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Abstract: The paper presents comparison of the pseudospectral method with low-order approximation 
for two test cases. The first test case is quasi one-dimensional supersonic flow through converging- 
diverging nozzle for which exact solution exists. Comparison of the error of pseudospectral 
approximation and upwind finite-differences using Steger-Warming flux splitting method shows high 
accuracy of the pseudospectral method even for few collocation points. The same conclusion is formulated 
for the second test case, namely incompressible flow in two-dimensional driven cavity solved by control 
volume formulation with modified QUICK upwinding scheme and 31MPLEC algorithm for pressure 
correction. As usually conclusions concerning accuracy of numerical methods are flow case dependent, 
but the two examples shown give some idea about the accuracy and resolution of spectral approximation 
versus standard CFD schemes.

Keywords: computational fluid dynamics, spectral methods, pseudospectral method, supersonic flows, 
driven cavity

1. Introduction
Spectral methods based on polynomial approximation of unknown function 

compared with classical, low-crder approaches like finite elements, finite differences 
or control volume formulation are much more precise both in computational 
precision, as well as spatial resolution. For problems in which a smooth solution 
exists it is possible to obtain a very high accuracy with relatively few terms in 
spectral approximation.
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In flow problems with periodic boundary conditions in seme or all direction the 
most often used is the Galerkin method based on the Fourier senes representation of 
unknown function in spectral space. In the cases of flow with other types of 
boundary conditions hi^h accuracy is very difficult to obtain and sometimes is not at 
all possible to achieve using Galerkin approach. This is for example the reason of 
arising instabilities connected to the oscillations near the boundaries (Gibbs 
phenomena). Because of various boundary condition types in the field of fluid 
dynamics the most often used are the pseudospectral methods. In contrast to the 
spectral methods for which soluf on is presented in terms of polynomial coefficients 
the solution in pseudospectral formulation is sought directly in nodal values of the 
unknown function.

The paper presents a comparison of pseudospectral method based on 
Chebyshev polynomials with low-order approximations in the following test cases:

• 2D incompressible flow in a driven cavity -  comparison with control volume 
formulation;

• Quasi one-dimensional flow in £ converging-diverging nozzle -  comparison 
with upwind finite difference scheme using Steger-Warming flux splitting 
method.

For the second test case an exact solution exists which is used to evaluate the 
accuracy of the different approaches studied within this paper.

2. Pseudospectral approximaticn based on Chebyshev polynomials
The properties of the Chebyshev polynomials used widely in spectral and 

pseudospectral approximation are described in details a monographs of Fox and 
Parker [3] and Rivlin [6], Hereafter, only the most important features allowing to 
approximate first- and second-order derivatives will be referred. The derivatives will 
be expressed only in the physical space without any transformation between 
physical and spectral space. For the sake of simplicity of the reasoning presented 
below, the pseudospectral approximation will be presented in one dimension but 
expansion to 2D and 3D situatidS is obvious.

Every dependent variable characterising the flow field can be expanded in a 
series of Chebyshev polynomials:

• N -  number of terms in the series.
In a vector notation the approximation of the function F(x) in all selected 

collocation points can be written collectively as:

N

( 1 )

v/here:
• T.(x) = cos(i • arccos(x)) -  Chebyshev polynomial;

• F. -  coefficient of the series;

T F  = F. (2)



Using the Chebyshev-Gauss-Labatto [1] collocation points defined as:
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xk = cos (3)

the first and second derivatives of a function F(x) in vector notation can be written as:

—  = G(1)-F, G(1) = T-G(1)-T~‘,
dx
d2¥

(4)

dx2
= G(2)-F, g (2) = t -g w -t _1,(2) np-1 (5)

where the coefficients of matrices G(1), G(2), T '1 are given by the following relations:

where:

G g ,= 0  for j > m  or j = m  even,

(j^m =2 -m/ck otherwise,

ck = 2 for y' = 0 ,  

ck = 1 for j  > 0 ;

g (2) = g (i)-g (i);

(6)

(7)

where:

t ~\ 2 1 1 / \
Tj,k = — ---------- T { xk)

N  c ^
( 8)

Cj =ck -  2 for j , k  = 0 or N,

Cj =ck = 1 for 0 < j ,  k < N.

There are of course other possibilities [1] to calculate derivatives by using the 
Fast Fourier Transform between spectral and physical space but for the calculations 
performed with a relatively small number of the collocation points (N< 32) the 
method presented above is satisfactory.

3. Solution of quasi one-dimensional compressible invisdd flow

3.1 Pseudospectral approximation o f  ID Euler’s equations
As the first test case, we consider a quasi one-dimensional compressible 

inv;reid flow through the converging-diverging nozzle of a given shape 5(x). The 
governing continuity, momentum and energy equations for this problem [4] in 
conservative form can be written as follows:
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where:

a u  dQ
dt dx

H
9

p p-u
u = p-u Q = p-u2 + p

p-u-E p-u -(E + p  / p)

with equation of statf.

H  =

- p - u - S / S '  
- p  -u2-S / S '

- ( p -u-E+u-  p ) - S  /  S'

p  = ( y - \ ) - p - ( E - u 2/ 2 ) ,

and given shape S(x) of the nozzle:

(9)

( 10)

( 11)

( 12)

, 01/ . dS(x)
S(x) = 0.1+ 0.5-(0.1 + 0 .5 -x)2 , = (13)

The analytical solution to this problem as well as relations between Mach 
number and pressure, temperature, etc. can be found in many sources and will not 
be given here.

Applying the rule (presented in the preceding section) of the approximation of 
the first derivative to each of the equations (9) leads to the following semi-discrete 
form:

^ ±  + G (1)-Q t. = H * , £ = 1 ,2 ,3 , (14)
dt

where for instance for k= 1 vectors dU J d t ,  Q ( and H, represent values in the 
selected collocations points of vectors (10) and (11) corresponding to their first 
elements as follows

P|,„ (p-“ )L0 ( - p - u - S / S %,x0

5U, _  d 
dt dt

p L,
, Qi =

(P-m)L,

, H ,=

( - p - u - S /S ') |Vi

pL (p-w) L ( - p - M- S /S ') |r

(15)

3.2 Results o f  computations
In order to compare the spatial accuracy of the Chebyshev collocation 

pseudospectral method, equations (9) were additionally solved by one of the 
standard methods used for this type of flow problems, namely upwind difference
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Figure 1. Distribution o f  the Mach number along the nozzle

scheme in connection with the Steger-Warming flux splitting method [7]. In both 
cases discretization in time was performed using second order predictor-corrector 
method, where first-order Adams-Bashforth scheme was used as a predictor and 
the second-order Adams-Multon algorithm as a corrector. Figure 1 presents the 
distribution of the Mach number along the nozzle for supersonic case, where the 
inlet Mach number was Ma - 4.0, whereas two remaining inlet boundary values 
were obtained from the thermodynamic relations with imposed reference 
(stagnation) values p -  0.5 MPa and T -  500 K.

The results presented were obtained for 16 collocation points in the case of 
pseudospectral method and for 32 nodes for upwind difference scheme. The 
collocation points applied in pseudospectral method are not uniformly spaced and the 
results shown in Figure 1 were obtained by interpolation. It is clearly seen from 
Figure 1 that the first-order upwind difference scheme is completely unsatisfactory 
(as was expected), whereas accuracy of the second-order upwind difference 
scheme is significantly better but in comparison to the results obtained using the 
pseudospectral method it is still much worse. To show the differences between 
analytical and numerical solution, we defined the following measure of the error:

£

exact _p*num

N
(16)

The error defined by (16) for different numerical methods and afferent mesh 
sizes is compared in Table 1. It should be noted that the error presented for the 
pseudospectral method is additionally biased by an error arising from the 
interpolation used to obtain dependent variables in the uniformly spaced nodes which 
correspond to equally spaced mesh points used in upwind difference calculations.
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It can be seen from the results presented in Table 1 that the pseudospcctral method 
with 16 collocation points gives an order of magnitude more accurate solution than 
the second order upwind finite difference scheme. Moreover, doubling the number 
of the collocation points gives three orders of magnitude more accurate solution, 
while in the case of low-order scheme only one order of magnitude decrease of the 
error is observed.

Table /. Difference between an exact and numerical solution

Pseudospectra/ w e to d Second-order upw ind  
difference

16 points 24 points 50 points 100 points

Mach number 2.2 e-4 4.7 e-7 4.5 e-3 1.1 e-3

Temperature 1.4 e-2 3.2 e-5 3.0 e-1 7.5 e-2

Pressure 1.4 e+0 3.0 e-3 3.0 e+1 7.9 e+0

4. Solution of 2D incompressible flow

4.1 Pseudospectral approximation o f Navier-Stokes equations
As a second test case the unsteady flow in a driven cavity was chosen, for 

which the non-dimensional form of Navier-Stokes equations are given by:

du d(u-u)  d ( u - v )
dt  d x  d y

dv d(u-v)  d(v-v)  
dt  dx  d y

d p  J _  
d x  Re

d p  1
•

d y  Re

6 a2d u d 2u
d x 2 d y 2

d v d v +
d x 1 dy~

(17)

(18)

According to the rules presented in Chapter 2 the partial derivatives appearing in 
Navier-Stokes equations can be presented as follows:

d (a ■ u)
dx j.k m=°

d (u ■ v)
= I  Gill' - ( - v ) : ,  .

jM r»=0

d 2u 
d x 2 - « L . (19)

m-0
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d 2 It

d y 2 M m=0

where Gf'J.Gf 'J , G f 2) and Gj1̂ 1 are the coefficients of matrices G ^  and 

given in the preceding section.
The Navier-Stokes equations completed by the continuity equation were solved 

by the projection method [2] that allows in an explicit way to determine the pressure 
field in a new time step by the use of the continuity equation. It should be noted that 
the Poisson equation for pressure arising in the projection method was approximated 
in the same manner as the Navier-Stokes equations.

4.2 Results o f  computations
In order to compare the pseudospectral method with a low-order scheme, like in 

the previous test case, the flow problem was solved by finite volume method using 
modified QUICK (Quadratic Upwind Interpolation for Convection Kinematics) 
scheme [5] to approximate the convection terms in the Navier-Stokes equations and 
SIMPLEC algorithm to determine pressure field.

The calculations were performed for Reynolds number defined by the velocity 
of the upper wall and the cavity depth Re = 1000. The results obtained by both 
numerical approaches were shown for control cross-sections located at x IH = 0.2, 
0.4, 0.6, 0.8. Grid-independence for the pseudospectral method was obtained for the 
mesh of26*26 collocation points in each direction. Figures 2-4 show results obtained 
by pseudospectral method and control volume formulation for the meshes 30x30, 
60*60 and 80*80. The results presented refer to steady state solution.

From the results presented it is clearly seen that the grid-independent solution is 
obtained by pseudospectral with much coarser grid than in the case of low-order 
control volume formulation. Table 2 shows the error defined with analogy to 
equation (16), where instead of the exact solution the results of the pseudospectral 
method were used.

Table 2. Error o f the u-component velocity approximation

Number offJn/te 
vo/umes

Cross-sect/on a/ / /

0.2 0.4 0.6 0.8

30*30 0.076 0.083 0.064 0.092

60*60 0.034 0.026 0.019 0.041

80*80 0.0015 0.001 0.001 0.0014
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Figure 2. Profiles o f u [m/s] component o f  velocity field in cross-section x/H = 0.2, 0.4, 0.6, 0.8 
obtained at 30*30 control volumes
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Figure 3. Profiles o f u [m/s] component o f velocity field in cross-section x/H  = 0.2, 0.4, 0.6, 0.8 
obtained at 60*60 control volumes
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Figure 4. Profiles o f u [m/s] component o f  velocity field in cross-section x/H = 0.2, 0.4, 0.6, 0.8 
obtained at 80*80 control volumes

5. Concluding remarks
The paper presents the results of numerical predictions in two relatively simple 

test cases. These flow problems were utilised to compare the efficiency and spatial 
resolution of the pseudospectral method based on Chebyshev polynomial series 
with classical methods used in CFD. In both cases studied in the paper, namely the 
one-dimensional compressible flow and two-dimensional incompressible problem of 
the driven cavity very high numerical accuracy of the pseudospectral method 
was confirmed. It should be underlined here that the computational efficiency of 
the pseudospectral method is possible because of very rapid decrease of the 
approximation error with the number of terms in spectral expansion.
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