
TASK QUARTERLY4 No 2 (2000), 171-178

AN INTRODUCTION TO HIGH PERFORMANCE
COMPUTING: TECHNOLOGY, TOOLS

AND APPLICATIONS

JANUSZ S. KOWALIK

The Boeing Company,
PO Box 3707, MS 7L-44, Seattle, Washington 98124-2207, USA

and University o f Washington,
Department o f Computer Science and Engineering,

FR-35, Seattle, Washington, Seattle 98195, USA
janusz.s.kowalik@boeing.com

(Received 18 February 2000)

Abstract: Traditionally High Performance was applied to very computationally demanding problems in
science and engineering. They were known as the Grand Challenge Problems that required
supercomputers equiped with very large computer memories and capable of high rates of computation
measured by Megaflops (Million Floating Point Operations per second). In the last two decades the
world of business and industry has recognized the enormous potential of large distributed computer
systems for their business enterprise applications. Today most of the existng high performance computers
arc employed in the enterprise environments. A typical system has three layers of servers: user interface,
applications and database. These Client/Server architectures are the working horse of the large enterprise
information processing. This introductory paper describes both areas of High Performance Computing
applications that differ in the nature of workload, performance objectives, design methodology and
scientific focus.

Keywords: supercopmputing, client/server systems, enterprise data processing systems, performance,
parallel computing, cluster computing

1. Preliminaries
High Performance Computing (HPC) is a subdiscipline of Computer Science

and Computing Technology dealing with theories, methods, tools and infrastructures
for solving computationally most demanding problems in science, engineering and
business. Traditionally HPC was applicable mainly to large-scale number crunching

mailto:janusz.s.kowalik@boeing.com

172 Janusz S. Kowalik

problems and used a variety of advanced mathematical techniques and most
powerful supercomputers. Typical applications included computational fluid
dynamics, structural mechanics, weather and climate modeling, electric power
distribution, design of nuclear weapons, and petroleum engineering, etc. In the last
two decades of the century the HPC technology started to penetrate the area of
large enterprise applications, such as: manufacturing resource planning, product data
management, and other business processes required for running large industrial and
business enterprises.

These two broad areas of HPC applications are scientifically and technologically
distinct and will be described in the following sections of the paper.

2. Scientific/Engineering applications of HPC
2.1 Supercomputers

The supercomputer technology dates back to the mid-1960s and its development
has been fueled by the computation and requirements of large scientific and
engineering problems. The rapid progress of this technology can be illustrated by
comparing the peak processing rate of CDC 6600 in 1964 which was lMflops
(million floating point operation per second) with a current supercomputer CRAY
T90 that can deliver 1.8 Gflops (billion floating print operation per second).

The early supercomputers derived their speed from vector processing which
performed well for problems rich in matrix and vector operations. Later parallel
computing has been added as a key technique for increasing computational speed.
Some parallel supercomputers had vector processors other used RISC (Reduced
Instruction Set Computers) processors. Parallel supercomputers with vector
processors have offered two levels of parellelism, (/) large grain parallel tasks
executed on different processors and (//) low level parallelism executed by
arithmetic pipeline units of vector processors.

The RISC processors have achieved their superior performance by fast clock
cycles and by executing fundamental instructions in a single CPU clock cycle. They
have become cost-effective building blocks for architecting parallel supercomputers
with dozens or hundreds of processors. There have been also other advancements in
supercomputer technology that contributed to faster processing: faster caches, larger
prime memories, and better compiler code optimization techniques.

2.2 Supercomputers fo r a poor man

Low-cost personal computers (PC) linked by fast networks to form
a coordinated cluster system can be a fast and inexpensive alternative for scientists
who have no access to multimillion dollar supercomputers. It can also be a more
convenient alternative to heavily loaded time-shared supercomputers. These
collections of PCs are called Beowulf Clusters and may include hundreds of
processors and impressive amounts of total memory. Beowulfs are programmed
using FORTRAN or C and use MPI (Message Passing Interface) paradigm [1] to
establish cluster communication and coordination.

An Introduction to High Performance Computing: Technology, Tools and Applications 173

An example of a successful Beowulf has been built at Penn State University. It
is called Cost Effective Computing Array (COCOA) and has proved to be very cost
effective. The system built to study complex fluid dynamics has 50 off-the-shelf
PCs, 13 Gbytes of RAM and 100 Gbytes of disk space. An equivalent in power and
size supercomputer would cost about $750,000.

In one application the users reported that COCOA took 127 seconds, the CRAY
T3E 177 seconds and the SGI ORIGIN 2000 took 90 seconds. This is very
impressive considering the prices of all three systems. The authors concluded that
PC clusters could be very cost-effective for solving problems such as they dealt
within aeracoustics and aerodynamics.

Technical details on COCOA are available at http://cocoa.aero.psu.edu/.

2.3 HPC software

2.3.1 Programming styles

From the programming point of view parallel computers fall into two major
classes: (/) shared memory and (/'/) message passing distributed memory. In the first
case we deal with a single address space memory which can be accessed by
different processors in the same fashion as in uniprocessor architecture. Physically
shared memory can be centralized or distributed. For example in the NUMA
(Nonuniform Memory Access) multiprocessors memories are physically distributed
but still there is an illusion of a single shared memory.

In the message passing case programs running on different processors can
access each others memories by explicit message passing mechanisms that store
and fetch data. Thus the shared memory architectures are closer conceptually to
conventional uniprocessors. One class of supercomputers using message passing
programming style is clusters. They are often referred to as loosely coupled
multiprocessors. Due to latency involved in intemodal cluster communication it is
usually required to run large-grain parallel codes for better efficiency

2.3.2 Mathematical software

Application software is an important factor influencing achievable processing
performance. This includes algorithms, data structures and programming techniques.
Usually there are more than one algorithm to solve a numerical problem. The
applicable algorithms may differ computational complexity, i.e. required number of
arithmetic/logic operations and amount of storage. It is a good practice to identify an
algorithm of least complexity applicable to a problem at hand and attempt to
implement it. But this is insufficient for achieving peak performance. We must
carefully consider implementation issues such as computer architecture and
programming techniques related to the specific implementation computer configuration.

Important implementation issues include handling data movement and
recognizing hierarchical memory structure of a particular supercomputer. A good

http://cocoa.aero.psu.edu/

174 Janus: S. Kowalik

implementation should maximize local processing with a minimum data transfer to
remote memories in supercomputers that have local and global memories. In
computers whose shared memory is divided into shared banks avoiding memory
bank conflicts contributes to better performance. In general the idea is to maximize
processing and minimize data movements to and from memory and between
different memory levels.

A very simple but convincing example of memory management can be found
in [3]. The example shows that an appropriate programming approach results in the
I/O time reduction from many days to seconds.

There is an abundance of experimental data showing that memory management
is a key factor influencing supercomputer performance. In the message passing
architectures the cost of message transfer has to be taken into account. Even in
shared memory machines such as NUMAs accessing remote data may be
prohibitively expensive and seriously impact the overall performance.

It is fortunate that at the current state of the supercomputer technology we not
only have good understanding of algorithmic efficiency and high performance
programming practices but also have access to high quality mathematical software
that performs very well across most of the commonly used types of
supercomputers. These highly optimized software 1 !braries include:

(1) LAPACK (Linear Algebra Package) for shared memory
supercomputers, and

(2) ScaLAPACK similar to LAPACK but applicable to distributed
memory machines using message passing.

The software and documentation can be retrieved from netlib
http://www.netlib.org. The ability to access and use these high quality libraries is
a significant benefit for the scientific and engineering community involved in
practical application of supercomputers. Also researchers can focus on domain
issues related to their discipline of science or technology rather than struggle with
numerical analysis and programming problems. This is not to say that enlightened
users should not study and understand mathematical and programming aspects of
the software that is used.

Quite opposite is true - a better understanding of algorithms and their
implementation could help in establishing boundaries between what is practically
computable and what is not at the current state of the art in supercomputing.

In the spirit of this principle we recommend an excellent book [3] which explains
the building blocks of numerical linear algebra and is a practical introduction to
solving linear equations and linear eigenvalue problems. The book discusses solution
approaches to large sparse linear equations that arise in many applications. It can be
used as a reference book or a textbook for self-education or in a classroom
environment. It contains a wealth of benchmark material and programming
techniques that help to design efficient software for problems in and outside linear
algebra.

http://www.netlib.org

2.4 Performance analysis

Here we present a rudimentary analysis of parallel processing performance. Let
us assume that a is the percentage of a program’s sequential running time that can
be executed in parallel by p processors. If fy denotes the processing time by
a uniprocessor and T by a parallel machine with p processors then a conventional
speedup measure is:

7| 7]
S , ~Tr ~ aTAp+(l-a)l

Eliminating T{ and multiplying by p gives:

S = ____E.........
p a + {\-a)p

This rather pessimistic results is called the Amdahl’s Law and says that speedup
is limited by the nonparallelizable portion of the code 1 -a . For example, if only half
of the code can be parallelized then the speedup will not exceed 2 no matter how
many processors we use.

The basic assumption of Amdahl’s Law is that a remains constant regardless of
the problem size. In reality large problems have higher degree of parallelism and
when we get a supercomputer with large number of processors we tend to solve
larger instances of problems.

Now let us assume that the time for parallel computation is a and for sequential
computation in 1 -a . The total time is i. The time for solving the problem on
uniprocessor is:

T1, = (1 - m) + ap.

The speedup is:
S P = O - a) + a P ’

and for a close to 1, i.e. for a highly parallelizable problem S « a p » p .
Which :s much more satisfying result derived originally by Gustafson [4],
We have only scratched a surface of the parallel computing performance.

Discussions of parallel computing in depth are contained in [5]. The author, David
Kuck, introduces concepts of performance stability, scalability and measurement.
The book is one of the most complete analytical treatments of high performance
computing.

An Introduction to High Performance Computing: Technology, Tools and Applications 175

3. Enterprise applications of HPC

3.1 The HPC Enterprise Problem

We consider two versions of the Problem, (;) Performance Tuning and
Improvement, and (ii) Enterprise Systems Design.

In the first case there exists already a distributed client/server system running
enterprise applications but it requires modification if its performance is inadequate or

176 Janusz S. Kowali..

if new workloads need to be implemented. In the second case we have only
a workload model and required performance levels, but no system exists. We
face a problem of design from scratch. Of the two cases this is more difficult. To
design by trial and error would be impractical. Solving a pseudo optimization
problem: design a cost-effective system capable of processing the given workload
subject to performance constraints can be computationally expensive considering
modeling complexities.

We should also mention that a typical workload is a combination of batch
processing and transaction processing. The number of servers may be as high as
several hundreds, and the number of users over 100,000. In addition to technical
difficulties in solving problem (/) or (z7) we may have other obstacles on our way to
a satisfactory solution:

(a) workload predictions tend to be uncertain and inaccurate,

(b) there may be lack of data which :'s needed for analytical or simulation
models,

(c) vendors of hardware and software may have no experience in architecting
complex large system,

(d) in multi-vendor environments no :ndi\idual vendor may be wilhng to assume
responsibility for integrating the enfite system.

3.2 The proposed approach

Given the high complexity of the HPC Enterprise Problem we have to use
a systematic and accurate method for solving -t. The method should be able to take
into account all major factors influencing performance. There are many of them as
shown in Figure 1.

A method of bi tiding and exercising simulation models has been successful for
architecting and tuning client/server systems at Boeing [6],

A key to successful system modeling is accurate information describing
workloads, and H/W, S/W system characteristics, Figure 2.

We have used Workbench™ and Strategizer™ as our simulaf on modeling tools.
Both are from HyPerformix.

Occasionally it is possible and beneficial to construct and use analytical models
for simplified parts of layer systems and take advantage of analytical closed
form solul on. Such analysis is recommended for preliminary studies which
now detect problem areas and point to system subcomponents deserving more
detr’led simulations.

It is unreasonable to assume that any specific modei mg tool is perfect. All have
limitations and weaknesses. A way to overcome this is by using an array of tools as
appropriate for a problem at hand.

An Introduction to High Performance Computing: Technology, Tools and Applications 177

General hardware/software fit; software awareness
of the hardware architecture and configuration

Workload characteristics,
intensity and time dependence

Applicat or software, programming style,
algorithms and data distribution

Operating systems including job schedulers and
load balancing algorithms, DBMS

System overall topology, application and database
servers, communication speeds and bandwidth

Figure 1. Factors influencing performance o f distributed enterprise systems

Figure 2. Input to and output from the enterprise performance
simulation model

3.3 What needs to be done

The problem of designing and running large distributed systems is far from being
fully understood and mastered. Many large industrial and commercial companies are
struggling to implement enterprise resource planning (ERP) and product data
management (PDM) solutions. It would be helpful to divert some research talent
and resources from the traditional scientific HPC to enterprise HPC. The rewards
for those who will master this technology and use it for improving their competitive
position would be significant.

We need research to improve methods and tools for designing and tuning large
enterprise systems. The area of modeling economies of designed IS is wide open for
innovative ideas and methods.

178 Janus: S. Kowatik

4. Conclusions
In this paper we attempt to sketch two different areas of HPC applications: the

scientific HPC and the Enterprise HPC. What they have in common are: general
notions of performance, parallel processing and often hardware that can serve both
applications. An area of problem’s definition where two applications significantly
differ is the technical problem objective. In scientific HPC we are after fast and
efficient algorithms for mathematically defined problems. In enterprise HPC we are
synthesizing a computing infrastructure that serves geographically distributed users.
We refer interested readers to [7] which desciibes an approach to enterprise
computing architecture combining simulation modeling, rule-based reasoning and
heurist ' classification.

References

[1] Gropp W., Lusk F. and Skjelllum A., Using MPI: Portable Parallel Programming
with the Message Passing Interface, The MIT Press, Sc:,’ntific and Engineering
Computation Series, 1994

[2] How to Build Beowulf The MIT Press, Scientific and Engineering Computation
Series, 1999

[3] Dongarra J., Duff I. and Van der Vorst H. A., Numerical Linear Algebra for
High-Performance Computing, SIAM Press, 1998

11] Gustafson J., Reevaluation o f Amdahl's Law, Comm. ACM, 31,531, 1988
[5] Kuck D. J., High Performance Computing, Oxford Umversny Press, 1996
[6] Aries J., Banerjee S., Brittan M., Dillon E., Kowalik J. and Lixvar J., Capacity and

Performance Analysis o f Distributed Enterprise Systems, submitted to Comm,
of ACM

[7] Nezlek G. S., Jain H. K. and Nazareth D. L., An Integrated Approach to Enterprise
Computing Architecture, Comm. ACM, 42,82,1999

