
maximum value of the peak friction angle is reached, which is higher for a lower 
consolidation pressure. For higher consolidation pressures the differences between 
the maximum peak friction angle and the critical value become smaller. This means 
that the peak friction angle of dense sand under very high pressures is close to the 
value obta' ed for loose sand
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Figure 9. Peak stress states (PSS) and critical stress states (CSS) in the Rendulic-plane

~T2 [MPa]

Figure 10. Peak friction angle <pr versus lateral pressure T, fo r  various initial densities: 
fu ll lines: hypoplastic prediction: o , V: esperimentai data

Cyclic numerical tests for simple shearing with a constant normal stress 
of T„ = -0 .1  MPa were also performed (Figure 11 and Figure 12). In all the tests 
an initial void ratio of Lf = 0.6 was assumed. With a shear angle of tan y - ± 0.1 
(Figure 11) the volumetric strain is contractant immediately after shearing reversal 
and beeomes dilatant with advanced deformation. With an increasing number of
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-.10 -.05 C .05 .10
tan 7

Figure 11. Simple shearing (en =  0.6, T,, = -0 .1  MPa) with a large shear amplitude (tan v -  ± 0. /;.- 
fa) shear stress vs. shear angle; (b) void ratio vs. shear angle

cycles the total volumetric strain is dilatant and becomes nearly stationary. The 
maximum magnitude of the stress ratio decreases in each cycle and gradually 
approaches a liaiit value. For a smaller shear angle of tan y=  ±0.01 (Figure 12) the 
material becomes denser, and after several cycles a shake-down is reached. A 
similar behaviour of sand in simple shear experiments was observed by Wood and 
Budhu (1980).

The results obtained for a water-saturated specimen under cyclic shearing 
without drainage are shown in Figure 13. Flerein an initially isotropic state, i.c. 
Tu -  T,, = = -0.15 MPa, and a void ratio of <?J= 0.65 was assumed. In
accordance with the principle of effective stress, the total stress tensor is assumed 
to be the sum of the intergranular stress tensor and an isotropic tensor representin'! 
the fluid pressure in the voids. With full saturation and incompressibility of the grains 
and the fluid, i.e. e = 0, the change of the intergranular stress is determined by the 
constitutive Equation. The change in the fluid pressure can be obtained from the
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Figure 12. Simple shearing tvn = 0.6. T„ =  - 0 .1 MPa) with a small shear amplitude (tan y =*$0.01): 
(a) shear stress vs. shear angle: (h) void ratio vs. shear angle

static boundary condition. Cyclic shearing leads to the so-called cyclic mobility, 
which was experimentally observed by several authors, e.g. Tatsuoka (1988).

5. Conclusions
A hypoplastic model has been presented to describe the incrementally nonlinear, 

pressure and density dependent behaviour of granular materials. In order to make 
the hypoplastic concept more comprehensive a factorised representation of the 
general form of the constitutive equation has been developed. This factorised form 
supports the selection of suitable approximation functions describing the limit 
condition for stationary states and the influence of pressure and density on the 
incremental stiffness and the peak friction angle. In particular it is shown that with 
a pressure dependent relative void ratio the model can be applied for a wider range 
of pressures and densities using only one set of constitutive constants. The 
numerical simulation of clement tests shows that the model appears to be capable of 
reproducing the salient features of granular material under both drained and 
undrained conditions.
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-T 22 [MPa]

Figure 13. Simple shearing without drainage for an initial state of e = II. 63 and 
T = r „  =  T„ = -0.15 MPa: (a) shear stress r.v. shear angle: (h) effective stress path
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