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Abstract: The present work concerns the description of phenomena taking place within interfacial regions
during a flow of water which is accompanied by heterogeneous flashing. The main aim of the work is to
present a unified approach to first order phase transitions with the inclusion of capillary effects and to
built on this basis a mathematical model describing nonequilibrium two-phase flows, in which the
properties of the mixture include capillary components.

The analysis of the problem was started with a discussion of physical aspects of flashing, which are
the contents of Chapter 2. On the basis of the experimental data analysis a physical model of the
phenomenon was formulated.

In Chapter 3 a gradient description of first order hetcrogeneous phase transitions was given. The analysis
was begun with a discussion of the properties and structure of interfacial areas. On the basis of the
analysis constitutive equations for reversible stress tensor and free encrgy of a two-phase system treated
as a homogeneous medium were formulated. The constitutive equations include capillary components
modeciled by means of the dryness fraction gradients and resulting from the nonuniformity of the system
caused by the existence of two phases and interfacial surfaces.

On the basis of the proposed theory a homogencous model of two-phase flow with capillary effects was
derived, which is a subject of Chapter 4. Taking into consideration the assumptions of the homogeneous
model, one-dimensional balance equations for mass, momentum and encrgy of the mixture and mass of
vapour were derived. A constitutive equation for the source term appearing in the last equation was
obtained on the basis of the theory of internal paramcters with the usage of the proposed form of free
encrgy including a gradient term known from the second gradient theory. The remaining constitutive
equations for the density of the two-phase system, wall shearing stresses and capillary pressure were
also given.
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The proposed mathematical model was investigated from the point of view of wave properties, which
were discussed in Chapter 5. The analysis of small disturbations was conducted, as a result of which a
dispersion equation was obtained giving a relation between the velocity of disturbations, attenuation
coefficient and frequency. This dispersive model was then applied for the prediction of critical mass flux
in a channel flow using PIF method. On the basis of the comparison of the model predictions with

experimental measurements a reasonably good agreement was found.

In Chapter 6 the results of numerical calculations of flashing flow in channel were presented. Since the
proposed mathematical model contains several phenomenological coefficients, a parametric analysis was
performed in order to determine their value and the influence on solutions. For the sake of the analysis
the classical benchmark experiment known as the Moby Dick was used. After fitting the solution of the
model into the experimental measurements new calculations for other runs and other experiments were
carried out. As a result of the analysis a good agreement of the model with reality was found, as well as
its usefulness for the calculations of pressure and void fraction distributions in channels and for the
determination of mass flow rate of two-phase systems. It constitutes a confirmation of the correctness
of the proposed model as well as the theory on the basis of which it was built.

Keywords: capillarity, flashing flow, thermodynamic nonequilibrium

Nomenclature

Latin symbols

—  parameter

—  affinity, cross-sectional area

—  matrix of unsteadiness coefficients

—  body force vector

—  frequency of molecules collision

—  matrix of nonuniformity coefficients

—  specific heat, speed (of sound, perturbations)

—  viscosity coefficients tensor

—  perimeter

—  algebraic sources vector

— thermal diffusivity

—  diameter

deformation rate tensor, matrix of differential sources
—  matrix of differential sources

—  specific free energy (Helmholtz potential), friction factor,
function, frequency

—  force, total free energy

—  matrix of differential sources

—  specific free enthalpy (Gibbs potential), gravitational acceleration
— mass velocity (mass flux)

—  matrix

—  specific enthalpy

—  variable

— unit tensor

— nucleation intensity
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Greek symbols
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mechanical coefficient of capillarity, wave number
coefficient

length

tensor

natural number, number

number, population

order

pressure

pressure tensor

heat flux density

heat flux

radius, radial co-ordinate

specific entropy

dummy variable of integration, total entropy
time

temperature

stress tensor

specific internal energy

total internal energy

specific volume

total volume

velocity

work

dryness fraction, order parameter
equilibrium dryness fraction

mass fraction of interfaces
co-ordinate

void fraction

constant, linear relaxation time

angle of channel inclination

increase

multiplier (two-phase, heterogeneity, pressure)
non-linear relaxation time

dynamic viscosity (first viscosity, molecular viscosity), coefficient

energetistic coefficient of capillarity
thermal conductivity

chemical potential

relaxation time

density

surface tension

state vector
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‘ Indices

het
hom
imp
in
int

lig
lv

ns

ph
pos

sat
st

sup

TP

parameter, friction force

frequency

interface thickness

wetting angle

second viscosity (volumetric viscosity)
determinant, jump, difference
generation rate, source

decompression rate

bubble

bulk

critical
calculated
droplet
equilibrium
experimental
external
flashing
homogeneous, at constant enthalpy
hydraulic
heterogeneous
homogeneous
impossible
inlet
interfacial, surface
capillary

liquid

phase change
normal
nucleation site
at constant pressure
phase

possible
reduced

slug

saturation
static
superheating
tangential
two-phase
viscous
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vap —  vapour
w — wall

x — atconstant dryness fraction
z  —  hollow

0 — initial

1. Introduction

Water is a substance which occurs most commonly in nature and can exist in
different states of aggregation. The change of state takes place through a phase
transition, when the packing and the structure of H,O molecules changes. Phase
transformations taking place in water are a subject of our everyday experience.
They happen spontaneously or are initiated by a man in a various kinds of machines
and devices. In both cases the mechanism of phase transition is the same, just as
thermal effects accompanying the process.

For study and application reasons a particularly interesting flow of water is the
one accompanied by evaporation in adiabatic conditions, the so-called flashing.
In this case we deal with a phenomenon in which, without thermal influence on the
flow of liquid, conditions causing phase transition arise within the fluid. The factor
initiating evaporation is adiabatic throttling accompanying the flow. The process
of vapour generation is, in this case, spontaneous since in two-phase flow
an increased pressure drop is observed, a factor which generates water
superheating — a necessary condition for vaporisation.

The occurrence, due to flashing, of the two-phase flow results in a great

complication of the physical situation. First, the process of evaporation proceeds in
the conditions of thermodynamic nonequilibrium, and therefore a nonequilibrium
description must be applied. The course of the process greatly influences the flow
situation, which depends on the scale of nonequilibrium, and vice versa. Secondly,
a two-phase mixture is not a simple sum of two homogeneous phases since
interfacial areas — material regions of different physical properties and strong
gradients of density, stresses, efc. — additionally appear. Within these interfaces
nonequilibrium processes of mass, momentum and energy transfer take place due to
these gradients. The intensity of the transfer processes depends on a configuration
of interfaces, that is on the structure of the flow. The interfacial regions are also
strongly turbulized and exhibit anisotropy of physical properties, which certainly
influences the properties of two-phase systems. Thirdly, in a two-phase water-
vapour flow completely new phenomena, not observed in single-phase flows, may
occur, such as pseudocriticality, dispersed shock waves, pressure drop in a diverging
channel in subcritical conditions. Any correct mathematical model should take into
account the mentioned above properties of flashing flow and exactly describe the
phenomena taking place in such flows. It can be achieved on the basis of the
analysis of experimental data and the processes taking place in microscale — within
interfacial regions and their surroundings.
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2. Physics of flashing

2.1. Characteristic of the phenomenon

The phenomenon of flashing consists in rapid evaporation of a liquid in
consequence of pressure drop below the saturation pressure corresponding to the
current temperature of the liquid [1]. Therefore, it is a stress induced phase
transition brought about by the mechanism of local tension of the fluid. Since the
rapid pressure decrease is usually not accompanied by heat exchange with the
surroundings, thus flashing can be treated as an adiabatic expansion of a fluid
caused by decompression or outflow. The transformation of water into steam is
accompanied by a change in specific volume (latent deformation) and in specific
enthalpy (latent heat), and that is why flashing is rated among first order phase
transitions.

Flashing water flows have been known for more than a hundred years. First
experimental studies were carried out in the 19" century by Sauvage [2], while at the
beginning of the present century by Rateau [3], Bottomley [4], Benjamin and Miller
[5, 6] and Burnell [7]. At present, numerous examples of practical realisation of
flashing flows can be found in industrial equipment and installations. These flows
occur, among other things, in power industry, chemical engineering and refrigeration
technology, both during normal operation of a device, when decompression
is geometrically controlled, and in emergency situations, where depressurisation is
uncontrolled. Flashing can occur in channels of constant cross-section, like in pipes,
in regions of variable geometry, like in valves, or in pipeline breaks. During
a hypothetical loss-of-coolant accident (LOCA) in a nuclear reactor a two-phase flow
occurs in the place of break as a result of flashing. Such a type of situation is
pictorially illustrated in Figure 2.1. A two-phase flow can also occur during normal
operation of capillary tubes, reducers, measuring orifices and nozzles serving for the
minimisation of flow resistance used as connections of pipelines of different diameters.

The most important feature of flashing is the existence of thermodynamic
nonequilibrium in the fluid. This fact is experimentally confirmed and presents
the largest difficulty in modelling since it requires the application of the laws
of thermodynamics of nonequilibrium processes. The thermodynamic nonequilibrium
results from a dynamic character of phase transition, which decelerates evaporation
and causes the entry of the liquid into the region of metastable [8] or even
unstable equilibrium. In single-phase flow it manifests itself in liquid superheating
T,=T,—T. ph.q), while in two-phase flow additionally in smaller amount of
vapour compared with the appropriate amount in equilibrium state. For example,
motionless water subjected to ambient pressure can exist in superheated state
reaching 300°C. It comes from the fact that the nucleation of a new phase in first
order phase transitions requires overcoming a certain energetic barrier. In practice,
these barriers are often reduced due to the existence of ready nuclei of a new phase
in the form of impurities, inclusions, ions, efc. Then, the required superheating is
smaller and the process of nucleation is earlier initiated.
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Figure 2.1. Flashing in a pipe

Not all bubbles created as a result of nucleation are stable and can grow. From
thermodynamic considerations follows [9] that liquid superheating is necessary to
satisfy the condition of equilibrium between the liquid and the arising vapour bubble.
Water does not begin to evaporate at the boiling point corresponding to the equality
of external pressure and the saturated vapour pressure, but at somewhat lower
pressure which results from the initially small dimensions of the vapour bubble. It
means that at a given temperature and pressure of water only bubbles of a given
radius r can exist in thermodynamic equilibrium. For the vapour bubbles of radius
grater than critical the external pressure is too low and they try to increase it by
absorbing water, which next makes them even greater. However, for the bubbles
smaller than critical the external pressure is too high and because of this they
condense and become smaller and smaller, and eventually disappear. As a result of
this, as the dimension of all bubbles is not equal and equal to critical size (which
practically is impossible), the average radius of the vapour bubbles will increase,
which will bring about global evaporation of the liquid and pressure increase. The
process is self-sustaining and the growth of vapour bubbles and their coalescence
will cause the creation of uniform bulk of vapour of the pressure equal to the
equilibrium pressure of the liquid water. The critical radius decreases along with the
increase of superheating and because of this the existence of bubbles of greater and
greater radius is more probable. When the external pressure becomes so low that
the critical radius is in the order of magnitude of the molecule radius, the existence
of greater bubbles becomes certain by reason of random collisions of molecules.

2.2. Physical model of flashing flow

A correct description of flashing flow in a channel requires inclusion in the
model the properties of real fluids. Owing to a large degree of complication of the
phenomena taking place in such flows there arises a necessity of simultaneous
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modelling of several thermodynamic and hydrodynamic processes that control the
flow and become especially important in critical conditions. The most important of
them are [17]:

* flashing of superheated liquid;

+ the relation between void fraction o and dryness fraction x;

* local pressure losses caused by a rapid change of geometry;
» pressure drop brought about by acceleration and wall friction;

* heat exchange with the surroundings.

Thus, the crucial role is played by a correct description of the processes of
mass, momentum and energy exchange between individual phases and interactions
with the surroundings. The significance of transport processes modelling was
emphasised by Bouré [18], in whose opinion the development of the theory of
two-phase flows depends on the investigations on the phenomena governing the
interfacial forces as well as the rate of heat and mass transfer. The latter problem is
neglected in equilibrium models that assume infinitely fast interfacial heat and mass
transfer and do not require additional theoretical models for the description of these
processes. As practice shows [19], the modelling of transfer processes is extremely
crucial in the description of water-steam flows in long pipes and nozzles (L/D > 40)
since both the rate of steam generation and frictional losses determine the creation
of choked flow.

Equilibrium models do not allow even a qualitative description of flashing water
flows [20]. It results from the existence of the lack of thermodynamic equilibrium in
such flows, which was confirmed in many experiments. It turns out that in real flows
thermodynamic nonequilibrium between phases always exists, only its degree and
time of existence in a flow varie. In the non-steady state experiments of Edwards
and O’Brien [21], Gallagher [22], Zaker and Wiedermann [23], Fauske [24] and
Sozzi and Sutherland [25] the time of duration of nonequilibrium states did not
exceed 1 ms, but in Lienhard, Alamgir and Trela [14] and Bartak [26] the time of
duration of nonequilibrium pressure ranged from several to a few dozen of
milliseconds. As far as steady-state flows are concerned, the recorded water
superheatings in flashing inception T being a measure of thermal nonequilibrium,
ranged from 2+3°C in the experiments of Reocreux [27] and Rousseau [28] to 5°C
in the Jones [19] measurements. At lower pressures it gives local differences
between the current pressure and the saturation pressure corresponding to the
temperature of water in the order of a few dozen of kilopascals and significant
displacement of the point of flashing inception downstream in comparison with
equilibrium phase change. The results of such an inertial course of flashing are even
qualitatively different distributions of fluid-flow and thermodynamic paramecters
measured in experiments and resulting from equilibrium theories. Examples of
pressure distributions and the corresponding void fraction profiles in nonequilibrium
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Figure 2.2. Example of pressure and void fraction distributions in the Reocreux [27] pipe
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Figure 2.3. Example of pressure and void fraction distributions in the Jones [19] nozzle

flashing flows recorded by Reocreux [27] and Jones [19] are presented in Figures
2.2 and 2.3. They illustrate a delay in flashing inception and the existence of
metastable flow both in the pipe (Figure 2.2) and in the nozzle (Figure 2.3).

Apart from thermal nonequilibrium in one-component two-phase flows
mechanical nonequilibrium also exists, which is indicated by a difference in velocities
of individual phases [29]. The value of slip ratio is the largest in areas of the
generation of vapour bubbles which are, as experimental studies show [19, 27, 28],
generated on the channel walls and at the instant of nucleation have zero velocity.
As the liquid velocity increases, also the vapour velocity does and at near-critical
velocities the slip ratio approaches unity. Henry [30, 31] showed that in critical one-
component flows at low dryness fraction x < 0.01 the value of slip ratio should be
near one. Also Lackme [20] found that in choked flashing flow the value of dryness
fraction is small and visual observations of the flow indicate its homogeneous
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Figure 2.4. Physical model of flashing flow based on the experimental measurements of Reocreux [27]

structure at which it is difficult to find large velocity differences. They are in the
order of 0.1+1 m/s, which, in the Nigmatulin and Soplenkov [32] opinion, has little
importance at typical liquid velocities 10+100 m/s. That is why in near-critical flows
with large velocities the neglect of relative velocity and the assumption on the lack
of slip are justified, and the system can be treated as a homogeneous mixture in
nonequilibrium state.

Considering adiabatic internal flows with large velocities in channels of slowly
varying axisymmetric geometry, the influence of heat exchange with the
surroundings and local pressure losses caused by a rapid change of geometry are
neglected. In such flows the predominant phenomenon is nonequilibrium evaporation
of a liquid, which is a result of a delay in water-steam phase transition and the finite
rate of interfacial heat and mass transfer. Initially subcooled or saturated water is
decompressed during the flow (Figure 2.4). Pressure drop in a vertical canal is
brought about by friction (molecular and turbulent viscosity), gravitation force and
acceleration. As a result of the losses the static pressure drops below the saturation
pressure calculated for the inlet temperature of water 7, and at the point where the
pressure reaches p, the water starts to evaporate. The two-phase flashing flow is
characterised by an increased pressure gradient and increase of void fraction. These
quantities are macroscopic characteristics of two-phase flow and can be easily

measured in experiment.

3. Gradient description of interfacial properties

3.1. Structure and properties of interfacial areas

3.1.1. Characteristics of an interfacial surface

A two-phase fluid as a mixture of liquid, vapour and dividing interfaces is, in
fact, a heterogeneous system. Its physical properties are determined not only by the
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properties of the component phases but also by the properties of the interfacial
areas. The dividing surfaces can exist in various geometrical configurations which
determine the topological structure of two-phase systems as well as the division of
two-phase flows into bubbly, slug, churn, annular and droplet. In each case, the
properties and dynamics of the two-phase system will be strongly dependent on the
existing internal structure of the mixture. Also, the interfacial area possesses
distinctive physical properties and its own dynamics but usually interactions with the
surrounding homogeneous phases have a crucial influence on the behaviour of this
region. This interfacial surface being formed under the influence of homogeneous
phases simultaneously affects the state of the phases, behaves actively in relation to
them and affects the formation of the neighbouring phases [80].

The concept of a dividing surface was introduced for the first time by Gibbs [81]
in 1878. Considering a one-component two-phase system he treated the interfacial
area as a physical interface which is characterised by a directed force of surface
tension connected with pressure. The interfacial region is distinguished by the
anisotropy of pressure caused by the nonuniformity of the interfacial region along its
width. Physically, by a mathematical interface one should understand a three-
dimensional material origination whose two dimensions are significantly greater than
the third one — thickness. The thickness of the interfacial region is estimated at
several molecular diameters and increases as approaching the critical point of the
substance.

The behaviour of an interface is usually presented as analogous to the
behaviour of an elastic membrane. But such a description neglects some significant
physical differences which are based on the fact that a stretched interface increases
its mass by introducing additional molecules from homogeneous regions at constant
surface tension, whereas a stretched membrane conserves its mass and shows an
increase of internal stress [82].

A stable existence of an interface is possible only when the thermodynamic
potential of its creation assumes a positive value [38]. If its value were negative or
equal zero, accidental fluctuations could spread the interfacial layer within the fluid,
finally leading to a complete dispersion of one phase within another.

It should also be realised that this thin interfacial region is strongly turbulised
[38]. In thermodynamic equilibrium between liquid and vapour, within the transitional
zone a two-way traffic of molecules takes place — the molecules hit and condense
on the interface from the vapour side and evaporate from the surface to the vapour
phase. According to Adamson [38], for a saturated vapour at room temperature
from each squared centimetre of water about 1.2 - 10> molecules per second arrive
and go away. Through a surface equal to 10 A2 corresponding to the surface area of
a single molecule of water, 1.2 10" molecules/s pass which gives deposition time of
an individual molecule on the interface of the order of tenth of microsecond. In such
a situation, also the exchange of molecules between the interfacial region and the
adjacent liquid layers takes place. The coefficient of diffusivity of most liquids at
room temperature is of the order of 10 cm?s. A molecule penetrates liquid on the
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Figure 3.1. Pictorial character of variations of density (a) and its gradient (b) crosswise a surface
dividing liquid and vapour

depth of 10 nm already during 10® s. From the above data it follows that an
equilibrium interface is on molecular level at a state of strong agitation and
movement of single molecules penetrating the fluid from both sides of the interface.
Average density represented on macroscopic level by the product of the mass of
a molecule and their concentration [33] varies continuously from the density of the
liquid to the density of the vapour. The intensity of the density variation is not
constant along the thickness of the interface and, as it turns out, is the largest in the
middle of the interfacial zone. Pictorial character of the variations of density and its
gradient on crossing the interface dividing liquid and gas is shown in Figure 3.1.

A continuous variation of density of a two-phase liquid-vapour mixture is a result
of variable distribution of fluid particles within the transitional zone. In a state of
mechanical equilibrium intermolecular forces (van der Waals forces) determine
spatial distribution of particles. When two molecules are sufficiently close to each
other they interact via repulsive forces. On greater distances we deal only with
attraction forces whose values smaller than those of repulsion. In a homogeneous
phase of constant density the field of forces exerted by the surrounding molecules is
symmetrical and the resultant force is equal zero. For particles situated within the
interfacial region the resultant intermolecular force should also be zero. Otherwise,
such a particle will be moved to a position in which this resultant force is equal to
zero or will leave the liquid, which means evaporation. Evaporation is possible only
for particles of the highest level of energy [83]. Thus, the structure of the transitional
zone is such that interfacial distances vary continuously perpendicularly to this zone
from the values in the homogeneous liquid phase to the values characteristic for the
vapour. Variable distances between the molecules express, of course, their variable
spatial packing manifesting itself by a variable concentration.

As it has been mentioned above, the increase of the area of an interface
requires a displacement of some number of particles from the interior of the
homogeneous phase to the interfacial region. Experience shows that this process
requires some work resulting from the necessity of applying a force to compensate
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the forces of molecular interactions. It turns out that for a given fluid the isothermal
and reversible process of a unit increase of the interface area requires always the
same amount of work. A macroscopic consequence of the existence of the
intermolecular forces within the interfacial area is surface tension. It expresses a
force exerted at all points of the interface, acting at the plane of the interfacial
surface and directed in all the directions tangent to the surface. The value of this
force for a unit length constitutes the mechanical definition of surface tension:

o=—-. 3.1
Iz (3.1
From an energetic point of view the surface tension can be defined as the amount of
work required to increase the interfacial surface by a unit area:

o dw
= : 3.2)
dAint
Hence, systems showing the existence of surface tension tend to decrease their
surface, which is a region richer in energy, realising in this way a natural tendency of
energy minimisation. A characteristic feature of surface tension is its independence
of surface area 4, , and strong dependence on temperature T.

3.1.2. State of stress within an interfacial area

In a nondeformed system in which statistical dynamic equilibrium and the
corresponding intermolecular structure were established, internal stresses do not
exist [84]. The forces of molecular interactions are in mutual equilibrium
appropriately to internal dynamic equilibrium.

The matter looks differently in a deformed system. In such a system, the internal
structure corresponding to dynamic equilibrium is disturbed and as a result of this
internal stresses caused by the intermolecular forces of very short range appear.
These stresses manifest themselves in forces acting on arbitrary planes drawn in the
deformed system and depend on spatial orientation of these planes as well as on
their location. In the mechanics of continuous media the stress tensor T being
a tensorial field quantity is used to describe stresses in a deformed system. Instead
of the stress tensor, the so-called pressure tensor P is often used, especially in
hydrodynamics. It is defined in the following way [33]:

P=-T. (3.3)
In general, the pressure tensor can be decomposed into two additive parts [76]:
P=P°+P" (3.4)

The former part P¢ is the equilibrium stress tensor and depends on the state of
the system only. The components of this tensor express reversible thermodynamic
pressure, that is a quantity defined in equilibrium. The latter part of the pressure
tensor P" is an irreversible part and depends on the rate of change of state as well
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as on the gradients of the rate. Since viscous forces depend on the gradients thus
this part is called the viscous pressure tensor. When a system is in equilibrium and
does not exhibit any changes of state, then the pressure tensor is reduced to the first
part. As it was noticed by Bilicki [42] Equation (3.4) is a physical assumption and
means that the total momentum of a system is transported by two media. One is an
elastic or compressible system, in which volumetric work is reversible, and the other
is a dissipative system. A characteristic feature of this additive decomposition is that
either way of momentum transport is independent of each other, that is each of them
proceeds in such a way as if the second medium was absent.

The structure of the pressure tensor resulting from the character of
intermolecular forces is different in homogeneous phase and in interfacial region.
This refers both to the equilibrium and viscous part of the pressure tensor. Our
discussion will be started with an analysis of the equilibrium stress P¢. As it is
known, in a homogeneous system at rest only normal stresses appear. For the sake
of symmetry of molecular interactions, the normal stresses acting in particular
directions are assumed to be equal to each other which results in isotropic
distribution. The state of stress in the system is then described by means of the
isotropic pressure tensor [85]:

p 0 0
P=l0 p 0], (3.9)
0 0 p

where p is hydrostatic pressure equal as for absolute value and of negative sign to
normal elastic stresses. The hydrostatic pressure is here identified with a reversible
thermodynamic pressure occurring in the equations of state.

Within an interfacial region a different, anisotropic state of stress exists. It can
be presented best by considering a horizontal flat interface dividing liquid and vapour
in gravitation field. Neglecting the influence of gravity on the physical properties of the
phases, its effect can be reduced only to the location of the vapour phase above the
liquid. The condition of hydrostatic equilibrium is then expressed by the relation [86]:

V-P=0. (3.6)

In the conditions of the assumed planar geometry of the system it is obvious to
assume that the pressure tensor, like density and phase fraction, depends only on the
co-ordinate z perpendicular to the flat interfacial surface. Then, the condition (3.6)
can be simplified and written in components:
dP; |
—= =0, i=x,2z. 3.7)
dz
The condition of equilibrium (3.7) means that the pressures P, , Pzey and P: are
constant and independent of the co-ordinate z. Within homogeneous phases the
pressure tensor P° is isotropic and equal to pl. Thus, from the condition of
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hydrostatic equilibrium it follows that within flat interface the tangent pressures P’
and P:y are equal zero and the normal pressure P;, is equal to p. On the basis of the
symmetry of the pressure tensor in equilibrium one can further notice that
e = P;f 0, while tangent isotropy of the flat interface requires that P:;;:P_:y and
Pe =Pe =0. To recapitulate, one can say that flat interface has two principal
pressures normal P’ = P’ and transverse P’= P’ , and does not exhibit tangent
pressures. The normal pressure P? is constant and equal to the hydrostatic pressure
of uniform phases, but the transverse pressure P/ varies with the co-ordinate z and
becomes equal to the normal pressure within the uniform phases. The pressure
tensor is thus axisymmetric tensor of second order and according to tensor calculus
has two independent components [87].

The origins of pressure anisotropy within an interfacial region are
intermolecular forces since the kinetic part of the pressure tensor is isotropic [86].
The intermolecular forces strongly depend on the density of the fluid, that is on the
molecular level on the concentration of particles. Since the number of molecules
interacting with a considered reference molecule is different in different directions,
thus the force of interactions in the direction normal to the interface will be different
from that acting in the direction transverse to the interface. Thus, the pressures
exerted in these two directions must be different.

At this point a third definition of surface tension can be quoted. Since the
transverse pressure P; within the interfacial region is different from that in the
uniform phase where as it is known P’=P¢, also the force acting in the transverse
direction will vary and the reason of this variation is just the surface tension. The
exact definition of the surface tension is given by the formula:

J. P" dz. (3.8)

Integration of the pressure difference is extended from minus infinity to plus infinity
since outside the interfacial region the difference is zero and does not contribute to
the surface tension. As it is seen from relation (3.8) the surface tension ¢ can be
interpreted as an integral of the excess of pressure exerted crosswise the interfacial
area in relation to the pressure acting over the area. The value of this pressure
excess is, of course, a function of position, and, as it turns out, at some point attains
a maximum. According to Goodrich [87], for a typical value of the surface tension
0=0.05J/m? and the thickness of an interface 5-10° m the pressure difference
reaches 10 MPa. Similar differences between normal and transverse pressures are
recorded by Carey, Scriven and Davis [88]. Assuming the value of the surface
tension equal ¢ = 0.02 N/m and the thickness of an interface 2- 10 m they obtained
the pressure excess equal to 10 MPa. For low normal pressures in the order of 1 bar
it results in negative transverse pressure about —10 MPa. From an experimentally
proved fact that the thickness of an interface at low pressures and high surface
tensions is of the order of tens or hundreds of angstroms, Davis and Scriven [86]
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draw a very important conclusion. It tells that within a part of the interfacial region
the transverse pressure must be negative. There can exist regions of tension
P:>P;, as well as those of compression P! <P;.

Generalising the analysis concerning the flat interface into arbitrary curved
interfaces one should say that neither normal nor transverse component of the
pressure tensor is constant. Apart from this, the transverse components are not
equal to each other and despite the lack of movement tangent (shearing) pressures
exist.

Having the complete knowledge of the state of stresses within static interface
we can proceed to the analysis of a moving system containing dividing surfaces. In
such a dynamic system, apart from reversible elastic stresses, some additional
irreversible stresses connected with viscous forces appear. As it was mentioned
above, these stresses depend on the rate of change of the state of the system and
are described by viscous part of the pressure tensor P'. According to the Newton
hypothesis the viscous stresses are a linear function of deformation rate and for
most fluids it is a sufficiently precise approximation [33]. In this connection we can
write:

P'=cD, 39

where c is a fourth order tensor whose components are the coefficients of viscosity,
; 1 . s
while D= 5 (V Qw+w® V) stands for deformation rate tensor. Within an

uniform phase the tensor of viscosity coefficients is isotropic which results in the
fact that as a fourth order tensor it has two independent components (Lame
coefficients). In hydrodynamics they are known as the coefficients of first and
second viscosity. On the basis of the anisotropy of a uniform system we can write:

3
P =(> D, +2nD,, (3.10)

j=1

B/ =mD;, for i#}j. (3.11)

The former relation is an expression for viscous normal (main) stresses, while the
latter describes viscous tangent (shear) stresses. The coefficient of first viscosity
(molecular viscosity) is denoted here by 1, while the coefficient of second viscosity
(volumetric viscosity) — by { Expressions (3.10) and (3.11) are constitutive equations
for isotropic Newtonian fluids.

Within an interfacial region the properties of the fluid are no longer isotropic.
According to the theory of Goodrich [87] the tensor of viscosity coefficients is
axisymmetric and possesses at most five independent components. For such a
system one postulates the following components of viscous pressure tensor [87]:

P, =(+20')D,,+{D,+(D,, (.12)
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P\Z = C’Dxx + (C.!, + zn')Dy_\' + C,D__: ) (313)

P.=(D, +¢D, +(G+2m)D.., (3.14)

P,=P.=2D,, Pi=P,=2'D,, P.=P,=2'D_,  (.15)

v

Going from the interfacial area to the region occupied by a uniform system the
pressures given be relations (3.12 + 3.15) converge to the values determined by
(3.10 = 3.11). Five coefficients of viscosity £, £, n, n and n”" describing transport
properties of the axisymmetric interfacial region reach the limiting values of two
coefficients of viscosity of uniform phases € and n. Physically, this means that in
some directions there appear some excesses of viscous stresses as compared to the
stresses acting in a uniform isotropic system. Thus, not only static (hydrostatic
pressure) but also dynamic (viscosity) properties of the system exhibit anisotropy
within the regions occupied by interfacial surfaces. These surfaces are
characterised in some directions by some excess quantities whose value determines
the intensity of anisotropy. The properties of a heterogeneous fluid do not vary
discontinuously but in microscale exhibit a continuous variation.

3.2. Mechanical constitutive equation of a two-phase system

Now we proceed to phenomenological description of a two-phase system
containing material interfacial areas. Our considerations will be carried out in terms
of homogeneous model in which the properties of internally homogeneous medium
are postulated for a heterogeneous two-phase system. These properties are a kind
of averages of the properties of the component phases, and according to the author
from definition should take into consideration also the properties of interfacial
regions. Such a methodology of thermodynamic description of heterogencous
substances was proposed for the first time by Gibbs [81] who noticed that any
extensive thermodynamic property describing a two-phase system should include,
apart from the contribution of homogeneous phases, also some excess coming from
dividing surfaces. From a phenomenological point of view, the description of
molecular interactions and the dynamics of interfaces is possible after previous
determination of local properties of the system and then transition on macroscopic
level [35].

In order to obtain a constitutive equation describing stresses in a two-phase
system with the inclusion of capillary stresses, the second gradient theory can be
used. It is a general theory allowing description of capillary phenomena of a two-
phase mixture assuming a continuous variation of thermodynamic parameters within
the interfacial region. The bases of the theory were created by Dutch scientists
already in the 19" century. The first thermodynamic considerations were presented
by van der Waals [89] who proposed to introduce to the Helmholtz potential a term
with density gradient modelling the energy of interfacial areas. Procceding similarly,
Korteweg [90] proposed a constitutive equation for capillary stress tensor in which
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capillary stresses were described by density gradients. In both cases the density of
the fluid plays a role of an order parameter distinguishing two fluids and dividing
surfaces, and the gradients of density result from nonlocal molecular interactions
within the interfacial zone [91].

Considering a nonequilibrium water-steam mixture we stated that the
nonequilibrium dryness fraction x is the quantity which satisfies all the requirements
imposed on internal variables. The nonequilibrium dryness fraction x expresses the
actual fraction of vapour phase in the two-phase mixture and fulfils the function of
order parameter very well. In water its value i1s 0, in steam 1, while within the
interfacial region it continuously varies from 0 to 1. The gradient of the dryness
fraction in homogencous phases is zero and varies within interfacial areas only.

From the performed above considerations we have already learnt that the
state of stresses in a nonuniform system depends not only on density at a given point
but also on density in the nearest surroundings. In the case of a water-steam mixture
described with the help of homogeneous model, the density varies as a result of the
variation in vapour content expressed by the nonequilibrium dryness fraction x. In
order to describe the nonlocal character of stresses one should express them in a
function of the dryness fraction gradients. Having this in mind one can postulate a
decomposition of the reversible stress tensor T° into a part corresponding to the
stresses in a uniform system T" and a part T* describing stresses caused by internal
nonuniformity of the system which occurs within interfacial regions. The stresses in
the uniform system without internal gradients are a function of the dryness fraction
T"=T"(x), while the capillary stresses additionally depend on its gradients
T*=T*(x,Vx, VVx,... ,V...VX). Thus, we can express the stress tensor as a sum
of two tensorial functions of second order [92]:

T =T"(x)+T"(x,Vx,VVx,...,V---Vx). (3.16)

The dependence of stresses on dryness fraction describes in this case the action of
short-range molecular forces (repulsion), while the dependence on the gradients of
dryness fraction is related to the action of long-range forces of attraction between
molecules. It is just the second part of the stress tensor, that is a source of the
surface tension.

Gradient representation of the capillary stress tensor T* is obtained by
expanding the tensor T° about a point at which all the gradients of the dryness
fraction vanish. Like Aifantis and Serrin [92] we limit the expansion to the third
order gradients and obtain:

T°=T,+TVx+T,VVx+T,Vx®@Vx+T,VVVx+T,Vx®Vx®Vx, (3.17)

where the coefficients T ,..., T; are isotropic tensors depending on x, because they
are determined by the properties of the system without gradients [86]. The
coefficient T, as an isotropic tensor of third order is identically equal zero, like the
isotropic tensors of fifth order 7, and T. Then, relation (3.17) can be simplified to:
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T°'=T,+T,VVx+T,Vx®Vx. (3.18)

On the right-hand side of Equation (3.18) we have a sum of three linear tensorial
functions to which one can use the following representation of tensorial function
[93]):

fT=1,(cT+IT. (3.19)
As a result of this we obtain the following expressions:
T,=-pl, (3.20)
T,VVx=LV’xI +1,VVx, (3.21)
TVx®Vx=1,(Vxf I+ Vx®Vx, (3.22)

in which p is pressure, and the coefficients /, ,..., [ are, in general, functions of the
dryness fraction x. Inserting relations (3.20+3.22) into formula (3.18) we obtain the
final formula for the equilibrium stress tensor of the two-phase system with internal
microstructure:

T =—pl+1,VxI+1,VVx+,(VxJ I +1,Vx®Vx. (3.23)

The pressure p denotes here pressure in a uniform system without internal
microstructure inducing anisotropy and being characterised by the gradients of the
fluid properties. The contribution of interfaces is represented by the gradient terms.
The influence of these additional stresses on the stress tensor is controlled by the
four coefficients /, ,..., /.

One should draw attention to the fact that a nonuniform system described by
the stress tensor (3.23) apart from the anisotropy of normal stresses exhibits also
tangent (shear) stresses. These are all elastic stresses, that are reversible in
thermodynamic sense. Their origin resides in capillary forces. For capillary normal
stresses we have: -

3 o’x ax Y
T+ =| 1 Z ,+lz Ox 5,.,.+13—+1{—-J, (3.24)
az; i oz} az,

=1

while for capillary tangent stresses we obtain:

. 0| Ox Ox Ox
TF=] /| = |+ ==, for i#7j. 3.25
i3 az azj. 562,. azj or t#J ( )

]

Taking advantage of the constitutive equation for the stress tensor (3.23) one
can calculate the surface tension for a flat interface within which the dryness
fraction varies along z. The main normal and transverse stresses are then given by
the relations:



292 M. Banaszkiewicz and J. Badur

. d’x dx Y
T =_p+(l2+[3)d7+(14+15)[EJ’ (3.26)
2
TS =T =—p+l, dx+1(dx) (3.27)
dz* dz

Making use of the definition of the surface tension given by relation (3.8) we can
write:

G—T(T"—T")dz—T —4 d—zx—-l L 2 dz (3.28)
J xx 2z J 3 dzz 5 dZ 4 »
Integrating by parts the first term in the integral we obtain:
o dx dx|” F(dl(dx
l,— |dz= 1— + dz. 3.29
[o[ a7 J )., I dx[dz] )

The first term on the right-hand side of expression (3.29) is identically equal zero
since the dryness fraction is constant in infinity. Thus, we can write:

= (dx Y
o= |k|— |dz, (3.30)
(&)
where the parameter k| is defined as follows:
dl,
k,=—-I;. (3.31)
dx

3.3. The thermodynamic equation of state of a two-phase system

Now, we are going to discuss some thermodynamic aspects of the motion of
a nonuniform two-phase system. In order to do this, a fundamental equation of state
of the nonequilibrium water-steam mixture will be derived. Since the present work
concerns flashing flows in which phase transition is induced by stress, thus from the
possible fundamental equations the Helmholtz potential will be discussed. For such
problems it is the most appropriate function since it is expressed in terms of
temperature and specific volume. In adiabatic flows of water the temperature can be
assumed constant, while the variation of the specific volume (or pressure) causes that
the system becomes metastable or unstable, which in effect leads to phase change.

As it was noticed by Gibbs [81], any extensive thermodynamic quantity
describing a two-phase system should also include, apart from the contribution of
homogeneous phases, some excess coming from dividing surfaces. With reference
to the Helmholtz potential it is postulated that the total free energy of the system is
a sum of free energies of the component phases and the free energy of interfacial
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areas. Even though the energies of the homogeneous phases are proportional to the
number of molecules of a given phase and are a simple sum of the energies of single
particles, this cannot be said about the energy of interfaces. This energy is equal to
the difference between the energy of molecules being within the interfacial area and
the energy which those molecules would have if they were within a uniform phase
[80]. From classical thermodynamics it is known that energy of molecules increases
with temperature, whereas the surface energy decreases along with temperature
and at the critical point vanishes to zero.

The contribution of interfacial energy is extremely difficult to model. It results from
the fact that the internal energy of an interfacial region is not only a function of surface
entropy and surface stretching, but depends also on the state of both phases, geometry
of the surface and the velocity of propagation in the fluid [16]. Other important factor
on which the total interfacial energy depends is the interfacial area density.

In section 3.1 it was said that the reversible work required to increase the
interfacial surface by a unit area is equal to the surface tension. In a reversible
process proceeding at constant temperature and specific volume, the change of
internal energy of the system is given by the relation [94]:

dU =dQ,, +dW,, =TdS+odA (3.32)

int *
Hence, on the basis of definition, the change of free energy of the system can be
written as [94]:

dF =-SdT+0od4,,, (3.33)
from which we obtain:
o= ;TF (3.34)
int )1y

Relation (3.34) defines the surface tension as free energy of unit interfacial surface.
The total free energy of the system is an integral from the unit energy:

F(T,v,4,)=0o(T)4, +F,(T,V), (3.35)

nt

where F (T, V) is a constant of integration and expresses the free energy of bulk
phases. For a two-phase water-steam mixture relation (3.35) can be written in

a different form:
F(T’ V’ Ainr ): G(7‘)‘/4#” + Eiq (T’ I/qu )+ Fvup (T’ I/mp ) (336)

In such a way we obtained a relation for the total free energy of the two-phase
system, given as a sum of free energies of homogeneous phases and interfacial
surfaces. While the contribution of liquid and vapour is easy to calculate,
determination of the contribution of the interfacial free energy requires knowledge of
the area of interfacial surfaces. This quantity is not constant but varies along with
the variation of phase fraction and flow structure. Relating the total free energy of
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the two-phase system to its mass we obtain the relation for the Helmholtz specific
free energy in thermodynamic equilibrium:

f(T’ Vs aim ): G(T)ainl vinl + (l - f)f;iq (T’ Vliq )+ ff:'up (T’ vvap )’ (337)

in which a, [m?*m’] is the interfacial area density, v, [m*/kg] — the specific volume
of interfaces, while X[-] — the equilibrium dryness fraction. The range of application
of formula (3.37) is limited to the conditions of thermodynamic equilibrium since this
formula was derived from the definition of surface tension — a quantity calculated on
the basis of reversible work of the system.

In order to derive a fundamental equation for the free energy of a nonuniform
system in the conditions of thermodynamic nonequilibrium we will take advantage of
the second gradient theory. In the classical thermodynamics of nonequilibrium
processes the definition of the energy of a system does not include contributions
coming from the gradients of specific extensive propertics. For a uniform system
without gradients it does not matter at which point we calculate the encrgy of the
system. In a situation of a nonuniform filed, for example density, concentration,
phase fraction, the local definition of energy of the system is extended by nonlocal
intcractions resulting from the asymmetry of intermolecular forces. According to the
second gradient theory presented in the works of van der Walls [89], Landau and
Ginzburg [95] and Cahn and Hilliard [96] we will postulate that the specific free
energy of a two-phase system depends on the local value of dryness fraction as well
as on its value within the nearest surroundings. Therefore, the Helmholtz potential
can be expressed as a sum of two contributions, which are functions of dryness
fraction and its gradients, respectively:

f=fh(T,V,x)+fk(T,v,x,Vx,VVx,...,V---Vx), (3.38)

where f* is specific free energy of a uniform system of temperature 7, specific
volume v and dryness fraction x, while f* denotes an additional contribution to free
energy brought about by the nonuniformity of the field of dryness fraction. In the
molecular theory of fluid interfaces given by Bongiomno, Scriven and Davis [97] the
homogeneous term describes short-range interactions (repulsive forces), while the
gradient term is responsible for long-range interactions (attractive forces). Since the
presence of an interface in a small volume of averaging is connected to the
occurrence of the gradient V_ x in the direction normal to the interface, then one can
assume that the spatial gradient of x is a vectorial measure reflecting energetic
contribution of interfacial surfaces. We will expect that the greater the gradient of
dryness fraction is, the greater energy characterises the dividing surfaces. The
scalar x is a measure of the amount of internal microstructure contained in our fluid,
whereas the spatial gradient of x describes capillary properties of the system [16].
Gradient representation of the specific free energy can be obtained by
expanding this function about a point in which all the gradients of the dryness
fraction vanish. While doing this, it should be assumed that the dryness fraction and
its gradient are mutually independent, and the free cnergy is a continuous function of
its parameters. Proceeding as in the case of the stress tensor we obtain the relation:
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S=L,+L, Vx+L,VVx+ LVx®Vx+ L,VVVx+LVx®Vx®Vx, (3.39)

in which the coefficients L ,..., L, are isotropic tensors dependent on 7, v and x,
since they are determined by the properties of uniform and isotropic system. The
coefficient L is a tensor of zeroth order since energy is a scalar quantity, and it is
equal to the specific free energy of a homogeneous system:

L,=f"(T,v.x). (3.40)

The isotropic tensor of first order L, is identically equal zero, like the isotropic
tensors of third order L, and L,. Relation (3.39) is then reduced to the following
form:

f=f"Tv,x)+L,VVx+ LVx®Vx. (3.41)

Since the coefficients L, and L, are isotropic tensors of second order, thus they can
be expressed as:

b =L, (3.42)
and
L =1, (3.43)

The last two terms on the right-hand side of relation (3.41), as contributions to
free energy, are of course scalars and in this connection must be represented by
expressions independent of the gradient direction. Based on this physical property of
energy we can simplify the last two terms in formula (3.41) and obtain:

f=f"+1Vix+15(Vx) . (3.44)

A similar form of the specific free energy for two-component systems was obtained
by Cahn and Hilliard [96]. From relation (3.44) the following form of the total free
energy follows:

F=[(/"+ 159+ 1) Jpav. (3.45)
v
The integral from the second term one can transform in the following way [96]:

j (privx dV_—j [ 2 (Vx) ]dV+ j pliVx. n)dA (3.46)

and after the assumption that on the boundary of the region Vx-n=0, one can
reduce the last term in relation (3.46) and obtain:

;
F =j 7 —ﬂ(v)c)2 +I5(VxY |pdV. (3.47)
A dx



236 M. Banaszkiewicz and J. Badur

According to the theory of order parameters the term describing the free energy of
a homogeneous system is, in the surroundings of equilibrium point, a quartic
polynominal. In this connection we can write [16]:

fr=0xt+ xR (3.48)

On the basis of (3.47) and (3.48) the specific free energy f of the nonuniform
system can be expressed in the following way:

f=0x + 1 x* + 5 (Vx ), (3.49)

where the coefficient controlling the contribution of gradient energy is defined as
follows:

o dt
Pal -2 3.50
3T (3.50)

The coefficient /* is always positive, which means that there exists some energetic
price connected with the creation of spatial nonuniformities of a field [98].

3.4. Equilibrium conditions

General definition of equilibrium tells us that in a state of thermodynamic
equilibrium the considered system neither interacts with the surroundings nor admits
any internal interactions between arbitrary subsystems [40]. With reference to a
two-phase water-steam mixture, this definition includes the requirement of
preservation of the equilibrium state in each phase as well as the requirement of
preservation of equilibrium between individual phases. A homogeneous phase is in
equilibrium when the gradients of intensive parameters of state causing temporal
variation of extensive parameters do not occur [40]. Physically, this means that all
internal transport processes taking place in the fluid ceased. To achiceve interfacial
cquilibrium it is necessary for the interfacial transport of mass, momentum and
energy to vanish.

Equilibrium phase transition takes place in a homogeneous way if the
following conditions are satisfied [16]:

* equality of temperatures of both phases 7, =T

i~ " vap®

» equality of pressures of both phases P =P

vap®
+ equality of the Gibbs free enthalpies of both phases B = B

In heterogeneous phase transition, when two phases divided by an interface of
complex structure are considered, the occurrence of capillary phenomena
significantly influences the equilibrium conditions [82]. The influence is stronger at
larger dispersion of a new phase, that is in evaporation at smaller dimensions of
vapour bubbles. Taking into consideration the surface phenomena the conditions of
thermodynamic equilibrium transform into, respectively [16]:

« difference of internal energies of both phases is equal to internal energy of
the interface U — U, =U

ap int®
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+ difference of momentum fluxes of both phases in direction perpendicular to
the interface is equal to momentum of the interface p, —p _=p, ;
iq vap int

« difference of chemical potentials of both phases in direction perpendicular to
the interface is equal to chemical potential of the interface B =l =M

Some examples of the extension of equilibrium conditions by capillary effects
can be found in the works of Gibbs [81] and Frenkel [99]. For a spherical vapour
bubble the condition of mechanical equilibrium is expressed by the relation:

20

pliq_pvapz_ r 4 (351)

while the condition of phase equilibrium is given as [99]:

2c
Hliq —“\rap = Tvvup . (352)

From relation (3.52) it follows that for equilibrium course of mass transfer between
water and steam which is created in the form of bubbles, some difference of
chemical potentials of both phases is necessary, and the chemical potential of the
new phase must always be lower than that of the parent phase. This latter limitation
results from the condition of thermodynamic stability since, as it is known, more
stable is that phase which in given conditions has lower potential of energy and by
the generation of the phase of lower potential the system realises the law of energy
minimisation. In the condijtions of phase disequilibrium the difference in chemical
potentials is larger than in equilibrium and is the driving force (affinity) of mass
exchange. For flashing, which proceeds in the conditions of pressure drop, the
chemical potentials of water and steam vary along with pressure but until the
saturation conditions are not achieved more stable is the liquid phase. After
exceeding the saturation pressure the chemical potential of steam is lower than that
of liquid water which in this region is in metastable state and sooner or later will
become transformed into steam.

Definition of affinity 4 as a driving force of mass exchange can be obtained
from the comparison of the Gibbs equation written for a two-phase system [40]:

Ou Ou Ou
du=|— | ds+|— | dv+|— | dx, :
‘ (as ]v,.\‘ ’ (av J\'..\' ’ (ax jx.v ¥ (3 53)

with the First and Second Law of Thermodynamics written for reversible sprocesses
(40]:

du =Tds — pdv — Adx . (3.54)

As a result of the comparison we obtain:

A:_(@J _ (3.55)
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Equivalent definitions of 4 as a function of the remaining thermodynamic potentials
can be obtained from the Gibbs equation after the application of the Legendere

transformations:
oh of og
A =l — =| — = =— , !
(ax 1-? (ax JV'T (ax lf (320

where 4 is specific enthalpy, f— the Helmholtz specific free energy, while g — the
Gibbs specific free enthalpy. In thermodynamic equilibrium we have:

A=0, (3.57)

and the equilibrium dryness fraction x is a function of the remaining two independent
parameters defining thermodynamic state of the system:

x=x(s,v)=x(s, p)=x(v,T)=x(p,T). (3.58)

Now, we can identify the difference in chemical potentials of coexisting
phases as a derivative of the Helmholtz thermodynamic potential with respect to the
dryness fraction x:

of
Al (gl = Hiig = Mgy - (3.59)

However, this definition does not take into account capillary phenomena and refers
only to homogeneous systems without interfaces. The formula derived in the
previous section for the Helmholtz free energy of heterogeneous systems (3.49)
contains a term with the gradient of the dryness fraction. On this basis we extend
the definition of the thermodynamic affinity (3.59) onto nonuniform systems and
obtain the expression [16]:

o
A= —| , 3.60
[ax )T'v ( )
where the Volterra variational derivative is defined in the following way [16]:
8l=al—V- ai : (3.61)
& ox aVx

In phase equilibrium the thermodynamic affinity A4 is equal zero [100]. But it
does not mean that the chemical potentials of both phases are equal to each other. In
the light of definition (3.61) it is seen that their difference is equal to the chemical
potential of the interface, which is represented by the gradient part. Since in the
equilibrium state the amount of vapour is equal to its equilibrium value, the
equilibrium value of the dryness fraction X can be determined from the condition of
vanishing of the thermodynamic affinity [101]:

%
A== =0. .
(ij” (3.62)
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2l

Figure 3.2. Dependence of thermodynamic affinity on dryness fraction

Condition (3.62) physically means that at equilibrium point the free energy
reaches minimum at fixed other generalised deformations. Pictorial character of
dependence of the thermodynamic affinity on the dryness fraction in the vicinity of
equilibrium point is presented in Figure 3.2. At points where x < ¥ we deal with
nonequilibrium evaporation, while at points where x > X nonequilibrium condensation
occurs.

4. Homogeneous model of flashing flow

4.1. Assumptions of one-dimensional homogeneous model

In the homogeneous approach a nonequilibrium model of two-phase flow
consists of balance equations formulated for a two-phase mixture and the balance
equation for vapour mass [102]. The latter describes the nonequilibrium character of
evaporation in the flow and is postulated in the form of kinetic equation. The
homogeneous approach assumes that the considered system is physically
homogeneous and each element of the fluid volume contains a medium whose
properties are a kind of average of the properties of component fluids. The influence
of real heterogeneous structure of the two-phase system is modelled in constitutive
equations postulated for the mixture of the two phases [103].

The most important assumptions taken in the proposed here one-dimensional
homogeneous model are as follows [102]:

* velocity vector components perpendicular to the flow axis are neglected:
' w,=w, =0,
W, =w,
* no slip between phases:

M)qu = wvap = W’
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+ axial velocity gradients in directions perpendicular to the flow axis are

omitted:
w_B_p,
&x o
 thermal parameters gradients in directions perpendicular to the flow axis are
omitted:
or _ef _.
x oy

* heat conduction along the channel is negligible:
q.=0;
» pressure of the liquid is equal to that of the vapour:
Piig = Pvap =P
* liquid is metastable:

Tliq = T;iq (P, hliq ) >

hliq = hliq (p’ Viig ) )
 vapour is saturated:

Izvap = 7;1)! (p)’
hvap = hvap (p)’

« flow is adiabatic:

qex! = O ®

The model proposed in this work describes two-phase turbulent flows in annular
channels with constant or slowly varying cross-sectional area. A two-phase flow in
an axisymmetric channel with annular cross-section is, in general, a two-dimensional
problem [72]. A confirmation of this is the possibility of creation in the divergent
section of a nozzle the jer structure [27] and the existence of transverse profiles of
void fraction [27, 31] and density [28]. But, both single and two-phase flows can be
accurately described by means of one-dimensional balance equations closed by
empirical constitutive relations. Nevertheless, nonuniform profiles of void fraction
and velocity can influence the comparisons of one-dimensional models with
experimental data [18]. For example, accelerational pressure drop is strongly
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influenced by the existence of transverse profiles of void fraction and velocity.
One-dimensional model of a two-phase flow treating the water-steam mixture as
a nonequilibrium homogeneous system is the simplest model taking into account
thermodynamic nonequilibrium between phases [47], accurately describes flashing
flows in nozzles [104-107] and gives a possibility of the modelling of capillary
phenomena. According to the classification given by Mikielewicz [103] it is
thermomechanical model since it takes advantage of balance equation for mass,
momentum and energy of the mixture. Such models are used when thermal effects
are coupled with mechanical ones [103].

4.2. One-dimensional balance equations

4.2.1. Mass balance of the mixture

The principle of mass conservation tells that temporal change (substantial
derivative) of mass in a fluid volume is equal zero [33]. It allows to formulate
a differential form of the balance equation of mass of the two-phase mixture:

-Z—[:+wVp+pV-w=0, “.1

from which one can obtain a conservative form:

0
5(p)+V-(pw)= 0. (4.2)

This is the local formulation of the conservative property of matter.
A one-dimensional equation of mass balance we obtain after integration and
averaging of Equation (4.2) according to the procedure presented by Bilicki [108].
As a result we obtain:
A@+£(pr):0 (4.3)
ot 0Oz
Dependent variables appearing in this equation are quantities averaged over the
cross-sectional of the channel. Performing differentiation and dividing by 4 we
obtain the final form of one-dimensional balance equation for mass of the mixture:
1%} 0 ow w dA
P oy PR 44)
ot oz oz A dz

4.2.2. Momentum balance of the mixture

From the principle of momentum conservation it is known that temporal change
of momentum in an arbitrary fluid volume is equal to the sum of body forces acting
on this volume, and surface forces acting on the fluid surface [33]. On this basis one
obtains a differential form of momentum balance of the two-phase mixture:
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ot

which, on the basis of the equation of mass balance (4.2), can be transformed to
a conservative form:

p(—a—‘i+wVw)=pb+V~T, (4.5)

%(pw)+V-(pw®w)—V~T=pb. 4.6)

One dimensional equation of momentum balance is obtained after integration and
averaging of Equation (4.6):

Ava—(pw)+ L] (pr2)+A i(p+ pr+ p“)+Cr =—-Apgeosy. (4.7)
ot oz 0z

In this equation the body force was expressed by the product of density p and
gravitational acceleration g, p* denotes capillary pressure, p* — viscous pressure,
while x — inclination angle of the channel. Shear stresses arising due to viscosity and
capillarity forces are replaced by friction force T on the channel wall.

So far our analysis was resolved to geometrical simplifications, that is to the
reduction of the three-dimensional equation of momentum balance (4.6) to the one-
dimensional Equation (4.7). In one-dimensional models normal shear stresses
expressed by the gradient of velocity are usually neglected. Neglecting also the
capillary shear stresses included in the friction force, Equation (4.7) can be written as:

d 19 .\ op op*
—pw)t+t——Apw H+—+—=—pgcosy— T . 4.8
at(p ) Aaz( p ) 3 3z P ECOSY—Tpp (4.8)
Taking into account equation of mass balance (4.3) we obtain the final form of
one-dimensional momentum balance:

LI LN I . 45)
ot oz 0z oz " '

4.2.3. Energy balance of the mixture

The principle of energy conservation says that temporal change of total energy
in a fluid volume is equal to the sum of the power of body forces, surface forces and
the flux of energy supplied to the volume. From this the differential form of the
equation of energy balance follows:

ot

from which, having taken into account the equation of mass balance (4.2), the
following conservative form follows:

2 2
pi[u+%_]+pwv[u+w7J=pb-w+V-(Tw)—V-q, (4.10)
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2

2
E?t [pu+pv2v )+V-[pwu+pww7]—v-(Tw)+V-q=pb-w. (4.11)

One-dimensional equation of total energy balance is obtained after intégration and
averaging of Equation (4.11):

) pw’ 0 w?
— 1A —_
at[p u-+ > J+ az[ pw[u+ 3 JJ+

+ 2 (awlp+ p* + p) - (Ag)=~Apgweosy.
z 0z

Neglecting, as in momentum balance, the viscous normal pressure p* and according
to the model assumption the heat flux g, we obtain from Equation (4.12) the
following relation:

2 2
Ai pu+pl +2 Apw u+w— +2(Aw(p+p"))=—Apgwcosx. 4.13)
ot 2 oz oz

2

Taking into consideration the identically satisfied equations of mass balance (4.3)
and momentum balance (4.8) we obtain a one-dimensional equation of internal
energy conservation:

AP%E+APW%-+(p+p )887

Replacing internal energy by enthalpy we finally obtain equation of energy balance
in the form of one-dimensional equation of enthalpy balance:

ah oh dp Jp op* op*
e s £ Y e — . 4.15
Po % e Y o e il

(Aw)= At,w. (4.14)

4.2.4. Mass balance of the vapour phase

The mass of vapour phase in a unit volume can be expressed as a product px.
Balancing this quantity in a control volume ¥ and taking into account internal sources
one obtains after transformations a differential equation of balance of the vapour
mass:

%(px)+V-(pxw)=Fmp. (4.16)

Performing the procedure of averaging we obtain a one-dimensional equation of
balance of the vapour phase:

A (px) (Apxw) AT, , (4.17)
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from which we can eliminate the identically satisfied equation of mass balance (4.3)
and dividing by p we obtain:

r
+wg-zx—= . (4.18)

)

x
ot

4.3. Constitutive equations

4.3.1. The equation of state

As it is known form the classical thermodynamics of equilibrium processes
(called by Truesdell thermostatics) the equation of state constitutes a functional
relationship between one dependent variable and » independent variables in a state
of thermodynamic equilibrium [109]. In a case of the fundamental equation of state
for internal energy u we have the relation:

u= u(s, v), 4.19)

in which s and v denote equilibrium specific entropy and specific volume of
a system, respectively. These two quantities completely determine the
thermodynamic state of the system and the knowledge of explicit form of the
function of internal energy (4.19) allows to determine uniquely all thermodynamic
parameters of the system [110].

Observation shows that systems with internal structure, as a water-steam
mixture, possess an additional parameter (internal variable) entering the equation of
state. For the water-steam mixture considered in this work, the dryness fraction x is
such a parameter. However, there arises a question how to determine the properties
of the two-phase system being in thermodynamic nonequilibrium?

An answer to this question can be found in internal variables theory, in which
the so-called frozen equilibrium state corresponding to a given nonequilibrium state is
defined [45]. The corresponding equilibrium state is reached from the nonequilibrium
state in adiabatic way at constant specific volume v and constant dryness fraction x
preserving the same flow velocity w. It follows from this that internal energies of
both states are equal to each other. On the basis of the rule of local state [110] we
know that intensive properties and entropy in a nonequilibrium state are the same as
in the accompanying equilibrium state. Since in equilibrium the fundamental equation
of state exists, then it must be also satisfied in the nonequilibrium state. Thus, for our
nonequilibrium water-steam system we have [111]:

u= u(s, v, x), (4.20)

where all the quantities appearing in this equation are nonequilibrium properties.
Physically this means that in a nonequilibrium state an equation of state exists, that is
the same relationship between thermodynamic parameters like in equilibrium.
Having in mind that our considerations concern a nonuniform system and we
postulate the inclusion of the dryness fraction gradients in the Helmholtz potential,
the fundamental Equation (4.20) should be rather written in the following way:



Gradient Theory for the Description of Interfacial Phenomena in Flashing Water Flows 245
u= u(s,v, X, Vx). 4.21)

From the balance equations of our model it follows that a thermodynamic
closure in the form of thermal equation of state for the density p of the two-phase
mixture is required. As it is known, the density consists of densities of water, steam
and interfacial surfaces. Therefore, the density of the two-phase system can be
expressed by the relation:

1
—=v=xv,, +(1 ——x—y)v,,.q + v,
P
in which y stands for the mass fraction of interfacial areas.

According to the model assumption on thermodynamic equilibrium of the vapour

phase, we can write the thermal equation of state for the vapour in the form:

(4.22)

nt >

Veap = Viap (P): (4.23)
while for the superheated liquid we have the relation:
Viig = Viig (p ’ h/iq ) ) (4.24)

where the existence of an equation of state for liquid in the metastable state was
assumed. As it is seen from relation (4.24), to calculate specific volume of the liquid
we must know its pressure and enthalpy. The pressure, as a component of the state
vector, is known from the balance equations, while the enthalpy of water can be
calculated from the caloric equation of state of the two-phase system:

h = Xh\'ap + (1 -X= y)hliq + yhinl K (425)
The caloric equation of state of the vapour in equilibrium takes the form:

hva/) = hva]) (p) (426)
In two-phase flow theory, the mass of interfacial regions is assumed to be negligible

[35]. In this connection we can write:
y=0, (4.27)

and calculate the enthalpy of water on the basis of equation (4.25):

_h=xh,,(p)

lig —

e (4.28)

Finally, the thermal equation of state of the nonequilibrium two-phase system
assumes the following form:

1
0" xv,,(p)+ (1= x,, (P,h/,-q (p. h,x))- (4.29)

It should be noticed that the capillary effects are not taken into consideration while
calculating the thermodynamic properties of the system. The enthalpy of interfacial
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surfaces, which, according to the theory presented in Chapter 3, should be described
by the gradients of the dryness fraction, is neglected. Also the mass of interfaces is
neglected due to their microscopic size. Values of the thermodynamic functions of water
and steam in saturation and metastable region are calculated on the basis of steam tables
worked out in the form of numerical procedures by Kardas and Bilicki [112].

4.3.2. Volumetric source of vapour mass

The process of nonequilibrium vapour generation, being an irreversible
thermodynamic process, can be described by making use of the general rules of
nonequilibrium thermodynamics. The thermodynamics of nonequilibrium processes
considers irreversible phenomena taking place in homogeneous systems and describes
them by phenomenological equations relating generalised fluxes with generalised
thermodynamic forces [41]. Among such a class of phenomena the process of
relaxation of an order parameter describing the thermodynamic state of a system can
be numbered. The order parameter, entering the fundamental equation of state, must
be a measurable quantity but cannot be controlled and take part in external work of
the system. For evaporation, the nonequilibrium dryness fraction is such a parameter
since it meets all the requirements laid down to order parameters [42].

The balance equation of vapour mass (4.18) is at the same time an evolution
equation for the nonequilibrium dryness fraction x. The dryness fraction plays here a
role of an order parameter (internal variable) and due to the occurrence of the
source term on the right-hand side of Equation (4.18) it is a non-conserved order
parameter. Description of the evolution of this parameter requires an additional
constitutive equation which gives an explicit form of the source I, Some
instructions on the construction of such terms are provided by the internal variables
theory [113]. In this method, the kinetics of the evolution of an order parameter is
dependent on the thermodynamic components of the state vector and on generalised
forces. Internal variables satisfy first order differential equations with respect to
time, which can be written in the form [42]:

r= f(T,v,x,VT,Vv,Vx,...). (4.30)

In various physical situations the general relationship (4.30) assumes the form of
linear equation:

x=f(T,v,x)A. (4.31)
In accordance with the presented theory the evolution equation for the
nonequilibrium dryness fraction takes the form:

& L

o p

) (4.32)
where p is density of a two-phase mixture, and I', | — volumetric rate of vapour
generation. Linear phenomenological equation for the rate of vapour generation is
given as [41]:
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A
E‘a =_1_5
g T

where 4 denotes thermodynamic affinity, and / is a phenomenological coefficient.
Hence Equation (4.32) assumes the form:

(4.33)

ax /4
& ol (4.34)
In the above equation the thermodynamic affinity A4 is this generalised force
which drives the vapour generation. Physically, vapour production is a result of
interfacial mass exchange controlled by the difference in chemical potentials of both
phases. For this reason, the generalised thermodynamic force is equal to the
difference in chemical potentials, and under definition (3.56) also to the derivative of
the Helmholtz free energy over the dryness fraction. Since in the present work the
nonlocal definition of the free energy is proposed, which is expressed with the help
of the dryness fraction and its gradients, thus, consequently, one proposes
a generalisation of the definition of the thermodynamic affinity:

)
Az[—fJ ) (4.35)
6X Twv '
where & /8x is Volterra variational derivative [16]:
g=i—v- i ! (4.36)
ox Ox oVx

Taking into account relation (4.35) we can write the source of vapour in the form of
the Ginzburg-Landau equation [114]:

= Ly (4.37)
T &x
On the basis of formula (4.36) and from the relation for the Helmholtz free energy
derived in Section 3.3 we conclude that its derivative in the surroundings of an
equilibrium point is a function of the dryness fraction and its gradients, which can be
generally expressed as follows:

gjj=j;(x,xz,x3,...,x")—V-fz(Vx,(Vx)z,(Vx)i...,(Vx)",
x

Vix, (sz)2 , (sz)3 yeees (sz)" ,...V™x, (V"’x)2 : (V'"x)3 yeues (V’"x)" )

Here it was assumed, like in Section 3.3, that the dryness fraction and its gradient
are independent variables. Expanding the function f in the surroundings of the
equilibrium point x =X we obtain:

(4.38)
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¥ 3 2 (g
Ox Ox|,r 5x o

+ a{(x—)?y'_l+ :H (x x)('

In a state of phase equilibrium the nonequilibrium dryness fraction x attaines its
equilibrium value ¥ and the vapour generation is stopped. In this connection, the
derivative of the Helmholtz potential over x must vanish. Since in expression (4.39)
all the terms dependent on the difference x — X are equal to zero, then the free term
must also vanish. Moreover, owing to the fact that the Helmholtz potential is described
by a fourth order polynominal, all the derivatives of order higher than four are equal
to zero and due to this all the terms in which these derivatives are factors vanish.
One should also notice that all the terms appearing in expression (4.39) should depend
on the sign of the difference x - X, since for x — ¥ <0 we have nonequilibrium
evaporation and the amount of vapour must increase I' vap> 0 while for x — x>0
nonequilibrium condensation occurs and the amount of vapour decreases r,< 0.
Owing to this, in formula (4.39) only terms containing even powers of the difference
x — X can occur. Taking into account the above considerations of physical nature we
can simplify formula (4.39) to the following form:

o s (

ox  ox°
Expanding similarly the function j; one obtains the relation:

5

fi=

(4.39)

(x x). (4.40)

e

of le o x—=Vx)] +
a(Vx)Z] (Vx—Vx)+ 5(VX)BV.T(V Vi) +...

(Vx—V)_cy'+a@f s (V2x-v% )+

e \ &
2xv.T G(VZ

fo=

GVx

6"“f £

+—
a(vxyﬂ v,T

if.._e 2. U2y _ﬂ 2 _v2%)"

+5(V2x)3 V’T(V x-V x)2 +os it a(vzx)m V‘T(V X x) Fcin s (4.41)
2 v 2L v

+ V'x-V Vix-V7x] +...
oAvsfl.; a(V”’ L.

an+l f

3 (Vrx—vrz)',

v T
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which, after performing the considerations given above, can be reduced to the
following form:

o o f
oVx G(Vx)z

(Vx-Vz). (4.42)

Inserting expressions (4.40) and (4.42) into formula (4.38) we find:

¥ _al g (x—)’

)
5x  ox o

Inserting the above relation to the Ginzburg-Landau Equation (4.37) and taking into

account the assumption of one-dimensional flow, we obtain the searched formula for

the volumetric vapour generation:

=__£f@ )+ £ (e-z) - 1, L0 xq, (4.44)

where the following substitutions were done:

(V-Vx—V-Vf). (4.43)

o*f|’
fl=—% , (4.45)
6x2 v,T
il
iA = . (4.46)
o f [
fa= (4.47)
G(Vx)2 wF

On the basis of formula (4.44) the change of the dryness fraction x can be
expressed by the following equation [115]:

oy =_x—f_(x-7f)3+,<52(x"f), (4.48)
p B 'Y 622
where:
BzP_Z_;, (4.49)
I
T
y=£ (4.50)
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1
pT
Equation (4.48) describes the source of mass of the vapour phase with the help of
two relaxation terms with two relaxation times 3 and v, as well as the gradient term
with capillarity coefficient k. Thus, we have strong (scalar) and weak (differential)
interactions. The gradient term has its physical origin in nonuniformity of the field of
the dryness fraction within the interfacial region and models an energy excess
connected with capillary interactions. This excess energy is modelled, on
macroscopic level, with the help of the derivative of the dryness fraction along the
flow, while, on microscopic level, its origin is the variation of the dryness fraction
across the interfacial region. The capillarity coefficient x controls the contribution of
the gradient energy and on this basis we can conclude that it depends on the surface
tension. From a mathematical point of view the gradient term results from the
nonlocal definition of the free energy of the two-phase system.

(4.51)

4.3.3. Shear stresses

Experiments show that for any mass flow rate in a channel of any geometry the
frictional pressure drop in a two-phase mixture is larger than that in a single-phase
flow of the same mass flow rate [18]. It results from an increase of the flow
resistance due to the generation of vapour bubbles on the channel walls.

In friction model we assume that shear stresses in a two-phase flow are a linear
function of stresses which would occur in a liquid flow with the same mass flow
rate. This assumption can be written as follows [116]:

Trp = ¢Tliq > (4.52)

where a two-phase multiplier ¢ is a local drag coefficient of two-phase flow related
with the increase of the flow resistance due to the appearance of vapour bubbles,
T, denotes shear stresses in tow-phase flow, while g stands for wall shear
stresses in the liquid flow. It is classically assumed that the value of these stresses is
proportional to the kinetic energy of the system and can be calculated from the
following formula:

_1cC "
Ty = Ezfp,,-qw,,-q ) (4.53)

in which C denotes channel perimeter, f — the friction factor dependent on the
Reynolds number, B = liquid density, and W = liquid velocity. Equation (4.53)
defines the so-called volumetric friction force, and the multiplier C/4 is a result of
averaging of three-dimensional momentum equation. Taking advantage of the
assumption of equal mass flow rates of liquid and liquid-vapour mixture we can write:

pW: pliqvv/iq ’ (454)

from which we obtain a formula for liquid velocity:
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Wiy = w_p (4.55)

liq
Inserting the above relation into formula (4.53) we obtain a formula for the friction
force in single-phase flow:

1C .p°wh
_ fp

lig 2 A pliq ( )

The friction factor f'is calculated on the basis of the Blasius [117] formula derived
for smooth pipes:

f=00791Re,*>, (4.57)

lig

where Re,, is the liquid Reynolds number. The two-phase flow multiplier ¢ is
a function of the flow structure and depends on the dryness fraction, density and
viscosity of the system. Its value can be calculated using the Beattie [11] theory
according to the following formulae:

bubbly flow o0 < 0.3:

T (Gspor2n)ew Y
o= Lt 21 ||| 1] 2P ) Prig_y | (4.58)
vap (nvap_nliq) p vap

bubbly-slug flow 0.3 < < 0.8:

08 55 0.2
o=|14x| 2oy || |1ax| 2208y ]|, (4.59)
pvap pvap

slug-droplet flow 0.8 < ot < 0.95:

0.8 0.2
o=|14x| 2y || |14 Dol g |l (4.60)
pvap nliqpvap

droplet flow a0 = 0.95:

- 0.8 1.8
¢= nvap [pﬂ] 1+x p&-l . (461)
L Piq P ap
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4.3.4. Capillary pressure

According to relation (3.24) normal capillary pressures can be defined as

follows:
2

3. 0%x 3. ox 0’x Ox ;
k—_11 E —+1 E _ o, — L, ——IL|—1|. 4.62
pu 2j=1 aZj 4 621. i 3 823 S[a J ( )

=1 Z;

From the above relation it can be seen that the capillary pressures are described by
the terms with the dryness fraction gradients. Their contribution is controlled
by capillarity coefficients which, as it was shown in Section 3.2, are closely related
to the surface tension of a flat interface.

In order to describe capillary phenomena in one-dimensional approach, some
simplifications are proposed. First of all, in such an approach the capillary pressure
can be expressed by the derivatives of the dryness fraction in flow direction only.
Since in one-dimensional approach the anisotropy of normal stresses is lost, thus, as
it is done with pressure in isotropic systems, we propose to replace the spherical
tensor of capillary pressures by the following isotropic tensor;

] . 1 , . )
p=pI= —3—(p.éx +ph+ph I, (4.63)

and to express the capillary pressure by squared derivative of the dryness fraction

along flow direction:
3
I (@] _ (4.64)
0z

Such a physical simplification allows to describe capillary effects with the use of
a single phenomenological coefficient of capillarity £ which controls the contribution
of the surface tension forces to the stress tensor and possesses clear physical sense.

4.4. Free parameters of the model

The presented mathematical model of flashing flow has four free parameters.
These are phenomenological coefficients of proportionality which model the
properties of heterogeneous two-phase system on macroscopic level and originate
from phenomena taking place on microscopic level.

Three free parameters appear in the expression for the volumetric source of
vapour mass (4.48). These are the linear relaxation time {3, the non-linear relaxation
time y and the energetic capillarity coefficient k. The linear relaxation time 8
according to definition (4.49): '

p=2"
- b
lf!
is a function of density, temperature, kinetic coefficient / describing dissipative
effects of relaxation and a constant f} dependent on the coefficients appearing in
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the expansion of the Helmholtz free energy of a uniform system in a Taylor series.
This constant can be calculated from relation (4.45) after taking into consideration
the expression for the free energy of a uniform system (3.49):

e

fl=121"x7

" L. (4.65)
Thus, theoretical calculation of the relaxation time [ requires the knowledge of three
constants: /, ll" and l;’ , which are difficult to determine. The constant /! determines
the contribution of the leading quadratic term in the expression for the Helmholtz
potential. It can assume only positive values, since otherwise the parent phase would
be unstable [114]. Such a situation takes place in the critical point where fluids
change their state of aggregation under the influence of infinitesimal perturbations.
Thus, while approaching the critical point the value of Z should decrease to zero
and above this point it should be negative. In the theory of phase transitions it is
assumed that the coefficient /2 strongly depends on temperature [118], while the
coefficient /! — weakly. Thus, it is seen that the relaxation time B given by relation
(4.49) strongly depends on temperature. For practical calculations the usage of the
following empirical formula is proposed [16]:

T -1,
B=—c0 [4, (4.66)
I.-T,
which gives good results in calculations of two-phase water-steam flows.
The non-linear relaxation time 7, according to definition (4.50), can be
expressed as follows:

_pr
Y=

where the coefficient £ is calculated from the formula:
fl =241 4.67)

Similarly to this coefficient is a function of density, temperature, the coefficient and
the constant /% This constant is usually assumed to depend on temperature weakly
[118]. Since also the temperature itself varies slightly in the considered flows, we
will assume that the non-linear relaxation time is constant and its value will be
determined in parametric analysis.

The third free parameter in the constitutive equation for the source of vapour
is the energetic coefficient of capillarity x. It was defined by formula (4.51) as:

l 1
vy
pT
from which it can be seen that it also depends on density, temperature, the relaxation

coefficient and the constant f},. This constant, according to definition (4.47) and the
expression for the Helmholtz free energy, is defined in the following way:
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=2, (4.68)

from which it is evident that it depends on the coefficient /¥ controlling the
contribution of the gradient energy. Since we do not have any phenomenological
theory allowing us to determine both /* and /, we propose to determine the value of
the whole coefficient k by fitting numerical results to experimental profiles.

The last free parameter of our model is the mechanical coefficient of capillarity
k. It appears in the momentum balance equation and controls the contribution of
reversible capillary stresses in the stress tensor. According to relation (4.63) the
capillary pressure can be written as follows:

p= %(pfx +ph o+ ph), (4.69)

from which, after taking into account formulae (4.62) and (4.64) as well as the
assumption on one-dimensional flow, we have:

2
L+te |03
37 Joz° 1
k= +Hy+3ls. (4.70)

@z
oz

As in the case of previous coefficients, we have to determine the value of the
coefficient & in terms of four unknown parameters /,,..., [, when lacking an
appropriate theory for their determination. Also in this case the only solution is to

determine the global value of & by comparisons with experiment.

4.5. List of the model equations

The proposed mathematical model of flashing flow is a homogeneous model,
which takes into consideration the thermodynamic nonequilibrium between phases as
well as the capillary effects resulting from a nonuniformity of the two-phase system.
The capillary effects were taken into account above all in the equation describing
nonequilibrium vapour generation, since despite the possibility of neglecting the
thermodynamic properties of interfacial areas, one should take into consideration
their influence on the course of phase transition [119]. Reversible capillary stresses
were included in the stress tensor and the terms representing this kind of stresses
occur in the balance equations for momentum and cnergy. Taking advantage of the
generally accepted simplifying assumptions [35] we neglected mass, momentum and
kinetic energy of interfaces. Those assumptions have physical justification in
a negligible small mass of the interfacial areas.

The mathematical model consists of the following balance equations:

e mass of the mixture

%, ,0p, ow__pwdd 4.71)

B & Te  Ad
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* momentum of the mixture
ow ow op op*
——+ PW—+ — + —— = —pgCOSY. — T7p ; (4.72)
P T T B Bk

* energy of the mixture

oh, oh_dp_ op ot ot

—_— o —_— = , (473)
P e Ve et e
* mass of vapour
r
& + w@ = 4.74)
ot oz p

and of constitutive equations providing relations for the following quantities:

* density of the two-phase mixture
1
B =XV, )+(1 —x)v,iq (p, hy, (p,h, x)); (4.75)

» specific enthalpy of water
h—xh
_ x vap(p)_ (4.’76)

lig — 1—x >
* source of vapour mass

I —x -X (x-Xx
wp _ X x_(x x)3+K6 (x-x)

: @4.77)
p B Y oz’
 friction force
1C,,p*w
Trp = Ez(bf £ (4.78)
lig
* capillary pressure
2
p= —k[?j . (4.79)
74

The state vector comprises the following fluid-flow and thermodynamic
parameters:

(4.80)

% T =
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5. Wave properties of the model

5.1. Wave phenomena in two-phase flows

In flows with large gradients of pressure and density, the essential role in the
formation of the fields of these parameters is played by fluid compressibility [85].
The influence of compressibility manifests itself in the strongest way in gas flows
with high velocities where we deal with wave phenomena. After exceeding the
speed of sound, the processes occurring in the flow have qualitatively different
character than in subsonic flows. Rapid jumps of the flow parameters (shock
waves) can take place, zones of limited propagation of small disturbances (sound
waves) occur, in divergent channels velocity increase is observed. All the above
listed phenomena are well known and described in gasdynamics which deals with
compressible flows with high velocities.

Similar effects of wave nature are observed in two-phase flows, where besides
two phases - compressible vapour and incompressible liquid — material interfaces
additionally occur. Within the interfaces, the processes of mass, momentum and
energy exchange take place which essentially influence the wave properties of the
two-phase mixture. Inertia of those interfacial transport processes is the reason for
dispersion of the system which means that small disturbations being carriers of any
information in such a system propagate with a velocity dependent on frequency of
these disturbations. The velocity of propagation of small disturbances is additionally
a function of the rate of these transport processes and the content of individual
phases in the mixture.

Two-phase mixtures very easily attain transonic flow velocities [27, 120]. The
generation within an incompressible liquid of a small amount of vapour causes the
creation of a compressible two-phase mixture of lower density. In such a vapour-
liquid two-phase system the velocity of propagation of small disturbances is very low
as compared to that in pure liquid where the changes of pressure with density are
very large. After exceeding the critical velocity by a fluid choking of the flow takes
place and, as a consequence, a physical limitation of mass flux flowing through the
canal for given stagnation conditions. Blockage of a channel with all its
consequences can easily occur in a flow of a compressible two-phase medium, like
the water-steam mixture. As it turns out [121], in the flow of water and its vapour
the phenomenon can already occur at low dryness fractions x < 0.01. It results from
the fact that the mixture of such a composition, despite a negligible mass content of
the vapour, is characterised by large compressibility which owes up to a few
hundred times greater specific volume of the compressible vapour phase as
compared to the incompressible liquid. Studies on two-phase water-steam flows
show [122] that the critical velocity in such systems is a few orders of magnitude
lower than that in pure water or steam and depends on the volumetric content of
individual phases. Taking into consideration the fact that the process of evaporation
dx > 0 in a flow is usually accompanied by an increase of velocity brought about by
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density decrease, as well as substantial lowering of the critical velocity, it is easily
seen that choking conditions and shock waves can occur relatively early. Those
undesirable wave phenomena are the reason for large losses of energy in the flow
and often lead to dangerous breakdowns of industrial devices.

The connected with flow choking value of the critical mass flux of a two-phase
system depends on several factors and the phenomenon of choking is far more
complicated as compared to a single-phase flow, since rapid expansion of the fluid
can bring about mechanical and thermal nonequilibrium [17]. Apart from inlet
(stationary flows) or stagnation (unsteady flows) conditions, the value of the critical
mass flux is influenced by such parameters like channel geometry, its length and
diameter, liquid purity and frictional losses.

A completely new phenomenon of wave nature, not observed in single-phase
flows, is pseudocriticality of the flow. It was discovered by Bouré [123], and its
interpretation based on the theory of linear waves was given by Downar-Zapolski
[49]. A flow is pseudocritical when large changes of backpressure cause not large
and sometimes experimentally undetectable change of inlet conditions. In such
a way, the increase of pressure drop in the channel does not bring about any
increase of the mass flow rate, despite the fact that we are still in the regime of
subcritical flow [124]. The phenomenon of pseudocriticality results from a strong
damping of the wave forerunner, which is very long and precedes its front of high
amplitude. Since the wave front propagates with the equilibrium velocity, at
sufficiently large velocities of the flow, it is inaccessible for a part of the channel,
while moving with the frozen velocity forerunner is so strongly damped that the
energy of the wave moving upstream is very small. It results in an imperceptible
variation of the mass flow rate, sometimes smaller than the applied measurement
technique despite the existing subcritical conditions.

5.2. Analysis of small disturbations

5.2.1. Dispersion relation

In the analysis of wave properties of a model an important role is played by the
method of small disturbations. It consists in superimposing on an a priori solution ¢ °
of the model equations a small disturbation in the form [125]:

c=0+d0, (5.1

where 8 ¢ is a very small quantity smaller than unity. As a result of the analysis we
obtain a dispersion equation which tells us whether the model is dispersive, at what
velocity small disturbations propagate as well as if they are damped. The answer of
the system of equations to such a disturbation determines stability of the model.
When an infinitesimal disturbation is damped then the model is stable and correctly
describes the considerable physical phenomenon. Otherwise, when the disturbation
is amplified and during propagation its amplitude increases, then the model is
unstable and results in non-physical solutions of really stable processes.
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In order to perform the analysis of small disturbations the system of equations of
the model presented in the previous chapter must be written in the symbolic form:

do do 9’ d(dcY 9(dcY

Alc)—+B(c)—=Clo,z)+Dlc)—+E(6)—| — | +F=—| — |, (52

o) 5 +Blolg, =Clo.zk+Dlo)3 (°)az(az ) at(az ) 2
where the state vector ¢ (primitive variables) comprises:

w

c (5.3)

_|?
Bl
x

The nonsymmetrical matrices of coefficients A and B in Equation (5.2) take the
following form:

0 v,

A= ! (5.4)

0 -v '

0 0

-V owy, wy, wy

w % 0 0

B=
0 -w w 0| (3:3)

The source vector C has the form:

[vw dA ]
A dz
—V—CT—gc'osx
A
_x—J?_()c—)?)3
. B Y

while the source matrix D is given as:
0 0
0 0
0 0 0
0 - KX,

D= (5.7)

o
RO O O

— Kxh
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where: v=—, v av; v _av‘ v _av X oO°x and x 0%
PYEEE W, Sl w KT s BpTRaT s =33 > =
p " op,, oh . ox,, ~ op? on* |
The remaining two matrices in Equation (5.2) are defined as follows:
000 O
0 0 0 —kv
E= (5.8)
0 0 0 wkv
0 00 O
00 0 O
000 O
F= (5.9)
0 0 0 kv
0 00 O

The method of small disturbations can be solely used to linear terms of the
matrix Equation (5.2) [126]. Therefore, the last two terms of this equation will be
neglected in further analysis. Proceeding according to the procedure of Ramshaw
and Trapp [127] we obtain the following relation from Equation (5.2) [128]:

0z (5.10)

= C(c°+ o, z)+ D(c’+ SG)M

A(c°+ 66)—8(0084;50)+ B(c°+ 66)—8(00+ 60)—

Expanding the matrices A, B and D as well as the vector C in a Taylor series about
the unperturbed solution 6 ° and limiting ourselves to linear terms of the expansion,
from Equation (5.10) we obtain:

A . 1(3s° 980 3B _ 1(3:° 356
A )+ — —_—t— Bls® o =
[ b )33 6"}[ o o J“L[ 6"+ 5o GM 3z oz j
(5.11)

:C(oo,z)+ a—coﬁo +[D(00)+ aDO So:l [azoo + 9°8 ]
do do

d9z>  97?

Performing operations and taking into consideration the identically satisfied
unperturbed Equation (5.2) as well as neglecting small terms of order O(8%) we
finally obtain:

0 0
0\856+ oA 5080 +B(c°\880 oB 50_86 _

73t d¢6° ot 7 3z +80° 0z
0C 08 oD 2%¢’
P 80+D(c°) P +80°56 et

A(c
(5.12)
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This equation describes small disturbations about an unperturbed solution with
local values 6° 06°/0¢, 00°/0z, 0?0 °%/dz%, which are treated here as fixed.
Assuming further that the disturbation acting on the medium is harmonic, we assume
it in the standard form:

80 =80, explilkz —or)), (5.13)

which is a function of the wave number k and the frequency of disturbations .
Inserting the harmonic disturbation (5.13) into Equation (5.12), after simplification
we obtain:

o oe°
dc® ot

500—k2D(o°)800+

B 30"

I B —
T300 9z 0%

—iwA(c°)8c50+ 860+ikB(0°)500

D 926" (519

g 0z*

ac
dc’

This equation can be next transformed into the form:

day.

|:—— iA(6°)+ikB(c® )+ k*D(c° )—% +G(6°,3,0°,0,0°,3%c° )}800 =0. (5.15)
c

where we substituted:

dA 35’ 0B d¢° oD 9%c’
0 TS0 T30 2

dc’ ot do Jdz do Iz

This relation is a homogeneous linear equation with respect to 8 6 °. It possesses

nontrivial solutions only when the main determinant is equal to zero, that is when
[129]:

G= (5.16)

det[— imA(cO )+ ikB(cO )+ kzD(cs0 )—% +G(0°,a, 00,82 c",af ¢’ )jl =0. (5.17)
c

The above formula is the dispersion equation determining a relation between the
wave number k and the frequency . As it is seen from the above equation, the
phase velocity determined by the relation-cph(u))=(o/ k (w) is a function of the
frequency, which means that the model is dispersive. The dispersion of our model
results from the fact that the algebraic source vector C is a function of the state
vector ¢ as well as from the inclusion of differential sources expressed by the
matrix D. One can indicate one more source of dispersion in the model — it is matrix
E, which results from the fact that the model is described by means of the system of
almost-linear partial differential equations in which the matrices of coefficients
A =A(c), B=B(c) and D =D(c) depend on the state vector. That is why in the

dispersion relation (5.17) the terms (BA /9¢c° )/(8 ¢/ at), (BB /dc° )/(a c’/ at),

and (aD /9o’ )/ (82 c’/ azz) appear, which are a manifestation of nonlinearity of the

model. Let us emphasize that the capillary properties enter through the equations of
state both to the matrices A and B, and to the vector C, as well as through the
constitutive equation to the matrix D.
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5.2.2. Disturbation velocity and attenuation coefficient

The dispersion relation (5.17) can be solved only after some simplifications
[125]. Assuming a weak variation of the matrices A, B and D with the state vector
as well as assuming that local unsteadiness 0c°/0¢t and gradients 0o °/0z,
0%c%/02* of the state vector are small, we can neglect the non-linear terms and
assume E = 0. Assuming moreover a small variation of the cross-sectional area of
the channel dA4/dz = O(d), neglecting body forces and assuming w = 0O(8), we
reduce the vector C to a function depending only on thermodynamic nonequilibrium
and obtain:

0 0 0 0
0 0 0
oC 0
F_O 0 0 0 . (5.18)
7o [1,30=EP ) (1,303 ) 1 3G-%)
G  L CE 2 L

The regard to the assumptions in solving the dispersion Equation (5.17) leads to the
following algebraic equation:

(if, )k + (o f, +i(f, + 02 £, )i + (0 £, +i0’f,)=0, (5.19)

where:

L 3(x-x)
-

fa=v,Kk+wW K+ KX, +V KX, ,

fs =v,+w,,

B Y

This is a biquadratic equation with respect to the wave number k. It possesses four
complex solutions k,, k,, k, and k,, where the real parts of the roots k and &, as
well as &, and £, have the same absolute values and differ only in sign, while the
1magmary parts are equal to each other. It results from the properties of the
biquadratic equation which is invariant at transformation k — —k. The wave number
k being the number of waves falling on a unit length depends, as it results from
Equation (5.19), on the frequency ® and on the values of parameters of the

f6=(—vv_\,)?h—vp-vv -v.X ){ 3(x x) ],
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thermodynamic state of the system which are taken into account in the coefficients
f, .- f,- Since k is a complex number, then we can write it in the form of a sum of
real and imaginary part:

k =Relk)+ilm(k). (5.20)

The real part of the wave number £ is a ratio of the frequency ® and the phase
velocity Con [130]:

Re(k)=c£, (5.21)

ph

while the imaginary part is interpreted as an attenuation coefficient [130]:

Im(k)=". (5.22)
Hence we have:
(6] .
k=—+im. (5.23)
Cph

The existence of four solutions which, as far as the absolute value of the real
parts is concerned, constitute two different solutions means that the model possesses
four velocities of propagation of small disturbations. Two of them have the same
absolute value and differ only in sign, thus a disturbation propagates with the same
velocity in two opposite directions. The same can be said about the remaining pair of
velocities at which disturbations propagate upstream and downstream. Thus, in one
direction small disturbations of any physical quantity can propagate at two different
velocities. From the point of view of attaining the critical conditions, which is
equivalent to the complete blockage for any kind of information generated
downstream, the most important is the largest velocity. The fact that a flow exceeds
the lower velocity of propagation of disturbations does not mean complete choking
since those disturbations will always be able to move with a higher velocity and only
after exceeding this velocity choking of the channel will occur.

Attenuation of a given velocity is the same in both directions since the imaginary
parts of the solutions are equal to each other. As far as the value of attenuation at
different velocities is concerned, it is different and, as it will be shown, higher for
larger velocities and frequencies.

5.2.3. Numerical analysis of the dispersion equation

Numerical analysis was begun with calculations for the relaxation model in
which the process of relaxation is described by means of two algebraic terms with
constant relaxation times 3 and y. Figure 5.1 presents the phase velocities for this
model as a function of frequency of disturbations as well as the variation of this
velocity with the nonlinear relaxation time y is additionally shown. As it can be seen
from the figure the velocity of disturbations increases along with the increase of
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Figure 5.1. Phase velocity c,as a function of frequency ( at different values of the coefficient of
nonlinear relaxation y : 1 —y = 3.35e~5, 2~y =3.35¢—6,3 -y =3.35¢-7;, p=1.5 bara =0.2
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Figure 5.2. Attenuation coefficient Im(k) as a function of frequency ( at different values of the coefficient
of nonlinear relaxation y: 1 —y =3.35¢-5,2 -y =3.35e-6,3 -y =3.35¢-7, p=1.5 bara =0.2

their frequency, and in the limit @ — oo attains the frozen velocity ¢,. A lower limit
of the phase velocity at @ — 0 is the so-called equilibrium velocity. The finite value
of c,, shows that the model is hyperbolic and possesses the properties of real
two-phase flows in which the fluctuations of the state parameters propagate with a
given velocity. This velocity depends on the rate of phase change which is
characterised by the relaxation time. When the phenomenon proceeds very fast, i.e.
is characterised by a low relaxation time, then the phase velocity in the whole range
of frequencies is approximated by the equilibrium velocity which characterises the
system in thermodynamic equilibrium and is independent of the frequency of
disturbations. In such a system, the attainment of equilibrium takes place faster than
the disturbations are generated and in this connection the next impulses propagate in
equilibrium medium. Their velocity depends only on the values of parameters
characterising the thermodynamic state of the system.
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Figure 5.3. Phase velocity c,,as a function of frequency w at different values of the coefficient
of capillarity x: 1 —x =0.08,2-x=083-k=8.0,y =3.35-6; p=15bar, a =0.2
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Figure 5.4. Attenuation coefficient Im(k) as a function of frequency w at different values of the coeffi-
cient of capillarity k: 1 —x =0.08,2-k=0.83-k=80,y =3.35-6, p=15bar, a =0.2

A graph of attenuation for the relaxation model is shown in Figure 5.2. It is
clearly seen that signals of higher frequencies are damped stronger, that is the time
of their action in the flow is shorter as compared to that for shorter waves. For all
the times of nonlinear relaxation the coefficient of attenuation tends to zero in the
limit of low frequencies at which equilibrium is reached in the two-phase mixture. At
high frequencies of the generated signal its damping in the two-phase system is in
practise constant and in infinity aims at a limited value. In faster processes, that is
with shorter characteristic times, damping of the signal is, as it is seen, larger. For
infinitely fast phenomena in which a new equilibrium state is attained immediately,
also the disturbations are so strongly damped that they “die” at once.

The proposed model in which the energy of interfacial surfaces is described by
the term with the second derivative of the nonequilibrium dryness fraction x has two
velocities of propagation of small disturbations. The lower one is in the order of
2 m/s and is practically constant in the whole range of frequencies (Figure 5.3).
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Figure 5.5. Phase velocity c,,as a function of frequency w at different values of the coefficient
of capillarity k: 1 —x =0.08,2-x=083-xk=80y =335-6,p=15bar, a =0.2

It does not exhibit significant variations with the variation of the capillarity
coefficient k which is responsible for the contribution of interfaces. Attenuation
corresponding to this velocity is also constant in a wide range of frequencies, but
exhibits a stronger dependence on the coefficient of capillarity (Figure 5.4).

However, from the point of view of attaining the critical conditions the most
important is the highest velocity at which disturbations can propagate in a given
model. Taking into consideration the second derivative causes that the quadratic
form of the system of balance equations is undetermined and the system becomes
parabolic which means that the velocity of propagation of small disturbations can be
infinitely large. It is shown in Figure 5.5, when a relationship between the phase
velocity and the frequency is drawn. The relation c,,(®) was calculated for different
values of the coefficient of capillarity k. It is clearly seen, especially for larger «,
that the higher the frequency of disturbations, the faster they propagate, tending to
infinity. It is a characteristic feature of parabolic models. The change of the
coefficient of capillarity acts so that its increase increases also the phase velocity. It
is also worth noting that in comparison with the relaxation model, the order of
magnitude of the velocity for the investigated range of frequency substantially rose.
At v =3.35¢-6, in the model without interfaces for w = le+5s™ this velocity
is equal to 30 m/s, while in the model with interfaces its value reaches 9000 m/s. It is
of course a non-physical value, not recorded in experiments. The reason for this
may be the exceeding of the range of frequency for which a continuous model of
two-phase flow can be used. The wavelength corresponding to frequency le+5 is
far smaller than the characteristic size of dispersed phase for which the diameter of
a bubble D= 0(m™) is of such a size. Therefore, the generation of disturbances
of wavelengths shorter than a limiting value makes no sense as well as investigation
of a model out of the range of its application.

An additional explanation of physical impossibility of effective propagation of
disturbances with so large velocities is its stronger and stronger damping. A graph of
the coefficient of attenuation as a function of frequency is shown in Figure 5.6, from
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Figure 5.6. Attenuation coefficient Im(k) as a function of frequency @ at different values of the coeffi-
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which it is seen that in the range of very large frequencies the larger the frequency
of disturbations, the stronger they are damped. At infinitely short waves their
damping is infinitely large, which means that such signals will be immediately
“extinguished” and the range of their influence will be physically insensible. Also the
tendency of variation with the change of the coefficient of capillarity is correct,
since in the model without interfaces the attenuation was stronger than in the model
with interfaces, and as it is seen from Figure 5.6 the larger their contribution, the
weaker the attenuation and the slower variation with frequency. In the range of very
low frequencies the velocity of disturbations is in the order of a dozen to a few
dozen m/s and such values are recorded in real flows. Such disturbations are
damped in the model with a constant strength.

5.3. Critical two-phase flows

5.3.1. Critical velocity and flow choking

The definition of critical velocity and connected with it choking of a flow is clear
and precisely formulated for a single-phase compressible medium. In a one-dimensional
flow of gas without heat transfer with the surroundings, one can neglect interactions
with the surroundings and treat the adiabatic flow as isentropic without internal
dissipative processes. The critical velocity in such a flow is the isentropic speed of
sound (velocity of propagation of small disturbations) defined as follows [43]:

Pp

c=l=1.
6ps

(5.24)

The critical velocity is always attained in a critical cross section which is the
smallest section of the channel (geometrical throat) in case of a nozzle, or the outlet
section in case of a pipe. The critical mass flow rate is calculated on the basis of
fluid-flow and thermodynamic parameters attained in the critical section [43]:

m,=A.p,W, . (5.25)
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For the considered isentropic flow of gas, the values of critical parameters are
functions of stagnation parameters (stagnation pressure, stagnation density) and the
thermodynamic properties of the system (specific heats ratio). In this connection the
maximal possible flow rate is completely determined by the stagnation parameters,
the equation of state and the minimal section.

Such approach to the problem and automatic transfer of definitions to the case
of one-component two-phase flows can be misleading [124]. It results not only from
a larger complication of the processes taking place in two-phase flows, caused by
the existence of interfaces, nonequilibria of the phenomena and two-dimensional
effects, but also from completely new phenomena not occurring in single-phase
compressible media, as pseudocriticality or dispersed shock waves. Also the
smallest cross-section of the channel usually associated with a place of extremum of
physical parameters loses its importance [124]. Therefore, the condition of the flow
criticality cannot be a priori postulated but should result from physical observations
of the flow and the assumed theoretical model.

As it was shown by Bilicki and Kestin [131], the critical conditions are the same
both for stationary and nonstationary form of balance equations. A conclusion
follows that the phenomenon of choking can be studied, without a loss of generality,
for steady-state flows.

One can distinguish three physical definitions of stationary choked flow [132]:

+ flow is choked when it reaches the maximal mass flux in given stagnation
conditions. An increase of the mass flow rate can only be realised by
a change of stagnation conditions;

» choked flow is characterised by the fact that inlet conditions as well as
those in a converging part are independent of outlet conditions while keeping
stagnation conditions unchanged;

» choked flow reaches the speed of sound. This speed is reached inside the
channel in case of nozzles, and at the outlet of the channel in case of pipes.

In nonstationary conditions, choking of a flow means that information gencrated
downstream cannot propagate upstream beyond the section in which the critical
flow occurs. Only the second definition directly characterises critical two-phase
flow [17]. The remaining two definitions require some caution while using in two-
phase flows. In reality, the speed of sound refers to a single phase and is different
for water and steam. Moreover, any disturbation brings about a change of structure
of the flow which can influence the critical conditions. The physical criterion of
choking expressing the lack of influence of outlet on inlet parameters,
mathematically means breaking of a continuous dependence between inlet and outlet
boundary conditions [128]. This is the case when determinant of the system of
ordinary differential equations describing the flow:

b do, =c, (5.26)

v dz '
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is equal to zero [37]:
A=detb,.j =0, (5.27)

where b is an element of the system matrix, ¢, — is an element of the column vector
of right- “hand sides, while o, - is a component of the state vector.

A necessary condition for the occurrence of critical flow requires the existence
of a singular point in critical section [134]. For this reason it is impossible to find an
exact value of the critical mass flux by forward numerical integration since it
requires crossing the singular point. Nevertheless, it is possible to approach the value
of the critical flow rate by means of maximal possible G, and minimal impossible
Gimp mass flux [135]. It is recognised that any mass flux smaller than critical
corresponds to possible flow and numerical integration can be performed in the
whole length of the channel L. However, a mass flux larger than critical corresponds
to impossible flow since the critical flux is a maximal value in given inlet conditions
and numerical integration cannot be carried out beyond the critical section. Thus, we
have the following condition:

Gpos < Gc < Gimp, (528)
and in a limiting case:

G, ~G =G, (5.29)

imp *

In practice, one can control the difference between Gp and G, , and approach the
critical mass flux with a given accuracy. This is the essence of P1F method which is
widely recommended for the determination of critical mass flow rates in
nonequilibrium two-phase flows [124, 135].

3.3.2. Numerical calculations of critical mass velocity

The mathematical model of flashing flow described in Chapter 4 was tested in
critical flows [136]. The results of numerical calculations obtained by means of the
presented model were compared with the results of experimental measurements
carried out in real critical flows of water and steam. As a point of reference we
assumed two benchmark experiments: Moby Dick [27] and BNL [19]. The
experimental studies were carried out at low and medium pressures (1+10 bar) and
medium temperatures (100 +150°C), at low values of the dryness fraction x < 0.02.
The investigated medium was water of high purity, which during a vertical upward
flow through a measuring section was decompressed and evaporated. The
conditions of measurements and the geometries used are collected in Table 1. The
reason for such a choice of experiments were the largest discrepancies between
theoretical models and experimental data at low pressures and dryness fractions
[18]. As Bouré [18] claims, the above discrepancies are caused by a crucial
influence of nonequilibrium phenomena and the conditions of the generation of
a new phase on the occurrence of critical flow. A critical section occurs the earlier,
the smaller superheating in flashing inception and the smaller nonequilibrium during
the phase change.
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The aim of the numerical calculations was to determine by means of the PIF
method critical mass velocities of the water-steam mixture and to compare the
results of the calculations with the results of experimental studies. Boundary
conditions at the inlet of the channel — pressure, temperature, void fraction — were
assumed on the basis of the experimental data, while the velocity of the flow was
selected in the PIF procedure in such a way as to attain conditions similar to critical
at some section of the channel. Consequently, for each experimental run the value of
critical mass flux was selected with a given accuracy. As a critical mass flux one
assumed the arithmetic average of maximal possible and minimal impossible mass
flux determined in the P/F procedure. The accuracy of the calculations can be
determined from relation [135]:

Cpos =Gy _ Cpor = Gy (5.30)

2G G s TGy

c

Accuracy >

Table 1. Experimental data used for calculations

Experiment Geometry 2, [bar] 7, [°C] | G, [kg/m’s]
Reocreux 1.5+2.1 116+126 | 4150+10300
Jones 1+10 100+150 1100+7900

The results of the calculations of critical mass velocity for 48 runs of the
experiment of Reocreux [27] and 13 runs of that of Jones [19] are presented in
Figures 5.7 and 5.8. Figure 5.7 presents numerically determined critical mass flux
G, as a function of the experimentally measured critical flux G , for the conditions
of the Moby Dick [27] and BNL [19] experiments, while Flgure 5 8 shows the error
of the theoretical model in determination of critical mass fluxes as a function of the
calculated critical flux. As presented in the following figures, the mathematical
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model shows a reasonably good agreement with the measurement data. In case of
the Reocreux [27] studies, the maximal error in the calculations of critical mass
velocity does not exceed even 10%. For the Jones [19] investigations it ranges from
10 to 20%, except for a single run No. 56 in which the discrepancy 32% was
recorded. A tendency of better agreement for increasing mass flux is worth noting.
One can assume that in the limit of G = 3000 +10000 kg/m?s error of the model will
not exceed 10% with a general tendency to overpredicting the mass flux. The
average error of the predicted critical mass velocity for all the runs amounts to 5%
which in nonequilibrium water-steam flows is a good result [137].
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6. Flashing flow in channels

6.1. Parametric analysis of the model

The mathematical model of flashing flow presented in Chapter 4 includes free
parameters which are phenomenological coefficients modelling the properties of
a heterogeneous two-phase system on macroscopic level. Since we do not have any
theories enabling us to calculate them on the basis of known microscale physical
quantities, we propose to determine their values by fitting to experiment.

In order to preliminary verify the proposed model some numerical calculations
were performed. The set of ordinary differential equations describing steady-state
flow, together with closure equations and boundary conditions, constitutes a unique
differential problem. The calculations were performed using the shoot method since
the problem was formulated as a two-boundary problem in which boundary
conditions were imposed at the inlet and the outlet of the channel. In the calculations
we used the Runge-Kutta scheme of fourth order with automatic selection of
integration step. At the inlet we imposed pressure, temperature and void fraction,
while at the outlet — pressure. Al these quantities were taken from experimental
measurements of real water-steam flows. The numerically obtained distributions of

physical parameters were next compared with experimental profiles. For the
comparisons we used the measurement data of the most reliable experiment on
two-phase critical flows know as the Moby Dick [27].

As a basic criterion of assessment of the model the mass flow rate of the two-
phase mixture for a given pressure drop in the channel was assumed. The value of
the mass flow rate, being an integral characteristic of a model, is very important
from an engineering point of view [103] and determines the usefulness of the model
for the predictions of critical mass flow rates in choking.

In order to determine the unknown values of the coefficients in the Ginzburd-

Landau equation a parametric analysis of the model was carried out. Based on the
experimental data inlet conditions were imposed and the outlet velocity was selected
so as to achieve agreement between the imposed outlet pressure and the values
recorded in the experiment. Such calculations were carried out at constant values of
the coefficients of linear and non-linear relaxation and the energetic coefficient of
capillarity. The coefficient of linear relaxation B was assumed according to relation
(4.66) proposed in Chapter 4 and during the calculations it was found that this
formula gives good results. After finding this we finally decided to assume relation
(4.66) for further calculations. The constant § as a coefficient of proportionality in
the algebraic linear term (x—x)/f, has the greatest influence on the increase of the
nonequilibrium dryness fraction and crucially influences the process of vapour
generation. A reflection of this process is a distribution of the void fraction — the
shape of the curve a(z) expresses the character of the evolution equation.

Therefore, assuming the established value of the linear relaxation time 3 we are
standing in front of the problem of determination of the remaining two coefficients in
Equation (4.48). Since we do not have any theory enabling their calculation, we
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Figure 6.2. Influence of variation of coefficient of non-linear relaxation y on void fraction distribution
in channel for run No. 400 of the Moby Dick experiments, k = const

propose to assume them as constants and to select their values so as to achieve as
good agreement with experiment as possible. The value of the relaxation time y was
selected in run No. 400 of the experiment of Reocreux [27] and assumed equal to
3.35-10%s. A hypothetical impact of a variation of this coefficient on the calculated
pressure and void fraction profiles in the channel is shown in Figures 6.1+6.2. These
calculations were carried out for a fixed value of the energetic coefficient of
capillarity x as well as for a fixed mass flow rate. As it is seen the mathematical



Gradient Theory for the Description of Interfacial Phenomena in Flashing Water Flows 273

1.8

: 1

16 | J :' ; 3

r i | [ z

E ‘I J i

L R B v R : =
‘o E 5 ‘ ™ J {
S 14 5 | | N B }
2 s L ]
8 : RUN 400 N !
o 13 - N ~ ]
[: B experiment : AN | ?

i | ~ - =

1.2 ——|—— model, k=09 m¥%s |———+ t Sl

£ ! \ ~ a

£ - - - = 2 | | .

i1 model, k= 0.8 m</s i ‘\ — 1

q === s e LS RS

L — — model, k=0.79 m¥s | ] i

10 ¢ —— - NS | i d
0.0 0.1 0.2 0.3 0.4 0.5

Location [m]

Figure 6.3. Influence of variation of capillarity coefficient k on pressure distribution in channel for
run No. 400 of the Moby Dick experiments, y = const

1 porr—r T T3
= ~ | —
0.9 E‘** RUN 400 4
08— @ experiment
0.7 E’* —— model, k=0.9m%s
= ¢ |- = - model,k=08ms
g 06
2 b — model k=079 m%s
R e i
RN 7 S S
s
0.3 |- -
" |
0.2 F-— -
5 )
R
o Eras e \
0.0 0.1 0.2 0.3 0.4 0.5

Location [m]

Figure 6.4. Influence of variation of capillarity coefficient k on void fraction distribution in channel for
run No. 400 of the Moby Dick experiments, y= const

model is fairly sensitive to the variation of this time constant — not large changes of
its value, of the order of several percents, result in visible differences in the profiles
of pressure and void fraction. Deviations from the experimental profiles are
particularly distinct in the divergent part of the nozzle. For a certain value of y
different about 30% from that giving the best agreement, the distribution of pressure
in the divergent section of the channel has even qualitatively different character. In
this case also the value of void fraction substantially differs from the experimental
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value. In general, the increase in the value of the coefficient of non-linear relaxation
y causes vapour overproduction and results in too low values of pressure as
compared with the experiment. Such a tendency can be explained by the fact that
lower relaxation time brings flashing closer to equilibrium. A smaller time constant
causes larger contribution of the cubic relaxation term and following more intensive
increase of the nonequilibrium dryness fraction. In the case of y resulting in the
correct value of the outlet pressure a tendency to underpredict the calculated
pressure as compared with the measured value can be noticed.

A similar parametric analysis was performed for a variation of the coefficient of
capillarity k. The results of the calculations are presented in Figures 6.3+6.4. The
curves corresponding to k = 0.8 m%s are the profiles which fit the measurement
points best. The pressure and void fraction distributions upstream from the throat are
closest to the experimental profiles. In spite of the fact that as walking away from
the throat of the channel the conformity of the pressure profiles is getting worse, at
the exit of the nozzle the value equal to the measured one was obtained. As far as
the amount of generated vapour is concerned, the onset and the end of flashing are
the places of best conformity. The increase of k by about 10% of the optimal value
results in qualitatively different pressure distributions in the divergent section, the
outlet pressure is larger than that recorded in the experiment, and the vapour
generation is underpredicted starting from some point. But, the variations of k
decreasing its value even more substantially influence the pressure profiles, and at
a change by 10% the flow in the channel is impossible since a turning point occurs in
the model.

Such a parametric analysis was also performed for the mechanical coefficient of
capillarity &, and as a result of the analysis its value was selected for k= 10° N. The
results of the calculations carried out with the inclusion of the gradient term in the
momentum equation are presented in the next section.

6.2. Numerical calculations of flashing flows in channels

The values established in the previous section of the free parameters are
a closure of the mathematical model. Their values were determined by fitting
numerical results to run No. 400 of the Moby Dick [27] experiments, known as the
most reliable and benchmark experiment of nonequilibrium two-phase flows. One
can presume that the selected here values of the free parameters will also be valid
in the case of two- or three-dimensional models. It results from a character of three-
dimensional equations describing the model that have the same number of free
parameters as the simplified quasi-one-dimensional equations.

After fitting the values of the coefficients numerical calculations for other runs
of the experiment were performed. In order to verify the model more completely we
selected for numerical calculations runs of different pressures, temperatures and
mass flow rates. Hypothetical profiles of basic physical parameters characterising
the flow are shown in Figures 6.5+6.9. Both the pressure and void fraction profiles
agree well with the experimental points. The zone of evaporation is accompanied by
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exp
a characteristic increased pressure drop as compared with a single-phase flow
caused by a momentum change due to the decrease of density of the fluid. A
characteristic feature is the pressure underprediction despite the equality of the inlet
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exp
a) velocity and density, b) enthalpy, ¢) dryness fraction, d) temperature

and outlet pressures to the experimental values. A similar trend is observed for run
No. 459 performed for higher pressures, temperatures and mass velocities than in
run No. 422. Discrepancy of the calculated mass flux is here of the order of several
percents. From the distributions of temperature and dryness fraction the quantity of
thermodynamic nonequilibrium prevailing in the fluid can be concluded. In a single-
phase flow of metastable water the thermodynamic nonequilibrium increases as a
result of pressure drop causing an increase of the equilibrium dryness fraction and
decrease of the saturation temperature at simultancously constant temperature of
the water and constant real dryness fraction. When the two-phase flow occurs an
interesting physical situation arises — the quantity of nonequilibrium at first increases,
despite the evaporation which should lead the system towards equilibrium. But it
does not proceed so since the state of equilibrium in the flow varies from point to
point so intensively that the values of the equilibrium parameters evolve faster than
the real quantitics. In the vicinity of the throat of the channel the largest deviations
from equilibrium are observed and afterwards the system relaxes towards
equilibrium.

Similar calculations were carried out for the BNL [19] experiments. In this case
the experimental measurements were performed in a convergent-divergent nozzle at
substantially higher pressures (p >3 bars) and temperatures (7> 140°C). The
calculations were carried out for run No. 82 in which the pressure in the divergent
section decreases, as well as for run No. 288 which is characterised by a pressure
increase in the diverging section. In both cases not only qualitative but also
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Figure 6.9. Experimental and theoretical void fraction distribution along channel for run No. 459

of the Moby Dick experiments, T,, = 125.15°C, p,, = 2.279 bar, G
= 10347 kg/m’s

Gcal

exp

= 10181.8 kg/m’s,

quantitative agreement with the experiments was achieved, which is seen from
Figures 6.10+6.13. The agreement was achieved with the coefficients selected in
another experiment carried out in different conditions and for different channel

geometry. Also the obtained mass fluxes correspond well to the measured values.
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Figure 6.10. Experimental and theoretical pressure distribution along channel for run No. 82
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Fig 6.11. Experimental and theoretical void fraction distribution along channel for run No. 82
of the BNL experiments, T, = 142.3°C, p,, = 3.758 bar, G,,, = 2360 kg/m’s, G, = 2084 kg/m’s

Verification of the model was also performed in conditions radically different
from the considered above. Experimental data were taken from the Russian
experiments of Karasev et al. [138] which were carried out in a microscale nozzle
at pressures in the order of a few dozen of bars and temperatures about 300°C.
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Figure 6.13. Experimental and theoretical void fraction distribution along channel for run No. 288
of the BNL experiments, T,, = 149.1°C, p,, = 5.3 bar, G,,, = 3580 kg/m’s, G, = 4010 kg/m’s

The results of numerical calculations are shown in Figures 6.14+6.15. The
comparison of the numerical results with the experimental data was done only for
pressure since measurements of void fraction were not performed. As it is seen, the
pressure reveals a reasonably good agreement with the experimental measurements.
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Figure 6.14. Experimental and theoretical pressure distribution along channel for the Karasev
experiments, T, =299°C, p =85 bar
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Despite its increase in the diverging section, an increase of void fraction is observed,
which shows that evaporation takes place in this region of increasing pressure.

The performed calculations for different geometries of channels and at different
physical conditions reveal not only satisfactory agreement of the model with the
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experiments but also the experimentally observed phenomenon of pressure decrease
in a divergent channel in subcritical conditions. This is a characteristic feature of
pseudo-critical two-phase flows which differentiates them from single-phase flows.

In the summary of the numerical calculations one can say the present model can
be used for the predictions of pressure drops and the calculations of mass flow rates
in the whole range of the dryness fraction 0 <x < 1. These quantities are integral
characteristics of a model and are very important in engineering calculations. One
can calculate both two-phase flows in the whole channel and flows of water with
evaporation started inside the modelled channel. At the inlet of a canal one can
assume subcooled, saturated or superheated water as well as a mixture of saturated
steam and subcooled, saturated or superheated water. In terms of the presented
model one can obtain distributions of basic thermodynamic and fluid-flow
parameters, like pressure, velocity, temperature of water and steam, void fraction,
dryness fraction, density, mass and volumetric flow rate, enthalpy, internal energy,
kinetic energy of a mixture, water and steam. Also additional, specific for the model
characteristics, like friction force, capillary stresses, intensity of vapour generation,
etc. are available.

7. Summary

The aim of the present paper was to describe phenomena taking place on
interfacial surfaces during nonequilibrium flashing water flow. An attempt was made
to build a mathematical model describing two-phase flows within the framework of
homogeneous approach and taking into account heterogeneous structure of the
system.

The above purposes were accomplished by formulating a theory of
heterogencous phase transitions of first order enabling us to describe capillary
effects explicitly. The main aspects of the proposed theory concern constitutive
equations for a stress tensor and free energy of the two-phase water-steam
medium. On the basis of the second gradient theory and the theory of internal
parameters, a relation for reversible stresses in a system with internal microstructure
was derived. In this relation, a stress tensor of homogeneous system and a capillary
stress tensor describing stresses induced by internal nonuniformity of the system
were distinguished. Capillary stresses have their origin in the gradients of the
dryness fraction within interfacial areas and on phenomenological level were
modelled just with the help of these gradients. That is why the constitutive relation
for the stress tensor of two-phase system includes gradient terms which are
a representation of the capillary stresses.

The same theories were used to derive a formula for the free energy of the two-
phase fluid. As in the case of the stress tensor, in this formula a part representing
the free energy of homogeneous system was distinguished from an additional
contribution coming from interfacial surfaces. The energy of interfaces was
expressed by the gradients of the dryness fraction modelling nonlocal molecular
interactions and the energy connected with them.
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The main aspect of the work is the formulation on the basis of the proposed
theory of a nonequilibrium mathematical model describing two-phase water-vapour
flows. One-dimensional balance equations for mass, momentum and energy of the
mixture and balance equation for the mass of vapour were derived. The momentum
and energy equations include gradient terms modelling the capillary stresses, which
were obtained on the basis of the proposed form of the stress tensor. From the
postulated form of the free energy, a constitutive equation for the volumetric source
of vapour was derived. This is a relaxation equation and is an extension of the
classical relaxation equation successfully describing nonequilibrium vapour
generation. This new, in the field of two-phase flows, equation includes two
relaxation terms and a gradient one which is responsible for the contribution of
interfacial energy.

The performed analysis of wave properties of the model revealed that it is
dispersive with respect to small disturbations. This means that small exponential
disturbations propagate with a velocity dependent on their frequency. It turned out
that the velocity of disturbations increases along with the frequency to infinity, at
a simultaneous increase of the coefficient of attenuation. Physically this means that
information in such a system can propagate with very large velocities, but owing to
their strong damping the spatial range of propagation is significantly limited. Thus,
the model is dispersive and dissipative. A consequence of this is a limited mass flux
in channel flows, which was confirmed by the numerical calculations of critical mass
flux of the two-phase medium. A series of calculations performed for the conditions
of critical flow revealed a good quantitative agreement of the theoretical model and
the experimental measurements which suggest the practical usefulness of the model.

Apart from a theoretical significance consisting in showing a way of modelling
of capillary phenomena within the framework of homogeneous approach, the
present work is also of practical importance. The presented here one-dimensional
model of flashing flow, besides calculations of critical flows, can also be used in the
determination of pressure and void fraction profiles in channels. Its usefulness in
such an analysis was confirmed by the calculations carried out for the Moby Dick
and BNL experiments. The comparison of the results of numerical calculations to the
measurement data revealed not only qualitative but also quantitative agreement
between them. Pressure drop in a channel, mass flow rate of liquid and vapour,
maximal flow rate of a two-phase mixture are important, from an engineering point
of view, integral characteristics of two-phase flows, which depend on various local
parameters describing the flow. That is why the conformity of these characteristics
with reality is a strong confirmation of physical correctness of the model and its
mathematical representation.

A way of determination of the coefficients appearing in the constitutive
equations for the stresses and free energy of the two-phase system was not
proposed. We limited ourselves only to an estimation of the values of the constants
appearing in the one-dimensional equations by fitting calculations into experiments.
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A further step in the development of the presented model could be theoretical
determination of the unknown phenomenological coefficients with the aid of
molecular theories.

The presented considerations on the state of stresses concern only reversible
stresses, not connected with motion of luid. It is generally recognised that the
existence of interfaces introduces anisotropy of physical properties, and the motion
of the interfaces causes dissipation of momentum and energy, which should also be
taken into account in a model of the system with internal dissipative microstructure.
Some analogies can be also suspected in the behaviour of thermal properties of such
systems. Hence, it is seen that the presented model can be developed in various
directions, and the present work is only the first and the simplest step in the
description of capillary effects with the help of homogeneous model, well checked
and for many years developed in the field of two-phase flows.
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