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Abstract: The heuristic proof, since based on computer simulation investigations, is presented that though 
stationary Toom cellular automata exhibit many features which are characteristic for an equilibrium system 
(e.g. rapid change in the order parameter, when noise is fine tuned, or slow decay of the two point 
correlation function), the stationary state is not a Gibbsian one. It means that it is impossible to define 
energy on the microscopic level in such a way that the dynamic system becomes representative to some 
equilibrium lattice model. Moreover, properties on the coarse-grained level: fluctuations, seem to be 
distinct from the corresponding ones of the Ising model.
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1. Introduction
The goal of this presentation is, firstly, to explain in a consistent way a piece of 

machinery used in equilibrium statistical mechanics to study phase transitions in 
lattice models, and secondly, to observe this mach-nery working in a system of 
probabilistic cellular automata with Toom rule responsible for microscopic 
interactions. The system considered by us differs from a standard one examined by 
equilibrium statistical mechanics by the following properties:

— dynamics in probabilistic cellular automata is discrete in time (cellular auto­
mata are synchronized);

— a rule implemented, i.e., Toom rule, is not reversible.

In general a stationary system governed by an irreversible rule cannot mimic an 
equilibrium thermodynamic system, because it is not known how to introduce a 
notion of energy in such a system. However, in the case of Toom cellular automata 
there is a strong belief that the Hamiltonian for this rule exists. In Section 2 we
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present arguments for this hypothesis. In Section 3 the results of computer 
simulations aimed at verifying the hypothesis are collected. The final conclusion is 
that the thermodynamic system which arises from Toom cellular automata is not an 
equilibrium one. The stationary measure does not fulfil necessary conditions to be 
a Gibbsian one. Moreover, on the macroscopic scale of fluctuations the system 
behaves differently from the expected system of the Ising type. However, the 
agreement between numerical values of critical exponents observed by us and 
values obtained in a deterministic system of a lattice of diffusively coupled chaotic 
maps [1] proves, as in the case of equilibrium systems, that there are scaling laws 
which are insensitive to macroscopic details of models mentioned and therefore they 
form a common universality class.

1.1 Phase transitions in lattice systems
When physicists talk about phase transitions they have in mind some 

discontinuity, or at least nonanalycity, of thermodynamic functions which describe 
the state of the system (say, the density for the liqnid-gas trans;’ ion) as a function of 
external parameters (temperature, pressure). The goal, and the basic difficulty, is to 
describe these effects starting from the microscopic level.

The simplest model featuring phase transitions is the Ising model. In the Ising 
model we deal with random variables <7 (called spins) labeled by sites of a d -  
dimensional lattice, i e Z d . Spins can attain only one of the two values +1 or -1.

If the system considered is in equilibrium, then the probabi.ity distribution ptyf) 
for any configuration a  -  {<7.} is given by the Boltzmann-Gibbs weights (see [2] 
and references there in):

e-m«y)
h ( a )  = — g — , ( 1)

which are determined by:

— Hamiltonian H, i. e. energy earned by a configuration. In case of Ising 
system the energy calculates as follows:

W(ff) = - / ^ C J ].ffr / ! ^ (7 j . (2)
<itj> i

The first sum is taken over pairs of nearest neighbors;
— partition function, the normalizing term Z  being a sum over all possible 

configurations of a system:

(3)
a

— ft and h the external parameters: the inverse temperature and external 
magnetic field, respectively.

However, all these formulas have the meaning denoting that we can calculate 
the energy, find the partition function (3) and finally get the probability distribution (1) 
only if we operate on finite lattices, i.e., the configurations are considered on some
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finite sets A of Z d . Of course, there is no singularity at all if we only consider finite 
sets A. To really “see phase transitions” we have to go to the infinite volume. This 
operation is called the thermodynamic limit.

The most straightforward statement about the existence of the phase transition 
is based on considering free energy function:

(4)

In case of the two-dimensional Ising model it appears that the first derivative of 
the free energy function with respect to the external magnetic field d f /d h  has 
a discontinuity when crossing the line h = 0 at T < Tc . Since it is the first derivative 
that is discontinuous we speak about the first order phase transition. At the point 
(T , 0), the first derivatives are continuous, and the singularity is revealed by higher 
derivatives — we speak about the continuous transition.

1.2 Gibbs states
A convenient mathematically rigorous way of formulating the existence of phase 

transitions is in terms of Gibbs states. Sticking to the Ising model, let us consider the 
conditional probability of a configuration aA on any finite window of a lattice A c  Z 2 
if some fixed boundary condition q  is chosen as:

The energy

U(CTA \c r A  =
Z k ( S k )

-PHa(oa®8)
e A

Ha (<?a ® o A') = H (oA) + H]a«TA),

( 5)

(6)

consists of two parts: the internal energy associated with a configuration aA-H (c j  ) 
and the energy of the interaction of crA spins with the fixed outside configuration —

Hence, by changing A — the windows size and position on the infinite lattice Z 2, 
we observe properties of the infinite configurations. We say that we study a thermo­
dynamic system through “cylindrical events” [2].

By a state we mean a probability measure defined on a probability space of all 
possible configurations and the cr-algebra of cylindrical events. A measure is 
a Gibbsian one with respect to the Hamiltonian (6) if for all configurations o ,, 
outside any finite A, the conditional probability for a configuration a  inside A is 
given by (5). Thus, equations (5) express the requirement that each finite volume is 
in equilibrium with the whole, where the equilibrium is described by p.

We say that a system undergoes a first order phase transition for a particular 
value of external parameters (j3, h) if there is more than 1 Gibbs state which arises 
from the interactions. The fact that the Gibbs state is not unique means that there is 
a certain instability with respect to boundary conditions — a small change on the 
boundary may lead to a dramatical change in the limiting measure. At high 
temperatures, random variables o'. are “almost independent” and, as a result, there is
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a unique limit — the unique Gibbs state. We say the system is ergodic. Hence, 
the first order phase transition corresponds to a change in the number of ergodic 
equilibrium measures (physicists used to say: a change in the number of 
pure phases).

The continuous transition does not necessarily change the number of pure 
phases. It corresponds to much more subtle phenomena — slow decay of corre­
lation. In a system the large homogeneous areas, fluctuations, appear and propagate 
over the macroscopic scale. The divergence of coherence time and length scales 
observed at the transition point are responsible for one of the most spectacular 
property of the second-order phase transition: universality. The occurrence of 
fluctuations on all scales translates quantitatively into scaling laws, which govern the 
behavior of macroscopic quantities close to the transition. Second-order transitions 
can then be classified according to the values of the corresponding exponents. 
Thanks to a diverging correlation length, numerical values of these critical exponents 
are insensitive to many details of underlying physics, as expressed by a microscopic 
Hamiltonian function. Universality classes, or sets of transitions possessing the same 
critical exponents, gather physical phenomena of seemingly different nature, 
provided that a small number of macroscopic constraints are respected. Static 
exponents of second-order transitions in equilibrium, locally interacting systems 
depend only on the type of symmetry broken by the ordered phase and on the space 
dimension d, [3], The points in parameter space where the continuous phase 
transitions take place are customarily called critical points in analogy to the critical 
point of liquid-gas system, which was the earliest known example of this 
phenomena.

1.3 Spinflip dynamics
In the time of computers physicists discovered an extraordinary tool to examine 

lattice systems. This tool named Monte Carlo method allows to evaluate multi­
dimensional integrals which occur when one calculates the partition function (3) and 
then finds the free energy function and other thermodynamic quantities, see [4, 3]. 
The process of integration is a kind of a walk in the configuration space done 
according to some Markov stochastic prescription. In this way the static equilibrium 
system description moves into the field of dynamic systems with stochastic rules.

By spinflip dynamics we mean a stochastic evolution for infinite configurations 
of spins on a lattice in which every individual spin flips with a certain rate or a cer­
tain probability according to the configuration of spins nearby. This stochastic 
dynamics is designed in such a way that the, so-called, detailed balance condition it 
satisfied. It effects in that all stationary states of such systems are Gibbs states, and 
microdynamics is time reversible with respect to these Gibbs measure. Such 
systems are named kinetic Ising models. However, why not to consider such a spin- 
flip dynamics, in which the detailed balance condition is not satisfied. For such 
systems in general very little is known about their stationary states [2, 5], Could it be 
that there is still some Hamiltonian out there for which the stationary states are
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Gibbsian? If the answer to this question was “yes” then the following would make 
sense:

In ̂ (cta) -> / / A(cr) for |A |<oo.

Thus, from the measure we would gain the notion of energy. It is known that the 
general answer to this question is “no”. There are non-trivial examples like voter 
model in 3 dimensions for which non-Gibbsianness of the stationary measures has 
been proved [6],

2. Toom probabilistic cellular automata
In the kinetic Ising models the updating rule is designed in such a way that the 

dynamics mimics the continuous time. When we switch to a discrete time, by for 
example, demanding synchronization of the updating rule, we land in the area of discrete 
time interacting particle systems modeled by probabilistic cellular automata [7],

In the reversible case, i.e., when the local PCA rule is reversible (which implies 
that PCA satisfy the detailed balance condition with respect to some Gibbs measure 
for some local energy) then all translation invariant stationary measures are 
precisely all Gibbs measures for this local energy [8], In the non-reversible case, 
practically nothing is known about the nature of stationary measures in the regime 
where there is more than one stationary measure. A basic example of non- 
reversible PCA for which it has been conjectured that the stationary measures at 
low noise could be Gibbsian is the Toom model [2, 7, 9].

The simplest version of the Toom model is PCA which can be seen as North- 
East-Center majority vote model on a square lattice. That is

* — * — * — *

* -  N, ~  * ~  *

* -  Cj -  cr, -  Ej -  *

*  —  *  —  *  —  *

and the following updating rule is applied at each i;me step t and at each lattice 
site i:

(N„ E,t C , ) N ,  + E, + Clt

[ sgn(£, ) with probability y(l + e) 
[—sgn(Z(.) with probability^(1-e),
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i.e. the parameter e mimics the temperature effects. The deterministic dynamics, 
case when s = 1, has two configurations: < 7 = 1 and cr = -1 as stationary states. 
Moreover, these states are stable against finite excitations of an opposite sign. 
One characteristic feature of the evolution observed in the simulations is that typi­
cal excitations of one phase are triangular islands of the other phase, namely:

North

+ + + + + + + + +
+ -  + + + + + + +
+ - -  + + + + + +
+ - -  -  + + + + +

W est + - -  - -  + + + + East
+ - -  - -  -  + + +
+ +

+ + + + + + + + +

South

In the deterministic model, the southern and western boundaries of these islands 
are stationary, and the northeast boundary moves southwest with unit speed, so the 
islands disappear in a time proportional to its linear size. As noise is introduced, the 
southern and western boundaries acquire a drift to the south and west, respectively, 
and the speed of the northeast boundary decreases; islands shrink more slowly. 
Suppose that we continue to increase the noise. At some value of a noise these two 
motions: the drift of southern and western boundaries and the walk of northeast 
boundary, balance each other in a sense that large islands of one phase start to live 
for a long time. Such a behavior is a fundamental feature of Gibbs states in the 
regime of the phase transition. Therefore there is an expectation that Toom statio­
nary states model some thermodynamic system of the Ising type [7, 8, 5].

Cellular automata belong to the so-called complex systems. Dealing with 
complex systems one has to be prepared for emerging of new phenomena. It is said 
sometimes, that complex systems exist on the, so-called, edge of order and chaos 
[10] and because of this it is quite impossible to predict what kind of phenomena 
would arise in a system ;f one shifted a little the system parameters. For example, 
the deterministic TCA exhibit strong chaotic properties, !n the sense of unpre­
dictability, when the initial state randomly prepared at some Bernoulli parameter p  
arrives at p  = 1/2 [11], At some level of the stochastic perturbation the mentioned 
chaotic behavior is observed in the stochastic TCA. Studying the complex system of 
Toom cellular automata we feel like taking a walk on the edge of chaos.

In simulations we examine properties of stationary Toom probabilistic cellular 
automata in a critical regime. The first goal is to answer the question whether the
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stationary measures are Gibbsian or not. This is done by verifying two necessary 
conditions for a measure to be a Gibbsian one: the quasilocality of interactions and 
proper features of the least probable events. The second goal is to find physics in 
this phase transition [9, 12], There exists a heuristic statement that all stochastic 
systems which preserve the up-down spin symmetry belong to the same universality 
class of Ising model [12]. We ask whether the singularities of thermodynamics 
functions have the same power low behavior with respect to the tuning parameter: 
noise e, (temperature in thermodynamic systems) as systems belonging to the Ising 
universality class. If the answer :s “yes” then it means that microscopic differences 
are irrelevant close to the transition point, and there exists a level: coarse-grained 
level , where these two systems: Toom and Ising, are equivalent to each other. 
Hence we would have the notion of energy for the coarse-grained Toom cellular 
automata.

The first problem to be solved is how to mimic the thermodynamic limit since the 
phase transitions appear only in the limit of the infinite size of a lattice. The solution 
is not easy. One of the simplest ways is to implement periodic boundary conditions. 
In this way we immediately deal with an infinite lattice, however the system built 
consists of the infinile number of large identical squares. Therefore we have to 
remember that the limiting system .s different from the original one.

Our basic experiments go as follows [13]:
We start with a lattice configuration of all spins up: cr = 1. Then we switch on 

the Toom probabilistic evolution with a given noise level s. The evolving system is 
given after some time T0 to reach the stationary state:

where < a>  means the set of typical configurations of a stationary measure. 
What we measure s the mean magnetization, namely, we calculate consecutively 
the average over a configuration and along the trajectory:

Typically Tg = 100Z, for L < 100 and T = 10 000. Few independent runs are 
performed to avoid possible metastable states

3.1 Microscopic Hamiltonian search
On Figure 1 we present the decay of the magnetization (8) when the value of 

noise changes. For comparison we draw the decay of the magnetization in Domany 
system which is the equilibrium system that is the closest one to the Toom system 
[7]. Notice the large diffeience between these two models when one compares

3. Computer experiments and results

{(7(0) — 1} ^ 00m at £ (^0 times)
to reach stationarity

* (7 ( f)  G < c r  > ,

(8)
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Figure 1. The decay o f the magnetization <m> in Toom CA (dots) and Domany CA(squares). The 
regimes "ferromagnetic " < m > > 0, and "paramagnetic " < m >  » 0 are separated by the region o f 

critical changes. Notice the increase o f  standard deviation errors, marked by error bars, in the region
o f the phase transition

standard deviation errors which accompany the plotted points. Changes on a lattice 
configuration at one time step are much larger under Toom dynamics than under 
Domany dynamics. This is the sign of chaotic properties of Toom cellular automata.

The typical configurations representative for configurations from ferromagnetic, 
critical and paramagnetic regimes are presented in Figure 2. Figure 3 is to show the 
two point correlation of magnetization between spins. Such a strong correlation 
appears abruptly when with s we go down crossing a value of 0.83 . Finally, in 
Figure 4 one can find the way, so-called Binder method, to deterrone the exact 
value of the transition print. Having localized the transition area, we apply the 
Griffiths-Pearce argument [2] to verify quasilocality of Toom stationary measures. 
Quasilocality, i.e., continuity with respect to the product topology on Zd, is the 
necessary condrion for a measure to be Gibbsian.

The proof of violation of quasilocality requires [5]:

— find a special configuration such that the system has more than one phase;
— show that these two ph ases can be selected by the proper choice of 

boundaries;
— show that the selection of these phases goes despite the distance to the 

border.

In particular we measure the continuity of magnetization of the central point of 
a lattice O with respect to the evolution of the fixed surroundmg state and different
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Figure 2. Typical snapshots ofTCA, in time asymptotic regions, observed fo r  a linear size lattice 
L = 200. Up- and down- spins are represented by white and black pixels, respectively.

(a) Ordered "ferromagnetic "phase e = 0.90, (b) critical regime s  = 0.82,
(c) disordered "paramagnetic"phase, £ = 0.60
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Figure 3. The two-point correlation function o f magnetization obtained on the lattice with L -  200 
at e = 0.820 (the contour plot). EastSouth, WestSouth and East denote 

the basic three directions fo r  the correlation dependence

Figure 4. Estimates fo r  Ecr by Binder s method. Plots o f cumulants U(L, e) = I -  (<m4> /  3<m2>2) 
versus e are presented fo r  system sizes: 20 < L < 100. Symbols correspond to raw data, lines to spline 

connections o f these points to determine the intersection region — the small window
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boundaries. To prove discontinuity of the measured function we have to show that:

< ™{a0 ) | a A (e,„) ® +ffr ) > * < m{a0) | crA (ein) ® ) > when A large.

Figure 5 is to present /n(cr0) at different e.n and with + configuration outside. 
Features of discontinuity are evident for 0.80 < s<  0.82 if L < 300.

Additionaly, we verify the above presented result by considering probability of 
rare events. The properties of this probability are described by large deviations

1,0 

0,8 

0,6

0,2

0,0

-200 -150 -100 -50 0 50 100 150 200

distance from the lattice centre O [lattice units]

Figure 5. The influence o f boundary spins which are all set to +. TCA evolve with different e. The 
influence arrives through East and North boundaries and changes the internal lattice state.

The minimal sub-ordering gained for  e = 0.800 is m ’ > 0.12, L = 300

theorems [2], The heuristic interpretation of the theory of large deviations proves 
that the probability, that a configurations cr taken from the probability distribution v 
“looks in A like a typical configuration from ju" decays exponentially in the volume 
of the subset A and the rate of this decay is i(ju |v) the relative entropy density 
between measures p and v. Hence the following formula can be written:

Probv{crA is typical for p} ~ e~w '(#'|v).

For i(p  |v) it is known that if i(p  |v) = 0 and both measures arise from the 
same probabiistic cellular automata then both measures are Gibbsian [8], Therefore, 
we search for a probability to meet a square block configuration / * / typical for (-) 
phase in configurations occurring at the critical regime to evaluate:

* /(-1 +) = -JT]n Prob+ M c , x/) < 0}. (9)

The result is presented in Figure 6. The zero value of it( | ) is attained when the 
block size / exceeds.the lattice size L. Thus, the relative entropy density between the
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stationary measure with negative magnetization and the stationary state of critical 
regime is different from zero.

Figure 6. Density o f the relative entropy between stationary measures o f  -  phase and v 
which is the measure ofTCA shifted a little from the critical point. Linear regression 

indicates ;( = 0 at / > 105. This is impossible on the lattice o f size L = 100.

The number in () means the correlation coefficient r2 fo r  the linear fit

3.2 Coarse-grained Hamiltonian search
The three static critical exponents of Ising-like phase transition in TCA 

estimated by us [13]: /?, y and v which describe the algebraic dependence on the 
distance to criticality of magnetization, susceptibility and correlation length, respecti­
vely, together with the corresponding values found in Ising systems and coupled map 
lattices (according to [1]) are as follows:

The value of the fourth critical exponent a  which is responsible for free energy

P y V

><N1<NIIs

a  = 2 - 2 P - y

TCA 0.12 1.59 0.85 0.3 0.17

Ising (2D) 0.125 1.75 1 .0 0 0

CML 0.115 1.55 0.22 0.22 0.22

properties at criticality is calculated following scaling and hyperscaling relations valid 
for equilibrium thermodynamical systems [3], The discrepancy between Ising 
system critical exponents and Toom cellular automata is evident. However, one can 
notice the similarity between Toom system and coupled map lattices. This similarity 
is extremely intriguing since the phase transition in CML is driven by deterministic 
chaos and the parameter tuning the phase transition (temperature in ordinary Ising 
systems or stochastic noise in Toom cellular automata) is the coupling constant
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between the diffusive and chaotic parts of microdynamics. The crucial feature 
which moves both systems into the similar critical properties is the synchronization 
of the updating procedure.

3.3 Closing remarks
Our proofs of both nor -Gibbsianness and non-Isingness, are heuristic. They 

arise from Monte Carlo exploration of the extremely large configuration space. One 
could easily improve the quality of our estimations, if considered lattices are of large 
linear size (this would ensure about non-Gibbsianness) and more points are collected 
to fit curves which describe the singularities (this would provide critical exponents 
more reliable). Thus the model discussed here needs further investigations.
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