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Abstract: A constitutive equation is proposed for describing changes of stales of granular materials, u Inch 
are sufficiently characterised by the void ratio and the stress tensor. It may be considered as an extension 
of the Critical State concept. It is based on recently published hypoplastic equations and covers a wide 
range of densities, pressures and deformations. A factorial decomposition allows a rather easy separation 
and determination of material parameters. Two factors depend on a relative void ratio so that it remains 
within lower and upper bounds. The bounding void ratios decrease monotonously from maximal values 
to zero with increasing pressure. The same reduction of the void ratio is proposed for an isotropic 
compression starting from a suspension. Thus a granulate hardness is defined, and a stiffness factor can 
be determined. Four material parameters can be estimated from classification tests and determined from 
the asymptotic behaviour in element tests. Four further parameters arc determined by calibration: they 
are rather constant for wide groups of materials. Strength and stiffness values can be deriv ed and used 
for the analysis of deformations, stability, and flow. The viscous behaviour is modelled by a rate 
dependent factor with one further parameter. Limitations and possible extensions of this comprchensiv e 
approach are also outlined.

Keywords: constitutive equation of soil, critical state, deformation, granular material, stability analysis

1. Position and objectives
The aim of this paper is to describe mathematically certain mechanical changes 

of state of granular materials. The grains may be mineral or of other nature, conv ex 
and of arbitrary sizes. The grain material may be ideally elasto-visco-plastic and 
incompressible. A pore fluid may be present, but no cementation. The following 
simplifying assumptions arc made.

The state of the solid constituent is assumed to be fully described by the void 
ratio e, the Cauchy granulate stress tensor T and the velocity v. of the grain skeleton.



320 G. Gudehus

This assumption excludes higher order pores, clods and more complicated stress 
tensors (Section 4.2). T may also be called the inter-granular or effective stress 
tensor. We use the sign convention of general mechanics and the subscripts of the 
theory of mixtures (e.g. Dc Boer and Hitlers 1990). The pressure p  of the pore fluid 
is assumed to yield the total stress tensor by:

T  =  T * - P r 1 ' ( 1 )

with the unit tensor 1. Degrees of saturation other than 0 or 1 are excluded for 
brevity's sake.

A constitutive equation determines the objective rate of granulate stress, defined by:

T . =  T + W J - T s W;, (2)

as a function of the granulate stretching rate D .= (Vv + v V) / 2, i.e. the 
symmetric part of the gradient Vv (antimetrie part W : = (Vv -  vV) / 2). e and T 
enter this function. With the assumed incompressibility of the grains, the rate of 
change of the void ratio is (e.g. Gudehus 1981):

<? = (l + e )tr  D .  (3)

We exclude changes of state which cannot be achieved by homogeneous 
deformations, such as the destruction or production of higher order pores or clods 
(Section 4.2). Our constitutive equation therefore has the general shape:

T ~ F , D ) (4)

with a tensor-valued function F o f  e , T and D .
S  V

F has a certain mathematical representation so that all granular materials thus 
defined are assumed to be equal in quality. Using notions with Greek names 
proposed by Kolymbas (1991), the following properties have to be covered, viz.:

— hypoplasticity (analogous to hypoelastic indicating the lack of yield surface 
and flow rule): F is a  non-linear function of D and approximately positively 
homogeneous of first order, i.e. F(D ) * - F ( - D )  and F(AD ) = ?.F{D ),
A > 0;

— pyknotropy (greek for density-dependent): F  depends explicitly on density, 
i.e. void ratio e;

— barotropy (greek for pressure-dependent): the norm of F  increases with 
-trF  (i.e. mean pressure) weaker than linearly, i.e. || F(AF) || < A || F(T)  ||,
A > 6;

— argotropy (greek for velocity-dependent): the norm of F  increases, though 
weakly, with the stretching rate, i.e. || F(XD)  || > A || F(D ) ||, if A »  1.

Pyknotropy and barotropy are unified as they are physically non-separable. Recent 
versions of hypoplastic constitutive relations (e.g. Bauer and Wu 1993) have these 
properties. Representations of Fshould satisfy, however, more requirements, viz.:
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— unit invariance: F  is not changed by a change of units;
— elosedness: an allowable subspace of states cannot be left by arbitrary 

deformation histories with constant mean pressure;
— separability: material parameters defined by Fean be determined sepa­

rately.
Unit invariance can be satisfied by using suitable material parameters of the 

grains. Barotropy requires at least one parameter with the unit of stress (Section 
2.4). Argotropy calls for a reference time which is practically constant for different 
granular materials (Section 2.5).

The notion of closedness is linked with the one of limit states. Deformations with 
constant mean stress cannot lead out of a certain region of the ( T , rf-space. barber 
versions of hypoplastic relations can lead to unacceptable stress states which are 
excluded in more recent versions (e.g. Kolymbas and Wu 1993). The requirement is 
extended here to void ratios.

Separability is a pragmatic requirement: the more it is satisfied, the easier can 
the material parameters be determined (Section 3.1). This gain of feasibility may be 
at the cost of fitting quality. The constitutive equation thus becomes also more 
transparent and robust.

This paper is an attempt to close the present gap between geotechnical experts 
and specialists for constitutive relations. Recent versions of hypoplastic relations 
(e.g. Wu and Bauer 1993) already cover a wide range of deformations, void ratios 
and pressures. The present constitutive equation is more comprehensive, simpler and 
physically more appealing. The proposed concept allows us to leave aside initial 
states (which are often poorly defined), to separate more clearly qualitative and 
quantitative properties and to determine the latter with simple procedures. Various 
familiar notions are avoided: stiffness and strength are not material parameters, but 
derived for special states and directions of stretching rate, and there is no elastic 
range in a stress or strain space. On the other hand, some properties well known 
from conventional soil mechanics are incorporated.

This approach may be looked upon as an extension and modification of the 
Critical State concept (Schoeficld and Wroth 1968):

— granulate stress ratios become constant independently of mean pressure for 
unlimited deformations with constant direction and volume;

— the void ratios for such states and for isotropic compression decrease in the 
same manner with increasing mean pressure;

— the envelope of peak stress states starts from zero and is curved, so that an 
effective cohesion appears only as an intercept when the envelope is 
linearized.

Hypoplasticity is used instead of elastoplasticity for the extension of this concept 
to other stress and stretching rate ratios. The compression law is modified so that 
a wider pressure range is covered. The word critical is retained for convenience 
although it is not justified in a physical sense.
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One main aim is to describe the mechanical behaviour with a minimum 
number of parameters (Section 3.1). They can be determined from reconstituted 
samples, i.e. they represent properties which are not lost by arbitrary deformations. 
Further parameters are considered as rather constant for a wide class o f materials. 
The price for this simplicity are some limitations (Section 4.1). This paper deals 
with qualitative aspects. More quantitative aspects of calibration are dealt with in 
a paper by Bauer (1996).

The general constitutive equation is introduced in Section 2.1. The implied 
functions and parameters are explained in Sections 2.2 to 2.5 by considering triaxial 
and biaxial deformations and then simple shearing. The theory is further explained in 
Section 3 by showing how to analyse deformations, stability and flow. Some possible 
extensions are indicated in Section 4.2.

2. Equation and explanation

2.1 General
The proposed constitutive equation can be written as:

T ' = f hL [ L ( t * D , )  + LN( t ) \\D, (5)

T := T ! tr T , denotes the so-called granulate stress ratio tensor; it has the same 
directions of principal axes as T  || I) ||;= ^tr D~ is the Euclidean norm of D The 
factors stand for barotropy ( f h) and pyknotropy (/' and f i ) . f e and depend on 
relative void ratios (Section 2.3). f h is proportional to a granulate hardness and 
depends also on e (Section 2.4). A rate-dependent correction (Section 2.5) leaves 
the other properties of Equation (5) unchanged.

The tensor-valued function L is linear with respect to D . The term with || D || 
is non-linear, but also homogeneous of first order with respect to D as required by 
hypoplasticity. It implies a switch function instead of the one(s) in elastoplasticity.

L and /V can be represented (Bauer 1996) by:

L a~D +TS tr ( f D , ) ,

. N : = a]{ t + f : ) ,

( 6 )

(7)

where T* := 71, — (l /3 )  1 denotes the deviator o f T  . The factor a t depends on 
7” via:

,v

~  + C 2 U 77 II [ l  + cos(30 )] , (8)

with the modulus || T" || := ^tr T' and the Lode parameter cos(30) = -y/Oi tr( 7’y’)/ 
/[tr(7'*2)]1/2. The constants c, and c, are determined by a friction angle as outlined 
in Section 2.2.
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L is positive definite with respect to D so that the response envelope (Gudchus 
1979) is elliptic (Bauer 1996). Its origin is shifted by /V |j D j so that it
cannot leave the elliptic range (Wu and Bauer 1993). Equation (5) is not generally 
invertible to D  as a function of 7 \  One should avoid calling 7  the cause of 1) or 
vice versa therefore.

So-called critical states (et , Tsc), defined by T = 0 and e = 0w ith  f  = 1 
(Section 2.2) arc represented by a cone in the space of stress components. This 
cone is smooth and lies within the range of negative normal components. The cone 
and the associated stretching rate directions, which are generally defined by 
/) := are obtained (Bauer 1996) from:

trD(,.=0; ' ( t ) N ( t „ ) ,  (9)

wherein the fourth order tensor T is defined by:

L(T,Ds) = r ( f ) D s.

The two factors f  and f  keep e within prescribed limits for a given mean 
granulate pressure Pf = -  trlT/3 (Section 2.3). The dependence of these limits on 
ps will enable us to calculate the factor f h in Section 2.4.

A dilatancy ratio is defined by:

k : = trg ,
IIA ||

for trf=0. ( 10)

It can be calculated from Equation (5) as:

K := ~fd tr N  ( f s)
tr Ds

tr L ( f , A ) (ID

and is needed for analyzing pyknotropy (Section 2.3) and stability (Section 3.2). An 
iterative procedure is required in general as I) is not known in advance. 
If K is negative, - K  is also called contractancy ratio. Proportional compressions
(subscript p)  are defined for constant directions Ds = Dsp with tr D < 0 by:

( 12)

With Equation (5) this equation leads tc:

t  «■ [ i ( t  • A , )+X,/v ( t )] = ). (13)

Special cases occur in the analysis of barotropy (Section 2.4) and consolidation 
(Section 3.2).

2.2 Critical states

We first consider stretching rates Ds so that e = 0 (i.e. tr I) = 0 from Equation 
(3)) and T  -  0. e then is called critical void ratio e .. More precisely, e -  e is 
assumed to remain constant for a certain mean granulate pressure p K, a certain
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C)

Figure I. Cases enabling critical states

stretching rate direction Dv , and a stress ratio tensor Tv. associated with this D 
by Equation (9). We can neglect argotropy (Section 2.5). The subscript .v is dropped 
in the sequel as long as the influence of a pore fluid is not considered.

We now analyze some special cases. A cylindrical compression (Figure la), 
defined by - T u > - T 22 = -T }3 (conventionally crt > <r,= <j }) is carried out with 
constant mean stress (i.e. tr T = f [ ( + 2 T21 = 0) up to a plateau t  = 0. e = 0 

implies zero dilatancy, i.e. Dn + 2D,2= 0  (conventionally e t + 2 e2 = 0 ) . The stress 
ratio is then defining a critical friction angle <p by:

sin: tpc
f  J- rj.

' ii ~ £22

T + T
V 711 A

(14)

Equations (5) to (8) yield, with f d-  1, D u = - 1 and Dn = D „=  1/2 (zero mixed 
components), two homogeneous equations for the critical stress ratio, viz. 
Tu - T ^ 2 — 0. With a cylindrical extension defined by - T  < - T  = - T  , one 
can also reach a critical state for a given mean pressure, i.e. t u = t2n = 0 with f d= 1, 
Z?n = l  and D22= D n = - 1/2. Equation (14) is postulated to hold with the same 
pressure-independent <p( as for cylindrical compression. One can thus calculate the 
two constants in Equation (8), namely:
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C, (15)

as outlined by Bauer (1996).
Wc now turn to biaxial deformations, i.e. Dn = 0 and zero mixed components 

(Figure lb). Critical states with constant mean pressure imply D 
and Equation (14) again. Using Equations (5 ) - (8 )  with f d-  1, one has t  = 0  and 
t 22 = 0. Defining by Equation (14) for cylindrical compression, one thus obtains 
a slightly higher critical friction angle.

Similar results can be obtained for cuboidal deformations leading to 
critical states, i.e. D22± D}i and D u = -D 22 -  D . Simple shearing (Figure 1 c ) can 
be treated in the same manner. Using Equations (5 ) - (8 )  as before one obtains 
a slightly higher tp -  arctan(-7’12/7'| |)( than for cylindrical compression.

We stipulate tpc as the friction angle for a critical state under triaxial 
compression. Angles for other critical states can be calculated using Equations (5) 
and (9). They will, however, scarcely be needed, as not even stationary flow 
generally implies e = 0 and T = 0 (Section 3.4).

2.3 Pyknotropy and dilatancy
We now leave states with e - e  , but still without considering barotropy (by 

assuming constant granulate pressure /a ) and argotropy. We introduce a void ratio 
of maximum densification, ed, by postulating fd= 0 in Equation (5) for (the
dependence of ed on ps will be outlined in Section 2.4). The constitutive equation 
becomes hypoelastic for f d=0, i.e. linear with respect to D . For e > e d, (  is 
required to increase monotonously up to f  = 1 with the relative void ratio:

1 -  re comes rather close to the usual density index /  for sandy soils and to the 
consistency index /  for clayey soils (Section 3.1). A suitable representation o f / ,  is:

with a parameter a  which is rather constant (0.1 < a < 0 .3 )  for a wide class of 
materials (Bauer 1996).

We now consider peaks (subscript P) under cylindrical compression with 
constant mean stress, i.e. T = 0 and T22 = 0 with ed < e < e . A peak friction angle 
tpr is defined by:

and can be calculated from Equation (5) with Tu = 0. The corresponding peak 
dilatancy ratio can be calculated from Equation (11) as:

L = > ” (r, > 0) 0 7 )

(18)
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(D|, + 2Dr  ) / y j + 2D]*,

Both <pr and Kp decrease with increasing relative void ratio r . f  controls the 
relative height of a peak (Bauer 1996).

Other peak friction angles and dilatancy ratios are obtained for cylindrical 
extension and biaxial deformation. For simple shearing, a peak friction angle 
ipp= aictan(-7’1,/7’3I);, and a peak dilatancy angle vp:= arctan(D /D ) can be 
calculated. An extension to other deformations, i.e. stretching with any direction, 
is possible. Such peak values can be helpful for the analysis of stability (Section 3.2).

The other pyknotropy factor / ’ in Equation (5) is to determine the influcnc* of 
the void ratio on the position of the peak under constant mean pressure. / is mainly 
influenced by the ratio e /e. A simple adequate representation for /' is (Bauer 1996):

/ \/f
f  e

-  ■ (19)

with a rather constant exponent in the narrow range 1 < fi<  1.1.
The effect o f f t can be illustrated for a cylindrical compression (Figure 2). The 

height /; may be reduced with increasing axial pressure - T  and T , + 2 -  const 
(a). One can calculate the change of void ratio (b) and stress ratio (c) by means of 
Equation (5) with Equations (3), (17), (19), D u =h/h,  and the factor a [ from 
Equations (8) and (15).

With e = ed initially, the dilatancy ratio (k from Equation (10), and then 
-D u /D u from k  ) increases from zero to a maximum and decreases beyond it to 
zero when e approaches e (Figure 2b). With e = e initially, k increases from 
a negative value, reaches a small positive amount with a slight reduction of e, and 
tends to zero with e —» e .. The peak is highest and leftemmost for e - e d initially, 
and the opposite is true for e = e initially. Intermediate curves are obtained for 
ed < e < e initially. /' thus controls the position of a peak.

Similar curves can be calculated for cylindrical extension, biaxial deformation 
and simple shearing. Void and stress ratios cannot leave a range given by e , ed and 
<pp for a constant mean pressure. (Ratios outside are possible with substantial 
changes of mean pressure. Section 2.4).

The meaning of ed can be illustrated for repeatedly reversed cylindrical 
deformations under constant mean pressure (Figure 3, system as in Figure la). The 
height is changed cyclically, and the lateral pressure is adapted so that 
Tu + 2Tr  = const. The changes of void ratio (a) and stress ratio (b) can be calculated 
with Equations (3), (5), (17). (19). Starting with e = c , the first curve sections o f e 
and T J T  versus ( h - h  ) l h  can be as in Figures lb and lc. The sections after 
each reversal are calculated correspondingly. If the stretching ( h - h ) / h  is small 
enough, there is an excess of contractancy so that e is reduced. The lower bound ed 
is approached with a low amplitude and a large number of cycles. With higher 
stretching amplitudes e can again be increased up to the upper bound e . Similar 
calculations can be made for biaxial deformation and simple shearing (Bauer 1996).
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Figure 2 . Cylindrical compression with constant mean pressure

Figure 3. Effect o f cyclic changes o f height o f a cylinder under constant mean pressure
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2.4 Barotropy
In order to determine the pressure dependence of the factors in Equation (5) we 

now consider proportional compressions as defined in Section 3.1. We begin with an 
isotropic proportional compression (subscript i) defined by D = - 1 and T = —p l ,  
starting from a suspension. It is proposed (Bauer 1996) that the void ratio, e then, 
decreases with the mean pressure /; according to:

e, = em exp
( -, \ "

3 P,
( 2 0 )

with a constant exponent 0.3 < n < 0.5. The granulate hardness h defined by 
Equation (20) represents the compliance of the grain skeleton depending on the 
pressure level. The skeleton originates with e = em for p — 0.

It is postulated that the limiting void ratios ec and ed decrease with the mean
pressure as e , i.e.:

ec = et 0 exp ( 21)

= edl) exp
k

V

( 22)

with the same constants n and hs as in Equation (20), and two material constants c () 
and eM. ej0 is required to exceed sc0 slightly with a certain ratio, i.e.:

e,(l= A e,,, (23)

with a material constant 1.1 <A <  1.5. Plotting void ratios versus mean pressure 
(Figure 4) yields three affinous curves. The ones for e. and e arc close to those of 
the original Cam Clay theory in a certain range of pressures, but they are also 
consistent for 0 <— p s —> <x>.

We now insert e and ed from Equations (21), (22) into the constitutive equation. 
Equation (5), with Equations (17), (19). The ratios of void ratios r and e /e do not 
directly depend on the mean pressure. The rate of mean pressure under isotropic 
proportional compression, p  , can be calculated from Equations (5 )- (8 ) , (17), (19), 
(23) as:

3 A = -1 + e.

and from Equation (20) as:

'  1 ^

vc' y
l + ^ -

3
C/n/Co 

 ̂— C/o/Co 42 (24)

a • e‘ ll-3 P.s = ------
e. n

f  -  v  "
3ps 
h\ 1

(25)
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P s / h s

Figure 4. Pressure dependence of void ratios

From these two equations we obtaii :

h.

V-'1f  i \

v£| )

^  eitl ! ec0
(26)

which is postulated to generally hold in Equation (5).
The transition to other proportional compressions is straightforward. For a one- 

dimensional compression, e.g. with D n = -1 and D -  0 otherwise (subscript 0) one 
has to calculate first the stress ratio Kf.= Tn / T u - T / T  (subscript s omitted) 
from the condition D22 = 0 with Equation (5). As far as the void ratio, called e then, 
decreases with ps as ec and ed, f d is independent of tr T ,  and therefore A' , too. 
Equalizing en from Equation (5) and from Equation (22) with e instead of e 
yields a formula ike Equation (26) except for the factors which are independent of c 
and ps. As f .  is required to be the same, one can thus determine r 0, n and /;s as well 
from oedometer tests (Bauer 1996).

A similar calculation can be made for a proportional compression without 
shearing, i.e. D n = - 1, D22 = -a; Dm = -h  and zero mixed components. Two stress 
ratios, T22/ T n and Tn / T n, are obtained from Equation (5), i.e. two cubic 
equations independent of p . The void ratio decreases with /y as e , and its value for 
ps= 0 can be calculated. For more general propor ional compressions (subscript />) 
the stress ratios are obtained w ‘ h Equation (13) from D , Equation (21) holds with 
e „ instead of e . and e .  can be calculated as outlined above.pO t-0 pO

With the aid of Equation (20), an equivalent pressure can be defined as:
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0 2 In ( ts D u { m  )

Figure 5. Drained cylindrical compression at critical states with different stretching rates

which is useful for the estimation of stiffness and strength values (Sections 3.2 and 
3.3). With the factor 3 /(l+ 2 /f) and <?0() instead of ei0,p e can likewAe be defined for 
onc-dimcnsional compress on as proposed by Hvorslev (1960).

2.5 Argot ropy
The rate-dependence of granular materials, which has as yet been neglected, 

can be accounted for by introducing an argotropic granulate hardness:

h „ = h , { \ \ D , \ \ t , f  (28)

instead of If into Equations (20 )-(22 ). ts is a characteristic time o f the solid 
constituent. Lcinenkugel (1976) has shown, using the theory of rate processes, that 
t can be fixed arbitrarily for a constant absolute temperature T. Leaving aside 
substantial changes of T, one can choose t so that h =  h results for a convenient 
modulus of the stretching rate. We thus have only one parameter for argotropy, 
namely /  (which is linked with t f

A consequence can be shown for a drained cylindrical compression with constant 
void ra o but variable rate (Figure 5). Initially, ^3 /2Du {-  |Z)J| in this case) may be 
equal to \hs so that results from Equation (28). An increase
of D u leads to an increase of (T,, -  Tn) which is approximately proportional to 

/  In (if D ). This relationship was introduced by Lcinenkugel (1976), calling / 
viscosity index. It was repeatedly confirmed and can be widely used (e.g. Gudehus 
1984). For soils /  lies between about 0.01 (quartz sand) and 0.05 (fat clay). 
A change of the magnitude of the stretching rate is therefore only of importance if it 
reaches several orders of magnitude. Argotropy is also of importance for 
uncommonly low or high gradients of velocity (Section 3.2). Our simple approach 
cannot, however, cover the whole spectrum of argotropy (Section 4.1).

3. Applications

3.1 Determination o f  parameters
We end up with only five material parameters, viz.: 

h —  granulate hardness for ||Z)J| = Mtf 
<pc — critical friction angle;
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ec0 —  critical void ratio for zero inter-granular stress;
eM— void ratio of max imum densification for zero inter-granular stress:
/ — viscosity index.

They can be estimated from classification tests a more precisely determined by 
modified standard tests. The additional constants a, /3, n, A are considered rather 
constant for a wide class of granular materials. They can be determined by element 
tests (Bauer 1996).

Classification tests are rather simple for hard-grained coarse granular materials 
</> is close to the slope angle of the loose dry material, e is close to the usual void 
ratio of the fully dilated material, and ed0 is obtained by shaking, so that 1 -  r from 
Equation (17) comes close to the usual density index / If is proportional to the 
strength of the grain material.

Fine granular materials can have higher order pores for very low pressures so 
that the proposed theory becomes invalid (Section 4.2). This can be avoided by 
exceeding a /^-dependent minimum inter-granular pressure. In order to avoid 
capi llary effects and to allow for the i fluence of the band pore fluid, one should test 
the saturated material, ht can be estimated from a shrinkage test with controlled 
relative humidity (//of the air. As long as the sample is not drying out, the granulate 
pressure at a thermodynamic equilibrium with T~  290 kPa amounts to 1.35 ■ lO5 
kPa • In (1 / 1//) according to Kelvin’s formula. From the equilibrium water contents 
vrr and w2 for the humidities ^  ~ 1 and t//, < 1 one can, with Equation (20), then 
calculate:

wherein e = wyj y / (with the specific weights ys and y of solid and fluid) is used. 
A crude estimate is obtained with w = tv (liquid limit) and vv, = ie (shrinkage limit).

(p can be rather easily estimated from a drained simple shear test with a thin 
layer of saturated material between two filter plates without end restraint, and with 
i// = 1 or under water to avoid shrinking.

e can be estimated from the liquid limit w using Equation (21) as:

The order of magnitude of the inter-granular pressure reached in tlf ; test is 
equal to the maximal pressure during each blow, viz. p  ~ 5 kPa. e is related to the 
plasticity limit wp by:

A, *3- 1.35-10'kPa- (29)

V 1 y
(30)

(31)
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wherein the inter-granular pressure during this test is approximately pp « 15 kPa. 
The appearance of cracks indicates the end of contractancy under cyclic shearing 
as depicted by Figure 3. Thus 1 -  re from Equation (17) comes rather close to the 
usual consistency index /  .

Modified standard tests yield more precise parameters and supply a basis for 
correlations, h can be obtained from oedometer tests, cpt from triaxial compression 
tests, and e and e can be found from filling with uniform granular flow and 
subsequent cyclic shearing. /  is obtained from triaxial tests with jumps of stretching 
rate, or from secondary compression tests with an oedometer (Leinenkugcl 1976).

Element tests serve to justify simpler standard tests to determine the constants 
a, [3, /?, A by calibration, and to detect limitations o f the proposed constitutive 
equation. By definition, they require homogeneous samples and uniform 
deformations, which is only possible to a certain extent. It is advisable to start with 
a high void ratio in order to suppress localisations, which is best achieved by filling 
with stationary flow. Walls of the testing chamber cause some non-uniformity of 
flow and packing, if the sample is not frozen and cut. It appears that triaxial tests 
with short samples, smooth non-rotating end platens, and repeated change of 
compression and extension with increasing pressure, and also special oedometer 
tests, are apt to avc'J these shortcon ings (Bauer 1996).

3.2 Deformations
The proposed constitutive equation can be used to predict deformations of 

granular bodies caused by changes o f boundary conditions, e.g. by static loading, 
drainage or excavation. We consider first undelayed deformations and then those 
which are delayed by viscosity.

An initial state of a granular body is defined by a spatial distribution o f material 
parameters (/?, tp etc.) and state variables (<?, T )  at a time tQ. The choice of tQ is 
arbitrary: start or end of sedimentation or filling, ground improvement, construction 
works etc. As the mechanical past is never fully known nor analysable, one can 
never precisely determine an initial state. Simplified fields o f parameters and state 
variables have to be used, which makes the prediction o f subsequent deformations 
inevitably uncertain. This fact justifies some simplifications and calls for monitoring 
and compensating technical actions.

Differential stiffness values needed for numerical procedures are determined 
from the constitutive equation. The differential stiffness matrix, a fourth order non- 
symmetric tensor defined by T  -  M D , is calculated from Equation (5) as:

Thus M  depends on the direction Z)t of the granular stretcl ng rate which has 
to be determined by iteration. Convergence has been achieved in several cases 
more easily than with elastoplastic approaches. However, an extremely wide 
spectrum of M  can still cause numerical problem^.

The boundary conditions for deformation problems are also partly arbitrary, but 
at least consistency with the constitutive equation should be maintained. Free

(32)
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boundaries — touching gas or fluid — are rather clear. Interfaces to walls, slabs, 
inclusions etc. can be the origin of localisation (Section 4.2). It is advisable to include 
foreign bodies into the granular body for the calculation; then the interfaces belong 
to the unknowns of the problem. The natural ground also requires artificial 
boundaries below and farther away.

Deformations can be markedly delayed in case of insufficient drainage and high 
viscosity of the grain skeleton. The combination of both effects is briefly outlined 
here for one-dimensional compression.

Consider a saturated column confined by smooth walls starting from a slurry 
(Figure 6). The velocities v of the grain skeleton and v of the water (a) have the 
same amount and opposite signs because of mass conservation. The filtration law- 
may be written;

vt - vs = 2vr = -
k ( e ) 8pr 

7, fa
(33)

with a permeability k depending on void ratio; let us assume for simplicity’s sake:

(34)

a)
X

Figure 6. Delayed one-dimensional compression
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with k = A'(1 for e = e(j. According to Section 2.4, the compression law can be 
written as:

e - e„ exp
/ 1

— ILl
hV ’ )

(35)

with the inter-granular pressure /; in the direction .v. With the total pressure 
- T u = -F 1|v + p and the balance of momentum (without mass forces), the balance of 
mass can be combined with Equations (33), (34). With n= 1 a rather simple non-linear 
diffusion equation is obtained for the volumetric fluid fraction af := e / ( \ + e), viz.:

_ 1 h,k0 C 1 9a f
dt

1 1

dx (1 -0 ,  (  *
(36)

A more complicated equation is obtained for n > 1. With the initial condition 
am = £V ( * ~ e0) a,lt* l'ie boundary values af or caf ldx for x = 0 and x =//, 
numerical results can be obtained. They can be plotted conventionally with the aid of 
c :=  h'kQ/y and look rather familiar for (Figure 6b).

The inter-granular stress path is almost straight for this part of the consolidation 
(path AB in Figure 6b). For times t »  h2J c r when the gradient of fluid pressure is 
very low, the vertical granulate pressure T remains nearly constant. Flowever, the 
decrease of hm with the decrease of ||DJ| (DUs -  cK’Jdx  here) by Equation (28) 
causes an increase of the lateral pressure T (path BC). The further decrease of 
void ratio is no more described by Equation (36) as the compression is no more 
proportional. It can be calculated with the aid of Equation (28) by iterative adaption 
of T IT and Dn .22 s II s 11 -v

For a spherically or cylindrically symmetric compression a diffusion equation 
similar to Equation (36) is obtained. An allowance for argotropy is rather easy as the 
condition of isotropy is not left. Numerical solutions are of interest for the evaluation 
of experiments, e.g. shrinkage.

We now turn to the case of creep without drainage of a saturated cylindrical 
sample (Figure 7a) with a rather high viscosity index. The material may be 
consolidated from the slurry state to -T „ t = p0 and ~Tlh = p0 (A) or /?0/#£5<)(B). With 
an increase of the total stress deviator the rate of axial compression -D Us increases, 
and keeping it constant then, -D  decreases with time first and increases later (b). 
The reduction of sample height with time is smaller for an anisotropic 
preconsolidalion than for the isotropic case, but equal in quality.

This known behaviour (e.g. Sekiguchi 1984) can be explained by changes of 
granulate stresses (Figure 7c) calculated with Equation (5) including hsa± h s. The 
initially isotropic sample undergoes a substantial reduction of pressure ps, and the 
pore pressure increases. Under constant Tu ~ T,, the reduction of ps goes on, so 
that the stress ratio T IT  increases. This requires hsa to increase, i.e. ||Z)J| must 
increase according to Equation (28). The critical state line (c in Figure 7c) is 
reached. For anisotropic preconsolidation the decrease of p  is weaker so that the 
c-line is reached earlier.
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Figure 7. Creep without drainage

An extension to more complicated deformations is rather difficult. A single 
diffusion equation is no more obtained, and the coupled equations can be 
mathematically ill-posed. This may lead to a loss of stability (Section 3.3). 
localisation and/or self-organisation (Section 4.2).

3.3 Stability o f  equilibrium
An equilibrium state of a granular body may be called unstable if velocity Helds 

v can be found which release kinetic energy. With the Chinese character for work 
(in Pinjin gong) this can be written l(v )> 0. The equilibrium is stable i f / (v  )<() 
holds for any and indifferent with respect to a certain v if this yields I = 0. The 
v-field is called mode of collapse if it leads to I > 0. For indicating the use of our 
constitutive equation with this kind of stability analysis, we briefly consider samples 
and slopes with full and without drainage. Argotropy is excluded by taking b = If.

Consider a fully drained cylindrical sample first (Figure 8). The initial state may 
be T = 0 and e = e . The intergranular stress path may be isotropic loading (0A) 
from the suspension and unloading (AB) afterwards, and loading with constant mean 
pressure up to the peak then (BP). The void ratio e4 at A can be calculated from
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Equation (20), and eH at B from Equation (5). The equivalent pressure p H at B, 
calculated from Equation (27), is slightly lower than /; (The ratio o f isotropic 
loading and unloading rates of compression is determined by ip via Equations 
(6) -  (8).)

The transition to the peak is calculated with Equation (5) as outlined in Section 
2.3. The void ratio increases to a value ep, and the dilatancy ratio k , or ID , is 
maximal at P. The peak stress ratio can be expressed by a friction angle (pp with 
Equation (18), or by the equivalent angle <p in Figure 8. The peak dilatancy and 
friction ratios increase with the ratio of equivalent and mean inter-granular pressure, 
- p J p K ■ The locus L of peak stresses is curved therefore and leads to 0. A section 
of it may be approximated by a Coulomb envelope C with a pressure independent 
’effective friction angle' tp\ and an ’effective cohesion’ c proportion#! to p  . This 
behaviour was proposed by Elvorslev (1960) and is incorporated in the original Cam 
Clay theory (Schoefield and Wroth 1968).

Such calculations can be made for other homogeneous deformations as 
cylindrical extension, biaxial and simple shearing. The curves arc similar, but the 
parameters Kp, tpp, </>’ and c'/p are not the same. This dilemma is overcome by 
means of a stability analysis with a linearly distributed velocity Held v (as required 
for element tests). The state variables c and T , which may result from any history, 
can lead to I > 0 with:

l := - tr (T  V v )F , (37)

if the boundary stresses are dead loads (Hill 1958). The symbol I is used as this 
quantity is different from conventional energies. V is the sample volume, and T  is a 
nominal stress rate defined by:

T = T + IVT -  TWs + T trDs . (38)

As T is homogeneous of the first order with respect to D by Equation (5), I is 
homogeneous of the second order in v (as the kinetic energy). A positive scalar 
factor in v has no influence on the simi of I.A

Figure 8. Drained cylindrical compression up to peak
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The variation of v is restricted by the dilatancy ratio from Equation (II). States 
with 1 = 0, which may be called limit equilibrium states, can thus be found. They do 
not coincide with peak states, but can be close to them. Strength parameters are not 
needed for this stability analysis, but they can be helpful in special cases.

Undrained element tests with saturated granular material can be analv/ed 
likewise with I. The fluid pressure p  enters as an additional state variable via 
Equation (1), and tr/) = 0  holds for incompressible grains and fluid. A strength 
parameter c  (’undrained cohesion’) can be calculated for different stress ratios T 
and stretching directions D but it is not needed.

The transfer to inhomogeneous fields may be indicated for a submerged slope 
with saturated granular material (Figure 9). The field of state variables c, T and p 
has to be estimated from field data, boundary conditions and balance equations. This 
field cannot uniquely be determined, but measured data and strength parameters 
help to restrict its range. Modes of collapse v., with tr (Vvt) = 0 in this case, have to 
be assumed from experience (dashed in Figure 9). The stability can be judged from 
the sign of:

Simplified v-fields suffice because of the uncertainty of state and the averaging 
property of the integral (Gudehus 1993). This method has been verified for fine 
sands (Raju 1994).

The extension to more complicated systems is principally straightforward. 
I (which can be looked upon as a kind of Liapunov function) has to be modified if 
not only dead loads occur. Modes of collapse v can also be obtained numerically by 
systematic variation of imperfections (Tejchman 1994). Due to the non-linearity of 
Equation (5) they are no eigenvectors, and I is not a potential. Shear localisations 
can be incorporated (Section 4.2). The modes have to be varied in order to find the 
one which first yields I > 0. An allowance for viscous and inertial effects will be 
more difficult (Section 4.2).

(39)

Figure 9. Slope collapse with it mlrained saturated material
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3.4 Granular flow
Our constitutive equation can also be used for the analysis of granular tlow. 

Penetration is included as it can be looked upon as granular flow around a fixed 
obstacle. It is briefly shown how Equation (5) can be used for stationary How of 
undrained and fully drained granular bodies. Some remarks on stability are adder.

Undrained stationary tlow of saturated bodies is kinematically the simplest ease 
because of tr(Vv )= 0. Stationary requires c(-) / d t  = 0 for the state variables c\ T*, 
p  and the velocity field v . A non-linear set of differential equations for these quantities 
results from the balance equations and Equations (1), (5). Viscosity can be incorporated 
with Equation (28). Boundary conditions have to be written for TV p  and v . An 
iterative algorithm with stepwise improvement of stretching direction D is required 
(c■/; Winter 1979). It is not necessary and not even helpful to assume a constant 
“undrained cohesion”, e is part of the solution in general and can deviate from c ,

Solutions may be found, but they can be unstable. Imagine an inclined open 
channel with a granular mass flowing due to gravity, e.g. a creeping clay slope 
(figure 10). The stationary solution, with a velocity profile v( |, may be given. 
(Without inertial effects it may be called a flow equilibrium.) A wavy mode v , may

Figure 10. Instability o f a creeping slope

Figure 11. Examples o f  drained stationary flow
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arise so that the flow becomes pulsating. Without inertial effects * can be detected 
with Equation (39) by I > 0. A similar result can be obtained for stretching of a stri: 
the symmetry-breaking waves may then be called necking.

For drained stationary flow changes of density occur, i.e. tr(Vv )*  0 in general. 
Consider two examples without pore fluid (Figure 11). The granular material flow ing 
through a convergent channel (a) has to be refilled in order to keep the surface in 
place. The penetration of a wall or rod (b) can cause a stationary flow of the 
surrounding granular body if this is initially homogeneous in the axial direction. The 
fields e, T , v  may be calculated from boundary conditions, the conservation laws 
and Equation (5). These states are not critical everywhere, i.e. e ^ e  , and T * T 
hold in general.

Again, such solutions can be unstable. Shear localisations may occur, and the 
flow may become pulsating or chaotic. An analysis is possible with an extension of 
our constitutive equation (Tejchman 1994). No criterion for such dynamic instability 
has yet been found.

4. Limitations and extensions

4, /  Choice o f  functions
Leaving aside the basic assumption implied by Equation (4), the choice of 

functional representations is not free from arbitrariness. We first discuss the choice 
of the functions in Equation (5), and then the concept of factorial decomposition. 
When evaluating special experimental results one is inclined to improve one or the 
other of the chosen functions. However, it is not advisable to modify them only for a 
better adaption to a few tests.

Other representations for L and N  satisfying the requirements of Section 2 .1 can 
be found (Bauer 1996). The stress ratio tensor may be replaced by the direction 
tensor f  : = T / ||r ||.  Other representations for f  and /j, depending only on the 
ratios ete and e te ., in order to avoid pressure dependence, can be given within the 
desired limits. The choice of Equation (20), and therefore f h via Equation (26). will 
also not be once and for ever. Improvements may be justified by further element 
tests. Apart from experimental problems with coarse hard grains (bedding errors), 
the influence of honeycombs and clods should, however, first be clarified (Seetion 
4.2).

One can introduce other representations for i  instead of Equation (28), leading 
likewise to the behaviour outlined ;n Figures 5-7. Argotropy can also be modelled by 
transferring Pcrzyna’s concept of overstress from elasto-plasticity to hypoplasticity 
(Wu et al. 1993). This leads to additional state variables, however (Section 4.2).

The non-linear term of Equation (5) vanishes for /rf—>0, so that the material 
becomes hypoelastic. This appears plaus-ble: for maximal density the hysteretic 
damping can be very low. Resonant column tests with cohcsionless materials 
indicate that, with decreasing amplitudes of cyclic shearing, the shear modulus is 
almost independent of strain amplitude, and damping disappears. A perfect 
shakedown of this kind is not possible with Equation (5), except for c = ed so that the
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non-linear part disappears. Granular materials with e ~ e do not show a shakedown: 
they are den: 'tied or liquified even with small strain amplitudes. Materials with 
a medium void ratio do not show a perfect shakedown, but their behaviou- is rather 
hypoelastic for very low stretching amplitudes.

It would be desirable to reformulate the constitutive equation so that linearity can 
be obtained for e > ed. This cannot be achieved, however, by any function of 7 and 
D only. In order to unify hypoplasticity, pyknotropy and argotropy one can th tk of 
introducing an intrinsic stress tensor as additional (internal) variable, as was 
proposed by Kolynrbas (1988). The physical reason for an internal stress can be the 
absorbed part of the pore flui 1. The state of absorbed pore fluid can be changed by 
deformations.

An extension to partly saturated materials is rather straightforward with the aid 
of capillarity and will be treated in a later publication. Barotropy of the proposed kind 
has a serious shortcoming: the destruction of grains is not covered and can lead to 
problems for the case of a substantial reduction of pressure after a strong 
compression. One could correct the set of parameters for the change of grain size. 
Our constitutive equation is therefore restricted to /$> < ca (0 2 k .

4.2 Choice o f  variables
Equation (5) implies the assumption that the state is sufficiently characterised by 

a symmetric inter-granular stress tensor and by the void ratio only. As outlined in 
Section 4.1, it appears that an intrinsic stress tensor is required to overcome this 
principal restriction. More properly, the bonded pore fluid should be treated as an 
adc ;tional constituent. More complicated states are also connected with localisations, 
clods and honeycombs, and cracks.

Localisations are zones of dilation with a thickness proportional to the mean 
grain diameter (Gudehus 1994). They can develop along interfaces with foreign 
bodies and inside granular bodies. Bodies w th dilatancy under dead loads tend to a 
single localisation and subsequent collapse, whereas kinematic constraints can lead 
to regular localisation patterns. Any mechanical model must ther imply a material 
length, preferably the mean grain size. A corresponding extension of the present 
constitutive equation has been achieved (Tejchman 1994)

Granular structures with clods or honeycombs are possible with suitable bonding 
forces. They can be destroyed, but not reconstituted by uniform deformations. 
Granulates with void ratios exceeding e (cf. Section 2.4) are prone to collapse. The 
description of state by stress tensor and void ratio is insufficient then: one has to 
introduce additional tensorial variables both for the pore system and the internal 
forces. This range of pressures is avoided by p  < calO 6 ft .

Cracks are likewise not covered by our concept of state. The void ratio of 
a crystalline rock body crackec nto blocks can be well below ed defined in Section 
2.3. One can analyse a localised fracture with the aid of some internal length (with 
a surface energy contribution to I). Higher order kinematic and static state variables 
are required then. For these reasons the proposed theory cannot explain certain
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mechanisms of tectonics and of ploughing. Theories of self-organisation in granular 
bodies have still to be developed for such cases.
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