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Abstract: Rational mechanics offers a tool to objectively describe the mechanical behaviour of granular 
materials by means of non-linear tensorial functions. This new framework is called hypoplasticity and 
is characterized by the simplicity of the mathematical formulations. The stress dependency of incremental 
stiffness, yield, loading-unloading hysteresis and dilatancy-contractancy are included. One of the features 
of hypoplasticity is that yield is a natural outcome of the theory and needs not to be calibrated a priori. 
Also loss o f uniqueness and localization of deformation arc realistically predicted by hypoplasticity.
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1. Fundamentals of continuum mechanics

/. /  Deformation
A motion consists of translation, rotation and deformation. A material point with 

the material (or initial or Lagrange) coordinates Xa (a=  1,2, 3) moves into a position 
with the spatial (or Euler) coordinates x. (i = 1 ,2 , 3). Thus, the motion is described 
by the function x = £ (X , t). Using a less exact notation we can write x = x(X, t). 
The deformation gradient is defined as

F = F = x -  dx> -  dx 
ia '* e x a e x ’

and can be decomposed into F = RU = VR.
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1.2 Stretching
Euler’s stretching tensor D is obtained as the symmetric part of the velocity 

gradient L = grad v = u = x. . . Thus we have:

D = A/ = j  (u/./ + VJJ) = + " *v.n • (1)

Cauchy's spin tensor is obtained as the antimetric part of the velocity gradient:

We should not confuse W with the time rate of R (W * R). The equality is only 
valid if the reference configuration is identical with the actual one, i.e. W(t) = R ft).

1.3 Cauchy stress
Cutting a body reveals the internal forces acting within it. Let us consider 

a particular point of the cutting surface with the unit normal n and the stress vector 
(i.e. areal density of force) t. Both vectors arc connected by the linear 
transformation T :

t= T n .

T is the Cauchy stress tensor. By lack of couple stresses the stress tensor T is 
symmetric. T can be decomposed in a deviatoric (T*) and a hydrostatic part 
( i t r T l ) :

T = T * + ^(trT )l,

where trT  denotes the sum T + T2 + T .

1.4 Change in observer
Let x(X) be a motion. A so-called equivalent motion x* is obtained from x by

a change in observer if:

x*(XT) = q (0  + Q (0 [* (X ,0 -o ] .  (2)

x and x* differ by a rigid body motion, which consists of the translation q(t) and the 
rotation Q (t). With F = dx/dX  and F" = dx '/dX  it follows from (2):

F*(X,r) = Q (r)F (X ,/).

The transformation rule for the Cauchy stress reads:

T* =Q T Q r .

(3)

(4)

1.5 Objectivity’, objective time rates
The material behaviour is called independent o f the observer if the stress is 

transformed according to (4). All tensors transformed according to (4) are called
independent o f the observer or indifferent.
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A co-rotatcd observer registers the stress T* = Q TQf If the observer is at rest 
and the considered material is rotated by R(w ithQ  = Rr ), then the observer 
registers the stress T* = R T R . Thus, T* is the co-rotated stress. The observer 
registers the following time rate T*-

f  * = R rTR + R +R + R TR .

Now we choose the actual configuration as our reference configuration. Then 
we have R = Rr = 1 and R = -  Rr = W, and we denote T* as T:

T = t - W T  + TW .

'I is the co-rotational or Zaremba1 stress rate. T is the stress change that results 
solely from the deformation of the considered material, whereas any apparent parts 
(due to rotations of the observer or of the reference frame) are removed.

The principle o f material frame-indifference, in short called objectivity, 
requires that a constitutive equation determines the stress T in such away, that an 
equivalent motion leads to T*, whereas T* and T are related by T* = QTQ7'.

1.6 General constitutive equation
Following the principle o f determinism o f the stress and the principle o f local 

action the stress within a non-polar material at a given time t, T(/), depends on the 
previous history of the motion j  of a neighbourhood of a material point X. This 
history s represented as a functional:

T(>) = ^ ( / ) .
For an equivalent motion % objectivity requires:

For so-called simple materials the stress depends only on the history of the 
deformation gradient:

t (/) = S (f ')  = s e , ( f ( '- * ) ) ,

whereas for so-called materials of the grade n also the «-th deformation gradient is 
important.

/. 7 Principle o f  macrodeterminism
We consider two strain paths with identical initial and end points (see Figure 1) 

One path is smooth, whereas the other path results from the smooth one by 
superposition of small deviations. Let As be the maximum deviation between the two 
paths. These deviations may result e.g. from an automatic control obtained when trying 
to pursue the smooth path. The question is whether the correspond g maximum stress 
deviation Arris large or not. More precisely, it is interesting to observe whether Act -* 0

'often attributed to Jaumann
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Figure /. Smoooth and :ig-:ag-patl\s

implies' A c-» 0  or not. The first case constitutes the so-called principle o f 
niacrodcterminism. By now there are no experimental results either to disprove or to 
corroborate this principle for real materials. Thus, it is still a (rather questionable) 
postulate than a principle. It is not fulfdled by hypoplastic equations.

1.8 Isotropy groups
There are particular deformations characterized by the deformation gradient H, 

that cannot be detected by subsequent investiga an of the material behaviour:

f i ; „ ( F " b ) ) Q ; = g ; ( F " i(.v)H).

All deformation gradients H with this property constitute the so-called isotropy 
(or symmetry) group of a material. An isotropy group is defined with reference to 
a particular configuration of the body. If an orthogonal tensor Q belongs to the 
isotropy group, we infer from objectivity:

Q . £ L ( F ,' , (-0 )Qn Q„:=Q(/ = 0).

Hence,

Q ^ o ( F (' )C 0)Q r = ^ -o (Q F (,,C0Q r ).

A material is called isotropic if there is at least one undistorted state such that its 
isotropy group is the full orthogonal group. For isotropic materials we cannot detect 
rotations by means of mechanical tests.

1.9 Rate dependence
Rate-independent materials are defined as materials without an internal time 

scale, i.e., the rate of deformation is mmaterial for the final stress. In other words, 
rate-independent materials are in variant with respect to changes of time scale. If 
we deform a rate-independent material twice as fast, then the stress rate will also be 
doubled. With respect to constitutive equations of the rate-type (i.e. constitutive 
equations of the type T = h(T, D)), rate-independence means that the stress rate T 
is positively homogeneous of the first degree with respect to D:

h(T,AD) = Ah(T,D) for A > 0 .
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Note that this homogeneity does by no means imply linearity (if. the relation 
y = |.v|, which is homogeneous in the above sense, but not linear). Soils arc not 
exactly rate-independent. Clays are more pronouncedly rate dependent than sands, 
but also sands exhibit rate dependence. However, for a first approximation wc can 
consider soils as rate-independent materials.

2. Hypoplasticity
2.1 Rate equations

A constitutive equation is expected to represent stress due to a strain (or 
deformation) history starting from some specified reference state. If wc represent 
stress as a function of strain, this automatically means that the stress does not 
depend on the deformation history. This special case is called (by definition) elastic 
behaviour. Soil is not elastic, so we have to find another type of relation. How can 
we represent strain history? Some researchers introduced integral transformations 
using appropriate kernels. This approach is not useful for soils. A general way to 
introduce history (or path) dependence in physics is to use non-integrable differential 
forms (or Pfaffean forms), i.e. to representy  by the differential equation:

dy = a[dx[ + a1dx1 +... andxn .

This equation connects increments dxptdxv  ... with dy (o rdv . dy , .... if r is 
a vector) in such away that there is no closed-form representation of y(.v), i.e. the 
relation (which is called incremental, as it relates increments) d y - j ( d x )  is not 
intcgrablc. This is the way we proceed in soil mechanics when wc represent the 
stress increment as a non-integrable function of the strain increment:

da  = f ( d e )  .

This approach is common to the theories of plasticity and hypoplasticity.
Now we can divide all increments by dt and obtain time rates:

a=d<j/dt ,  E=ds/dt , etc.

Thus, an equation between increments is also representable as an equation 
between rates, as long as we refer to so-called rate-independent materials. An 
equation of the form d = /(e )  is called a rate-equation. It does not imply the 
existence of an equation cr = g(£).

In tensor notation a constitutive equation of the rate type has the form T = f( D). 
It is often reasonable to include T in the list of arguments, i.e. to write T = f(T. I)). 
Note that, strictly speaking, D is not the time rate of any strain measure, and also 
T * T. However, for the special case of rectilinear extensions (YV = 0) we have 
T T, and D is the time rate of logarithmic strain e. .

2.2 Incremental non-linearity

d a / d c - a / c  represents the incremental stiffness of the material considered 
(see Figure 2). Since for anelastic (plastic) materials relation \da\, is much larger
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Figure 2. Different stiffness at loading and unloading

at unloading than at loading (i.e. the stiffness is much larger at unloading than at 
loading), we infer that for such a material the function dcr=f(dr) or a  =/(e) must 
be nonlinear in e (or dr) This non-linearity remains, no matter how small dr, is. 
Therefore it is called “non-linearity in the small” or “incremental non-linearity”. Note 
that incremental non-linearity has nothing to do with the curved form of the stress- 
strain curve for loading. This curve can be, of course, linearized for small \dr\, 
a fact which led many people to believe that in physics every relation can be 
linearized “in the small”. Thus, all elastoplastic and hypoplastic relations are 
incrementally non-linear.

Incremental non-linearity is the seat of the hysteresis loop exhibited by stress- 
strain curves at cyclic stress. It also implies that constitutive equations of the form 
T = f(T, D) are non-linear in D and, also, non-differentiable at D = 0. This fact 
imposes many mathematical difficulties.

2.3 Homogeneity in stress
On the base on tests obtained with a true triaxial apparatus Goldscheider 

formulated a principle according to which:
proportional (i.e. straight) strain paths starting from a (nearly) stress free 
state arc connected with proportional stress paths. If the initial state is not 
stress free, then the obtained stress path approaches asymptotically the 
path starting from the stress free state (see Figure 3).

This theorem has far-reaching consequences.
Assume that the relation T = h(T, D) is homogeneous in T, i.e.:

h(AT,D) = A"h(T,D).

Let us investigate the consequences of this assumption. Consider a stress state 
T . We now determine the stretching in such away that T = h(T p D() = AT,. If we 
then continuously apply Dp then we shall obtain a stress path which is a straight line
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Figure 3. Stress and strain paths referring to Goldsclteider s principle

fan  of feas ib le  
s t.a t es

a*

Figure 4. Strain path directions (left) and correspond stress paths (right) obtained, each, hr the 
constant application o f  the aforementioned strain directions anil starting from the stress free stale. 

Schematic representation showing only the components in /- and 2-directions

passing through the origin of stress space. This follows from our assumption, 
because:

T(/ + <//)=h(T, +ATfr//,D,)= (1+Adt)“ h(T,.D,)= (\ + Xdt)" T (/) .

'n other words, our assumption of homogeneity in T implies that proportional 
strain paths (i.e. paths with D = const) arc connected with proportional stress path?; 
(/'.<?. straight stress paths passing through the origin of the stress space) and 
conforms, thus, with Goldschcidcr’s principle.

Note that proportional stress paths must be limited within a fan, because there 
are also inaccessible (infeasible) stress states (sec Figure 4). E.g., a stress state 
with tensile principal stresses is not feasible for cohesionless granulates. Referring to 
Figure 3 it is interesting to note that if we apply the proportional strai i path shown in 
its left part, which starts not from the stress-free state, we obtain the curved stress 
path shown in this figure. Let us now consider the degree of homogeneity.

Knowing that d<7/ds = a /s  or T/D is the stiffness, we infer that (T 'D )^  = 
A”(T/D)| . In other w ords, if we increase the stress by a factor A, the 
stiffness is increased by the factor X". Experimentalists in soil mechanics often 
remark that normalized stress-strain curves coincide (this is in particular the case 
with normally consolidated clays). The consequence is n -  1. Setting n= 1 would
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Figure 5. Stress paths obtained with proportional strain paths starting not from the stress free state

imply that the friction angle is invariant with respect to the stress level. This is an 
acceptable approximab on to start with. If, however, the changes of stress level at 
a given void ratio are considerable, then the correspond variation of friction (and 
dilatancy) angles may not be neglected. Note that for the case n = 1 all material 
constants must be dimensionless.

2.4 Hypoelasticity
Truesdell introduced constitutive relations of the form T = h(T, D). He required 

that the function h ( ) be linear in T and in D and introduced the name hypoelasticity 
for such relat’ons. Hypoelastic constitutive equations may produce curved stress- 
strain curves, and in some cases these stress-strain curves reach a horizontal 
plateau and can thus model yieldmg. However, the imposed incremental linearity 
implies equal stiffness for loading and unloading, and thus renders hypoelastic 
relations inappropriate to describe anelastic (plastic) materials. Despite this, some 
hypoelastic relations have been launched in soil mechanics (e.g. by Davis and 
Mullenger). They are (in most cases tacitly) endowed with additional stress-strain 
relations holding for (approp: ■ itely defined) unloading. Strictly speaking, such 
relations (regarded as a whole) are not linear any more, i.e. they are not hypoelastic.

2.5 Hypoplasticity
Elastoplast 'c and hypoplastic equations are both of the general form:

t =  Ji(T ,D ).

Starting from the fact that every function h(T, D) can be represented according 
to the general representation theorem,

h(T,D) = i//ll-H//2T + i//3D t-i//4T2 + i//5D2 + i//6(TD DT) +

+ i//7(TD2 + D2T)+i//8CTD + DT2)+y/9(T2D2 +D2T2) ,
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(i//,are scalar functions of invariants and jomt invariants of T and D), the experiment 
was undertaken to find such a unique function which appropriately describes the 
mechanical properties of soils. In order to a void the shortcomings of hypoclasticity. 
this function has to be non-linear in D. On the other hand, it should be homogeneous 
of the first degree in D in order to describe rate-independent materials, and 
homogeneous in T in order to describe proportional stress-paths in case of 
proportional strain paths. Therefore, the design of such a function had to proceed 
along the above stated representation theorem and some general mathemalical 
restrictions:

— non-linearity in D,
— homogen :ty in D and T,

with avoi dance of any recourse to notions from the theory of clastoplast icity such as 
yield funebons, decomposition of strain etc.

This experiment (every theory is, virtually, an experiment) was more or less 
successful, as by trial anderror a function was found which was able to describe 
many aspects of soil behaviour. Thus, a new approach to constitutive modelling was 
created. The name “hypoplastic” equation fits very well, as the relation between 
hypoplasticity and (elasto)plasticity is the same as the one between hypoclasticity 
and elasticity: The theories with “hypo” do not use a potential. It should 
be mentioned that Dafalias formulated hypoplasticity earlier for something else, 
which can be considered as a general case of what we call hypoplasticity .

Let us now have a look at some hypoplastic equations. Most of them consist of 
4 tensorial terms (so-called tensor generators) combined with 4 material parameters 
Cr Cr  C, and C4, e.g.:

, . (trT D ) T : I-----r  T ’: I-----7
T = C. (trT )D  + C, -—--- ’-T  + C ,----- J trD  + C4----- J trD .iv 7 - trT  t r T v trT ^

An alternative representation of hypoplastic constitutive equations is to 
summarize the linear terms by LD, with L being a linear operator applied to I). and 

the non-linear terms by N|D| with |D| : = yjtrD : . Then, a hypoplastic equation 
assumes the general form

T = LD + N|D| (6)
or

t j  = LiJUDu + Af |D |.

The components jL and N.. depend on the actual stress and can easily 
be numerically determined for a given constitutive relation : =h(T , D): for any 
given values of the indices, say k = k' and / = we set Dk,r = 1, else J9(/ = 0. and 
obtain from the constitutive relation T* . Then we set Dk,p = — 1 and obtain 'f . 
Subsequently we obtain:
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Note that N.. is independent of k* and /*, as it does not depend on D. L is 
not necessarily symmetric in the sense L * Ltlj.. For the case of Equation (5), 
however, L is symmetric in the aforementioned sense.

Another expression for constitutive relations of type (6) is:

T = HD ,
with

H := L + N ® D" .

Herein, D° is the normalized stretching, i.e. D°:=D/|D|. In index notation the 
stiffness matrix H can be expressed as:

H,m = Lm, + /¥i( Dnu .

Several equations with only 4 material parameters C , C , C , C4 could be found:
— the triaxial test as characterized by a stiffness decreasing down to zero at 

the limit state and a correspond volumetric strain curve exhibiting first 
contractancy and then dilatancy,

— incrementally non-linear behaviour, i.e. unloading stiffness much larger than 
at loading,

— realistic asymptotic properties (referring to proportional paths).
However, the void ratio was not taken into account, and, therefore, such simple

hypoplastic constitutive models were not capable of describing the difference of 
friction angle and stiffness between dense and loose samples, or the decrease of the 
peak friction angle to the residual one with increasing strain (softening). But this was 
also not expected from such simple constitutive models. To achieve this, more recent 
versions have been elaborated in Karlsruhe scalar factors, which aim to model the 
influence of density and stress level as well as the transition to the so-called critical 
state. Of course, such factors increase the intricacy of the models.

Hypoplastic constitutive relations are directly presented without reference to any 
sort of surfaces in stress space. However, various surfaces can be derived from 
a hypoplastic equation, as will be explained in Section 5.

2.6 Second stretching tensor
Many of the present shortcomings of hypoplasticity appear upon changes of D. 

It appears therefore interesting to introduce D, the objective time rate of D (also 
called the second stretching tensor). In fact, consideration of D helps to describe the 
following effects:
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— direction of undrained stress path immediately after isotropic consolidation,

— cyclic behaviour (in general),

— rate dependence, as manifested with tests with jump of deformation rate.

— creep.
There are effects due to change of the direction of D and also effects due to 
change of the value |D|.

To start with, the following expression was investigated:

t =  h(T,D,<?) + J '  aDre~M '-n df-\D\ (7)
as already known

In Equation (7) all tensors D in the past are taken into account through 
integration over t ' . The larger the time lapse t = the lesser the influence of D ( t)  
is. This is achieved by the fading factor e where g is a measure of the time 
lapse. More precisely, g counts this Erne lapse in terms of deformation occuring in 
the time intervall from t' to t:

i t " .

Perhaps, it should be tried also with:

If the change of D occurs as a jump at time / ,  then we should write (instead of L>):

0 ,

where [DJ :=D - 1> is the jump of D and 5 is Dirac’s function. In this case
the constitutive equation reads:

T = h(T,D,e)+ Z « [D ,J

The material constant /3 defines how “fast” the obliviation sets on, whereas 
a determines the influence of this term. As a first approx> nation, a could be considered 
as a material constant. Later one can try to set a as a function of T, D and e.

If [D] is reduced by a factor of, say, 0.001 (i.e. if we reduce the values of D 
before and after the jump), then the contribution of the new term becomes 
negligible. To remove this shortcoming, a should depend on D. For example, in 
Equation (8) we should consider not the rate of D but the rate of D" :=D/|DI.

For the special case of rectilinear extensions we have D =D. Then we have:

D" < t - ‘rK
■ I) ,3/2 D.
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However, this expression does not alio w to describe the rate dependence after 
Leinenkugel. Perhaps, one should try with a := const + |D| or a const + tr D" .

2.7 Numerical sim ulation o f  element tests
How can we obtain simulations of lab oratory element tests by using an equation 

of the rate type? First, we have to start from a known stress state. If the test to be 
simulated has kinematical boundary conditions, then the stretching D is known, e.g. 
in case of the oedometer test all but one components of I) are equal to zero and the 
only non-vanishing component corresponds to the rate of compression. With 
knowledge of T and D the constitutive equation T = h(T, D) makes it possible to 
evaluate T . Multiplying T with a sufficiently small time step At gives AT ~ T  At. 
The new stress state is then obtained to T + AT. This process can be continued and 
corresponds to a numerical in tegration of the evolution equation T = h(T, D) (so- 
called Euler forward integration). The procedure is a little more difficult if not all of 
the boundary conditions are of the kinematic type. In case of a static boundary 
condition (e.g. a, = a} = const for triaxial test), the component D2 of D must be 
determined by solving the algebraic equation <t2(D2)=0. A program to simulate 
clement tests can be downloaded from ftp://ftp.irhk.ac.at/piib/uni-innshnick/igt/ 
sources/

2.8 Calibration
A constitutive relation is of no use if the involved material parameters cannot 

be adapted to a particular material. The values of these parameters constitute 
the identity card of this material with respect to a particular constitutive model. 
Moreover, a particular parameter is useless unless it is embedded within 
a constitutive model. E.g. the notion “viscosity” is unclear unless it is embedded 
within a Newton-type constitutive equation, say r = pc. The process of the 
determination of the values of the parameters of a constitutive model is called 
“calibration” or “parameter identification”. In many publications on constitutive 
models the calibration is simply omitted as being not worth mentioning. In fact it is 
a task which can take up to several months of work! Considering hypoplastic 
constitutive equations, the calibration is straight forward by fitting the equation to the 
outcomes of one or several (say triaxial) tests values of the strain and stress 
increments at a particular stress state from experiments, the only remaining 
unknowns in the constitutive equation are the material constants. Thus, we have to 
solve a system of four linear equations.

2.9 Cyclic loading, ratcheting, shake-down
Cyclic loading is recognized as one of the most difficult fields in soil mechanics. 

Elastoplastieity and hypoplasticity bear some inherent deficiencies which become 
more important in the case of cyclic loading. In the realm of classical elastoplastieity 
all unloading — reloading cycles are completely clastic, a feature which is not 
realistic. On the other hand, in (the initial versions of) hypoplasticity the first and

ftp://ftp.irhk.ac.at/piib/uni-innshnick/igt/
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subsequent unloading-reloading cyeles are identical to the virgin loading-unloading. 
This shortcoming is called ratcheting effect and is due to the fact that in 
hypoplasticity the stress is the only memory parameter.

In reality either a gradual transition from plastic to elastic behaviour (so-called 
shake-down) takes place or deformation increases unbounded with the number of 
cycles (so-called incremental collapse). Regarding shake-down, experiments show 
that the behaviour of soil never becomes completely elastic, as every cycle is 
connected with dissipation of energy, a fact which is modelled in soil dynamics by 
a fictitious viscous damping.

It turns out that the quality of the modelling of cyclic behaviour depends on 
whether the stress amplitudes are small or large. If the unloading is continued to the 
extension side (/.e. the stress deviator changes sign), then the hypoplastic models 
work satisfactorily. Furthermore, the proper incorporation of barotropy and 
pyknotropy by the advanced hypoplastic models enables that cyclic shearing 
produces gradually a high density (i.e. small void ratio) which cannot be exceeded 
by additional cycles.

A more general representation of the cyclic behaviour in hypoplasticity requires 
an additional state variable such as a structure tensor history. A “memory function" 
or an “intergranular strain” have been proposed for this purpose.

3. Uniqueness and limit loads

3.1 Limit states
A very important property of granular materials is their ability to flow (or yield). 

i.e. to undergo large deformations without stress change, as soon as the stresses and 
the void ratioobtain their critical values. This sort of flow should be attributed as 
“plastic” flow and distinguished from the flow of fluids. The latter has a pronounced 
viscous (rate-dependent) character.

Plastic flow occurs as soon as the stress state T and the strain rate D fulfil the 
condition h(T, D) = 0. In the theory of elastoplasticity the condition in terms of T is 
called the yield (limit) surface, and the condition in terms of D is called the flow rule.

In elastoplasticity the yield function is the starting point and the mathematical 
relation connecting strain and stress increments at loading is based up on this yield 
function. In contrast, it can be shown that a yield function is contained in 
a hypoplastic formulation T = h(T, D), i.e. the yield function/(T) can be derived 
from the constitutive relation. To this purpose we rewrite (following a proposition of 
Dcsrues and Chambon):

T = L(T)[D] + N(T)|D| = L (T)[D  + B|d |] ,

with L(T) being a matrix operator applied to its tensorial argument. It is obvious that 
h(T, D) = 0 occurs for:

D° := D/lD| = -B  .

Consequently, the function/(T) reads:
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/ ( T) = trB2- l ,

with B being a function of T. In other words, the limit surface reads:

/ ( T )  = trB2 -1  = 0 ,

For the constitutive equation (5) B reads as follows2:

B = L N = C, T2 C4T
C ,(trT)2 C ,(trT)2

_______ T_______
C ,(trT)2+C2tr(T2)

' £ £ ,  »KT’ ) | C,C„ 'r ( T T - ) ' 
C, (trT )2 C, (,rT )3

Due to the homogeneity of h(T, D) (and consequently also of B) in T, the 
surface/(T) = 0 is a cone with apex at the origin T = 0. The cross section of this 
cone with the deviatoric plane reveals the influence of the intermediate principal 
stress, i.e. the yield surface differs from the one determined by the Mohr-Coulomb 
criterion (where the in termediate principal stress does not play any role).

3.2 InvertibiUty and controllability
In kinematically controlled tests (such as o edometric test or undrained triaxial 

test) the stretching D is prescribed and the stress rate T can be uniquely determined 
by means of the hypoplastic constitutive equation. What about the unique 
determination of D when T is prescribed? To answer this question of unique in 
vertibility we3 multiply the equation4 T = LD + N|D| with the inverse operator L 1 
and obtain:

A := L_l T = D+ 1T'N|D| 

or
D =A -B | D |, (8)

with B := L 1 N. With the notation X • Y := tr(XY) we obtain from (8):

D-D = (A -B |D |)-(A -B |D |)= A -A -2A -B |D | + B-B|D|2 . (9)

Noting that D • D = |D|2 we observe that (9) is a quadratic equation for x  := |D|. 
Its solution reads:

2 A -B ± a/4 (A -B )2 - 4 A • A (B • B - 1)
X]/1 ~ 2(B • B -1 ) '

2 private communication by J. Nader
1 the author is indebted to Dr. P. Wagner, Innsbruck, for many suggestions to this section
4 for simplicity, the brackets in L[D] are omitted
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Since .v is a modulus, only a solution x > 0 is meaningful. Moreover, in order to 
obtain a unique solution we have to require that only one solution is positive, i.c.
xx- x2 < 0:

x. ■ x , =
4(A -B )2-4 (A -B )2+ 4 A • A(B • B -1 ) A A

4(B • B - 1)2 B B - l
< 0 .

Since A • A > 0 we infer that in vertibility is given for B • B -  1 < 0, i.e. for all 
stress states inside the limit surface B • B -  1 = 0, as already pointed by Chambon.

A more subtle question on unique solutions of the constitutive equation arises if 
some (say k) components of D and 6 -  k components of T arc prescribed, and the 
remaining components have to be determined5. The existence of a unique solution of 
this problem (which corresponds e.g. to the conve tional triaxial test with the mixed 
conditions Dn = 1 in axial direction and T„ =T = 0 in lateral directions) is called 
controllability D and t  as column or row vectors x and y, i.e. we take .v := D , 
x2 :=D^, ... and similarly y, := T y 2 := t HI, ... .

The selection of the independent and dependent components can be 
accomplished by the partition matrices P and Q, the components of which vanish 
for i * j. Their diagonal components are either 1 or 0. P and Q are related by 
P + Q = 1, with 1 being the unit matrix. For example:

' \ 0 0 0 0 0^ '0 0 0 0 0 0"
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0

Q =
0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0V 0 0 0 0 1/ 0k 0 0 0 0 0 /

We can now obtain the independent (or controlling) variable X of a problem with 
mixed conditions as:

X = Qx + P y , (10)

and, likewise, the dependent variable Y as:

Y = Px + Qy . (II)
For example:

X -  = (D„, 7i2,7^,.D:2, . . .)r ,

Y = (y),y2,...)7 =(7;,,D l2,Dn ,7T ,...)r

'a s  Nova points out, the most general case of test control (tr.g. a test with 7) + 7’, + 7\ = const. 
D2 = Oy, £>, = 1) is obtained if we replace T by T’ := ST and D by D’ := S 'D with some appropriately 
chosen non-singular matrix S. Obviously, T' and D' are energy-conjugated in the sense that 
tr(TD) = tr(T'D') or tr(TD) = tr(T’D')
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Inverting the system of equations (10) and (11) and using (1 - 2 P ) '1 =(1 -2 P )  we 
obtain:

x = QX + PY , (12)

y -P X + Q Y . (13)

Inserting (12) into the constitutive equation y = h(x) or y -  h(x) = 0 we obtain 
an implicit relation between X and Y:

F(X, Y):= PX + QY -  h(QX + PY) = 0 (14)

A unique determination of Y from (14) (i.e. controllability) is possible if 
dct(dF/e)Y) = det(dF./d T) * 0. This means that:

det Q - P r/h
dx

* 0 .

Th/Sx the stiffness matrix. For a hypoplastic constitutive equation h(x) :=Lx + N|x| 
the stiffness matrix reads:

H ( x ) := —  = L + N ® t̂ t = L + N i 
V ’ dx x (15)

i.e. the stiffness matrix depends on the direction of x. This is to be contrasted with 
elastoplastic formulations where:

^  for unloading or inside the yield surface,
[ L for loading.

The application of the operator P to H(x) selects from H(x) only those rows 
which have a non-vanishing P-component. E.g. for6

'l 0 0^ "0 0 O'*
p = 0 1 0 iia.iii 0 0 0

0 0 0 0 0 1V 2 V 2
we obtain:

( " h #12 ^ 3 '
PH (x) = " n " 23

0 0 0 2
Subtracting this from Q we obtain:

'H u " n
Q -P H (x )  = - H 2\ H n H 22

0 0 -1 2

6 for simplicity only 3 x 3  matrices are considered here
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such that

d c t(Q -P H (x ))  = dct
I'o

We thus see that controllabil.ty is given i t h e  determinants of all conceiv able 
symmetric rumors of H(x) are positive. This is the case if H(x) fulfils the condition":

x - H ( x ) x > 0  for Vx^ O.  (16)

Let H be a symmetric minor of H, and let Hv be the symmetric part of H. 
According to the theorem of Ostrowsky and Taussky det H > det H' > 0. Note8 that 
x ■ H(x)x represents the so-called second order work tr(TD). Thus positive second 
order work implies controllab lity. In other words, positive second order work is 
sufficient (but not necessary) cond'tion for controllability:

tr (TD )> 0 —» controllability is guaranted
lack of controllability —» tr(T D )< 0 .

It is interesting to note that, with hypoplastic constitutive equations, the 
condition tr (TD) = 0 is ' i fact encountered before the peak. More specifically, the 
condition tr (TD) = 0 (/.<?. vanishing second order work) constitutes a surface in the 
stress space. Since this surface ks connected with possible loss of uniqueness, we 
call it “bifurcation surface”. It can be easily determmed if we insert the hypoplastic 
equation in to the equation tr(TD) = 0. For simplicity we consider only rectilinear 
extensions, i.e. we restrict the dimensions of column vectors x and y to 3. We then 
obtain-

F (x ) = tr(+D ) = + V.v, • |x| = 0 (17)

The b;furcation surface is defined as a surface in the stress space. It consists of 
stress states for which the equation tr(TD) = 0 possesses only one solution. With 
x° := x /1x[ Equa ion (17) can be written as:

x"-(U ° + N) = 0. (IS)

This equation is fulfilled in two cases: first for Lx° + N *0 , or x"= -L  'N. 
which occurs on the limit state. As an alternative (so-called Fredholm's alternative). 
Equation (18) is fulfilled il x° is orthogonal to Lx° + N. All stress states for which 
only one x fulfils this condition consti.ute the so-called b urcation surface. To 
determine the bifurcation surface v/c require:

VF  -  AVG = 0 , (19)
with

G(jc) = |.t|2 -1 = .v,2 + x\ + .r2 -1 = 0 . (20)

7 the more general case y • H(x)y > 0 for V x, y is not considered here
' a  constant matrix H fulfilling the condition x- Hx = xrHx>0  is called positive definite. All the 

eigenvalues of H' := (H + W ) f 2 are positive
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Introducing (20) into (19) we obtain:

2L(ii)xj + Ni * K xixt -  2Xx, = 0 • (21)

For i = 1,2,3 the vectorial equation (21) corresponds to three scalar equations. We 
can search for a point of the bifurcation surface on the deviatori; plane:

T + T̂ + T,= const. ( 22 )

and on the ray:
£— = const. 
0

(23)

The system of 7 algebraic equations (17), (20), (21), (22) and (23) makes it 
finally possible to determine numerically the 7 unknowns T , Tr  T Dr Dv Dv A. 
The analytical representation of the bifurcation surface in terms of L and N is too 
complex.

Corollary 1: As already noted, the theory of elastoplasticity uses (at least) two 
constant stiffness matrices, one for unloading or inside the yield surface and one 
(or more, depending on the direction of stress increment) for loading. A result in 
elastoplasticity is “that the limit states are defined by det( L ) = 0, whereas 
a bifurcation (i.e. a non-unique solution of an element test with mixed boundary 
conditions) may set on if dct( L '^.^) = 0, where I f  c is the symmetric part1* of 
L c. We can easily see, that these results can also be obtained from the above 
derivations if we set N = 0 and L = L , .. From the definition of limit state,plastic

t  = LD + N |D| = 0 the limit state condition follows immediately, det(L) = 0 for 
N = 0. With N = 0 and with x° • Lx° = x° • L'x° we obtain from (18) the known 
equation of the bifurcation surface in elastoplasticity, det(L') = 0.

Corollary 2\ As can be inferred from Figure 6, negative second order work 
means negative stiffness. Of course, we should keep in mind that stiffness is

Figure 6. Positive (left) and negative (right) second order work

9 Note that the eigenvalues of L and of LJ are not identical
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a fourth order tensor, d<7../detr  so that the notion “negative stiffness” is virtually 
meaningless. That means that we obtain negative slope of a graph representing 
a particular combination of stress components plotted over a particular combination 
of strain components. If the equation tr(TD) = 0 possesses only one solution, this 
means that there is only one D = Dr for which t r fTfD^P ) = 0. Similarly, for 
tr(TD) < 0 several tensors D can be found arc connected with negative stillness. If 
the condition tr(TD) = 0 is encountered in the ascending part of the stress-strain 
curve of a conventional triaxial test, this means that there is a deformation modus 
(i.e. a specific D) — different than the one correspond to the homogeneous triaxial 
deformation — connected with vanishing stiffness.

3.3 Softening
It has been often discussed in soil mechanics, whether softening (see Figure 7) 

is a material property or not. In this context (and in contrast to the theory of 
elastoplasticity) softening is understood as negative stiffness. Traditionally, softening 
was considered as a principal part of soil behaviour. Later on it became fashionable 
to deny softening, as being only an apparent effect due to the inhomogeneous 
deformation of the sample. The view in hypoplasticity is that a large amount of the 
registered softening is due to the inhomogeneous sample deformation. However, the 
“material” softening, i.e. the softening which would be exhibited by a fictitious 
sample undergoing homogeneous deformation, is also there. We have to admit that 
the onset of inhomogeneous deformation makes the experimental approach 
infeasible. We can, however, proceed by reasoning: It is a matter of fact that dense 
samples have a higher strength (i.e. peak stress deviator) than loose ones. In the 
course of deformation, dilatancy transforms a sample from dense to loose. 
Consequently, its strength must decrease and this is material softening.

3.4 Shear Bandy
A typical pattern of inhomogeneous deformation is the localization of 

deformation w hin a narrow zone called shear band (see Figures 8 and 9).

Figure 7. Softening in triaxial test deformation
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Figure 8. Soil sample before ami after shear-banding in plane (biaxial) deformation

Figure 9. Examples o f shear bands in nature

Such shear bands constitute one of the most fascinating phenomena in 
geomechanics. Due to the work of Desrues based on tomography, we know now 
that also apparently non-localized inhomogeneous deformation modes are actually 
localized. The transition to localized deformation may occur either gradually or 
suddenly. In the latter case it consists in a drastic change of the deformation 
direction, as experiments by Vardoulakis show. If a constitutive model is capable of 
realistically describing the material behaviour (/.<?. the stiffness) also in this new 
direction, then it will be possible to predict when and under which inclination a shear 
band can occur. This abi ity is not self-evident since many constitutive models 
(e.g. the elastoplastic ones) are suggested or tested only for some particular fans of 
deformation directions. It is therefore a good check of constitut've relations to 
predict the formation of shear bands. This test has been passed by several versions 
of the hypoplasli: relations.

The shear band divides the initially homogeneous sample nto three parts (sec 
Figure 8), the upper and the lower parts separated by a thin shear zone whose 
thickness is undetern ined. It is realistic to assume that the upper and lower parts do 
not deform after the spontaneous formation of the shear band, i.e. they behave as
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rigid bodies (i.e. D = 0, and consequently t  = 0), whereas inside the shear band the 
motion is described by the velorty gradient vQ ® n with vQ :=|vjm. Since in the rigid 
parts T = T = 0 holds true, it follows that the rate of the traction acting up on the 
discontinuity separating these parts from the shear zone must vanish:

f n  = 0 . (24)

Equation (24) is the cond tion for the spontaneous appearance of a shear band, 
i.e. a shear band can only appear if this equation possesses a solution. Clearly, 
T = T + WT -  TW depends via the constitutive equation on the motion within the shear 
zone. This motion is described by D = ^(m®n + n®m)  and W = | ( m | n -  
- n®m)  or D -in^ti^ := ~(mn +nm.), W.=nt ji :=\-(mji.— nm ), where m and 
n are unit vectors. Introducing the hypoplastic constitutive equation (6) into (24) yields:

( V ”u »/, + N„ V ( v ”/)('V "/) + '«„■«* f t ,  -  o,k *!*«,■,)«,- = o . (25)

For plane deformation the unit vectors m and n can be expressed by means of 
the angles 9 and v. It turns out that the two scalar equations correspond to (25) for 
/ = 1, 2 possess a solution for the unknowns & and v' if a fourth degree polynomial in 
sinv possesses a solution. This can be easily checked by means of Sturm chains. 
Thus, hypoplasti Jty  yields realistic and “class A’’ predictions of stress states with 
the earliest possible onset of shear bands as w ell as realistic predictions of 3 and v. 
With renamed indices (25) transforms to:

A,'", = 0 (26)

with

A,j-=ni { LM + Likji)nk + N iJ |D|!+»*<** - ”f  i f  h -  <T,

For the transition to elastoplasticity f A' = 0) the expression in brackets is called the 
“acoustic tensor” A. Solubility of (26) requires that the determinant riff A vanishes. 
Thus, det(A)=0 is the criterion for shear band formation in elastoplasticity. The 
condition det(A)= 0 is called “loss of strong ellipdcity”.

The name “acoustic tensor ’ originates from the theory of propagation of elastic 
waves in anisotro c elastic media. With u being the displacement and s = u{j the 
strain, we can obtain from momentum balance puj = ojkk and consti'utive equation 
°,k = L,kim r'h„ wave equation:

Pit, = dxkdx,

To obtain solutions of the type u.= uojei{kr ",'\ the following condition must be 
fulfilled:
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3.5 Bifurcation modes fo r 2D and 3D problems

3.5.1 Formulation with finite elements
Considering hypoplastic or elastoplastic materials, initi il-boundary-value- 

problems can be numerically solved with the method of finite elements. Doing so we 
consider equilibrium of m nodal points and obtain n = nd - m equations, where nt is 
the number of spatial dimensions (i.e. 1 or 2 or 3). Usually we are interested in the 
time evolution of an equilibrium state as ., changes due to e.g. an external loading 
process. We then consider equations that express the continuation of equilibrium and 
have the form:

Herein K.. is the incremental (or tangential) stiffness matrix of the considered 
body, x  are the nodal velocities and y. are the rates of nodal forces due to external 
volume or surface forces (tractions). Usually the loading process will be controlled 
by the prescription of the displacement and traction rates for some boundary nodes, 
whereas the remaining boundary nodes will be free of tractions or displacements. 
Thus, we re-define /; in Equation (27) as the number of unknown nodal velocities. 
The vector y results from quantities controlling the loading process (even if control 
is purely kinematical, i.e. description of boundary displacement, y  contains non- 
-zero components). The global stiffness matrix Af is a constant matrix only for 
linear-elastic materials. For plastic materials, A' depends on the solution of Equation 
(27), i.e. K.j= K..(x). Therefore, Equation (27) can only be solved iteratively, say 
by means of the Newton method. The dependency of K.. on x for elastoplastic 
materials is intricate, since the material stiffness is piecemeal linear and the 
distinction between loading and unloai ng is based on a series of criteria. In the 
analysis of bifurcation solutions of (27) for elastoplastic materials, the dependence of 
K on x is tacitly suppressed and K.. is considered as a constant matrix. In 
hypoplasti itv, the dependence of Af on x i simple::

The constants L , N , api depend on the hypoplastic constitutive equation and 
the discretization operations.

3.5.2 Bifurcation modes
In elastoplasticity the non-linearity of (27) is simply neglected and K is 

considered as a constant matrix. As K.. is non-symmetric, we have to distinguish 
between left and right eigenvectors. The right eigenvectors v are solutions to the 
problem Kv = Av, and the left eigenvectors w are solutions to the problem 
Krw = Aw. Both problems have the same eigenvalues 3 but different eigenvectors 
Eigenvectors belonging to different eigenvalues are orthogonal, i.e. v • w = 0 if 
i * j.  If we normalize the eigenvectors, we obtain v. • w = 8 .  Thus the vectors v

K„x, = y  , i,y> (27)
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(or w ) can serve as basis to represent any vector x: x = a y  . Multiplying this 
equation with w. and using the aforementioned orthogonality we obtain a  = x • w . 
Thus we have x = (x • \v jv. .

Let now xn be a solution of Kx = y. If this is not the unique solution, there must 
exist £  * x(| such that:

Kx„ = y ,
Kx, =y  ,

hence

K(x,  - x„) = 0 .

It follows that K must be singular (i.e. det(K) = 0), which means that at least 
one of its eigenvalues, say A , must vanish: A = 0. If we represent x by means of 
the right eigen vectors of K we obtain:

K(w ;. i x) v( -A ^w , •x)vi = y, / = 2,3,...#r,

with A • A__A ^0 . Hence:2 j n

A,[w,.-(x , -x„) ]v ,  = 0.

It then follows w. • (x, -  x0) = 0 for i = 2, 3, ...n. This means that x, -  *n has 
the direction of

x. -  x() = a  v , , 
x, = xn+ a  v,. ( 2 8 )

For any a  = 0 we obtain with (28) a bifurcated solution. It is reported 
homogeneous deformation solution x(|, i.e. x, • xQ = 0. This can be obtained with 
a = - ( x () • v |)/(v | • v,). Some numerical methods to find the eigenvectors of K for 
zero (or even negative) eigen values are discussed in “eigenvector perturbation".

Another method which circumvents the search for eigenvectors is the so-called 
material perturbation: the material properties arc assumed to scatter over their mean 
values. Then, the solution of (27) traces automatically the I furcated solution. This is 
probably due to the onset of ill-posedness, according to which small perturbations 
grow exponential!y.

For hypoplasbc materials (and also for elastoplastic materials, a fact which is 
often overlooked) the stiffness matrix K is not constant, therefore the eigenvector 
perturbation makes no sense. Material perturbation is, however, still applicable. 
Another possible procedure is to search the vector x that minimizes the second 
order work:

/ ( * ) -  M'Ah + NipyjapJki*! .

and then to check whether this minimum is equal to zero.
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