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Abstract: Computer studies of population evolution are presented. Numerical calculations are based on 
the Penna model. This model accounts for mutation load of individuals resulting in non-trivial age (a) 
dependence of the mortality rate q(a) which may be compared with empirical data. The Penna model is 
also very flexible for suitable modifications of the population evolution process such as hunting, genetic 
death, migration etc. Here we present some examples of the population growth for different evolution 
rules. Calculations require about 100 MB memory for 106 population which is necessary to get reliable 
statistics. Typical running time for 3000 iteration steps is several hours for HP S2000 machine.
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1. Evolution and Logistic Equation
Population evolution is often described in terms of the number of individuals 

n(t) at time (t). The simplest old fashioned model is based on a concept of birth 
rate (b) against the death rate (d) balance. Then the population (n) in the next time 
step (t + 1) is:

n(t + 1) = n(t) + (b -  d) ■ n(t). (1)

This is just a geometrical series:

n(t+ \) = n{t) + B ■ n(t), (2)

with B = b -  d as the reproduction rate. It is easy to see that this recipe leads to 
either the trivial case of extinction (if B < 0) or to an unlimited growth (for B > 0). 
That’s why it is necessary to include additional factors to properly describe the 
evolution. One of them is the Verhulst factor (p) [1], which is just a probability of
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eliminating an individual from the population as a result of limited environmental 
capacity. The probability (p) of elimination, before entering a new time step 
(t + 1), is assumed to be proportional to the actual population n(t), p  = n(t)/N, 
where (AO is the model parameter known as environmental capacity. Note that for 
(n) approaching (AO, the death ratio is one and so all population dies. With the 
Verhulst factor (p) added we modify the evolution equation (2) by replacing 
n(t) -> n{t) -  p  ■ n(t). Then:

n(t + 1) = (.n ( t ) - p  ■ n(t)) + B • (n(t) - p  • «(/)), (3)

since we first apply the Verhulst elimination (see also [2]) and then allow the rema­
ining population p ■ «(/)) = n{t) • (1 -  n(t)/N) to grow with rate (B). This le­
ads to the well known logistic equation:

x( /+1)  = ( 1 + f l ) - x ( l - x ) ,  (4)

where the right-hand-side x = n/N is at time (/).
It should be mentioned that the logistic equation serves its purpose mostly as 

a test for computer simulations of population evolution. This is so since the number 
of analytical properties of this simple equation are known, and therefore may support 
our claim for quality of our programs used in simulations. The evolution rule for 
t —> t + 1 transition, with n(t) —> n(t + 1) thus reads:

— step 1: eliminate fraction x = n(t)/N of the population;
— step 2: create a new fraction (B) of the remaining (1 - x )  • N  individuals.

This equation predicts a single stable solution x* = B/(B + 1) for 0 < B < 2, 
followed by cyclic solutions for higher growth rates up to B ~ 2.6, and chaotic region 
for still larger B »  2.6. For example, for B = 2.44 we have solution of cycle 2, 
x* = 0.442, 0.849. However, in computer implementation we get one single value 
around x = 0.7. This is so since we apply a probabilistic rule in steps 1 and 2, while 
scanning the whole population at time (/), demanding death or bi th with probabilities 
(x) and (B) instead of the fully deterministic version which is the logistic equation. 
Therefore, when comparing simulation results with logistic equation predictions, we 
need to be careful. It may be worth to realize that the deterministic version of the 
logistic equation with some noise admixture (r):

x{t+ 1) = (1 + B) • x( 1 -  x) + r, (5)

can be interpreted as an equivalent of our probabilistic approach.
The Penna model [3, 4] which we discuss in the next section introduces two 

more variables, the age (a) of an individual number (p) of active mutations (or 
perhaps diseases already developed in this individual), which serves for better 
description of the population. Then we may study not only time evolution n(t) of the 
whole population, but also its more detailed characteristics n(t, a, p), or perhaps its 
stationary limit n(a, p) = n(t —» oo, a, p). Out of the n(a, p) statistics we may 
extract n(a), the population at a chosen age (a), or average number m(a) of 
mutations in sub-population of a given age (a) etc.
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2. Penna Model of Evolution
In the standard Penna model each individual gets an inherited genome which is 

a computer word (integer genome), storing information in each bit position on 
presence (bit ’! ’) or lack (bit ’O’) of bad mutation, a disease. Each bit position is 
interpreted as either active or not, and only the active mutations play role in the life 
game rules. Actually, the model assumes simple time sequence for disclosing and 
activating the bad mutations, and so at age (a) we account only for the portion of 
genome from bit position zero to bit position (a). When getting older in one time 
step, the individual goes from age (a) to (a + 1) and the next bit is disclosed. If it is 
’1’, we increment number (pi) of the active mutations by one. Thus essentially the 
numbers pi(a) are pre-determined at birth time, when the offspring gets a copy of 
genome from its parent, in this simplest asexual model when cloning is the only way 
to pass genetic information to offsprings.

With this concept, we incorporate a new elimination mechanism into the first 
step of logistic version, where only the Verhulst factor was the death cause. Now, 
we scan over all members of population and eliminate some of them for the limited 
environmental capacity (the Verhulst factor), or having too many active mutations 
(above a threshold (7)), or perhaps for other reasons as it is in some extended 
versions of the Penna model. Then the second step is the growth of population, 
same as before, if the individual survives in the first step. The individual gives birth 
with probability (B) if the reproduction age (R) is reached. The offspring is then 
offered a copy of genome from the parent, enriched by (M) additional mutations 
randomly picked over its whole lifespan. The role of these extra mutations is seen as 
accumulation of bad mutations at older ages in the population at equilibrium after 
long time t —» oo.

Thus Penna model has 5 input parameters (N , B, R, M, T) that control population 
structure n(t, a, pi), the number of members at time (/), of age (a) and number of 
active mutations (ft). Note that pi = 0, ..., T -  1 since all members with higher (//)
had been eliminated. For younger members we may restrict ourselves to 
ft = 0, 1, ..., a as we may activate one mutation per time step only. We get 
n(t, a, pi) from simulation. The total population is then:

n(t) = 'Yj n(t,a,pi). (6)
a.u

As it was mentioned earlier, we are interested at equilibrium reached after 
a long time:

n(a, pi) = n(t -» oo, a, pi), (7)

from which:

n(a) = Y in(a’l1)’ (8)



is the age structure of the population. Another quantity we may extract from the 
data is the survival rate:

s{a) = n(a + 1 )/n(a), (9)

the fraction of those at age (a) which survived for the next time step. The logistic 
case is recovered for (N, B, R, M, T) = (N , B, 0, 0, oo) and following analytical 
results from equation (4):

x ( t -> «>) = n( t-xx i) /N  = B/(l +B), (10)

5(a) =1/(1 +B), (11)
may be confronted with computer experiment.

Alternatively, we may use mortality rate q(a):

q(a) + s (a )= \ ,  (12)

and so:

q(a) = B/(l+ B),  (13)

for the logistic case, a trivial q(a) dependence. Actually, the observed q(a) follows 
the exponential Gompertz law for age (a) above the reproducion threshold (R):

q(a )~ ee° ,  (14)

where g  is constant. Then we may compare q(a) from simulations against (14).
The Penna model is very much an open structure, rich in numerous possible 

modifications which are simple for implementation, and may correspond to important 
new ingredients in the evolution rules. This allows us to study the role of different 
factors such as influence of sexual selection [5, 6], parental care [7], overfishing or 
hunting [8] etc., on population dynamics. We may also study effects of migration 
between locations with different evolution parameters (N, B, R, M, T) as dependen­
ce of such variables as environmental capacity, living space still available etc. Some 
examples of the population evolution based on Penna model are presented in the 
next sections.

3. Fluctuations in Threshold for Bad Mutations
In the Penna model it is assumed that the offspring gets its genome from the 

parent at the birth time. However this is not true and the copying takes place at an 
earlier moment. We may account for this by suitably adjusting the counter of bad 
mutations for the already activated mutations before the birth. It means that the 
counter, which was reset to zero at birth time, needs to be set to a different value.

For example, let us consider three individuals i = 0, 1, 2 with bad mutation 
threshold T= 3, which is the standard Penna model. Instead T = 3, we may propose 
threshold T= 7 as a common value for all items in population and assume g = 4 bad 
mutations already activated at age a = 0 for first item at the birth time. In other 
words, there are still 3 bad mutation limit ahead, before this item would eventually be 
eliminated. This is the same as the previous limit T= 3 with initial counter of active
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'bads' equal to zero. However, it is easy to accept that another item is bom with 
different (p) if we apply the Penna rule of summing up all bad mutations in inherited 
genome, from the beginning to the age given, here to the birth time. Therefore we 
may accept p = 5 and p = 2 for another two items. This means that an effective 
limit after the birth for bad mutations is T{i) = 3, 2 and 5 for items / = 0, 1 and 2, 
respectively.

With such arguments, we claim possible variations in threshold T(i) which may 
fluctuate from one individual to another, and does not change with time. For 
simplicity we assume a uniform distribution of T(i) ranging from 0 to 6 for the bom 
ones, to recover the average T = 3 for comparison with the standard Penna model 
where T= 3.

We need several hundreds iteration steps to reach the equilibrium. In Figure 1 
the equilibrium population n(t —> oo) = N ■ 5/(1 +B) = 1 090 000 is obtained for the 
logistic case.

Figure 1. Population evolution n(t). Solid line corresponds to the logistic case, Penna model is 
represented by dotted line and dashed line is the Penna model with fluctuations in (T), see text

Smaller value for the Penna model, the dotted line, is expected since additional 
deaths due to mutations may take place. The dip at time t = 3 is a result of no birth 
for the initial population which is still below the reproduction age 5  = 4, while the 
Verhulst elimination is already switched on. Our minimum is not as deep as in paper 
[5] since in their paper the minimum reproduction age 5  = 8 and so twice longer was 
the initial period of only the elimination by the Verhulst factor. Then some oscillations 
follow when the system is catching up balance between death and birth rates, until 
the equilibrium is reached. Both the minimum and oscillations do not correspond to 
reality since we merely would accept the very assumption underlying that behavior 
of the world being created momentarily at t = 0 with all items at age a = 0.
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The proposed modification (c) with fluctuations in threshold (7) leads to a 
population nearly twice as high. We may interpret this as a result of presence in 
population of a fraction of quite high resistance T to mutations, the effect of the 
allowed variations in T = 0..6, as compared with T = 3 in standard Penna model. 
Figure 2 shows the survival rate s(a) = n(t + 1, a + \)/n(t, a), the fraction of those at 
age a which survived for the next era, in the stationary limit of t —> ô .

Figure 2. Survival rate s = n(a + l)/n(a). Solid line is the logistic case, dotted line 
is the Penna model and dashed line is the model with fluctuations in threshold (T)

Age structure is important — it may be compared with data obtainable from 
institutions, unlike the numbers for population (n) itself normalized to the capacity 
(TV), n oc TV , with rather unknown (TV). The age-independent value 5 = 1/(1 + B) = 
0.455 for the logistic case (a) is confirmed, with some strong alterations close to 
advanced age when the statistics is very poor since only few do reach that age of 
roughly half the lifespan, here the lifespan is 32 for the 32-bits machine. If mutations 
are also included in cases (b) or (c), the survival rate for younger ones is larger than 
in (a) as the best fit individuals (with only a small number of bad mutations) are 
dominant in the population. This, however, does not mean that genomes with plenty 
of mutations are not present in the older-age when they may still stay inactive. On 
the contrary, the effect of accumulation of the defected gens, which are pumped into 
the newly bom ones at rate (A/), must lead to accumulation of these mutations at old 
age. Therefore s(a) drops significantly for old ones. The Penna model cuts the 
oldest at age a = 15, and fluctuations reduce the age limit further on to a = 14. 
Generally, the survival rate is lower if fluctuations in (T) are included. This may be 
accounted for the fraction of items with smaller threshold (T). They are eliminated 
sooner and so the survival rate (s) is then smaller.
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Figure 3 is another way to analyze the age structure of the population. In logistic 
model (a), n(a) = n{0) • e m with same survival rate (5) as defined before. This 
exponential dependence is known as the biologically observed Gompertz law. From 
simulation we get the fitted 5 fc = 0.454, very close indeed to 0.455 from the 
analytical model. For Penna cases (b) and (c) we observe systematic deviations 
from the Gompertz law and characteristic 5-slope is always larger at younger age 
than at old age. For young individuals below the reproduction age a<  R = 4 we get 
s = 0.70 for the Penna case (b). This is very close indeed to the predicted value 
s = 0.703 from equation:

s(a) = 1 -  n/N, a < R, (15)

which may be proved for the Penna scenario for the pre-mature age a < R, and 
with population (n) to environmental capacity (N) ratio taken from the simulation.

a
Figure 3. Population structure versus age. For logistic case, a straight solid line is expected following 
the Gompertz law iog(n)x a. Dotted and dashed lines correspond to cases (b) — Penna model and (c) 

— the model with fluctuactions in threshold (T), respectively

The corresponding value (s) from the simulation for young individuals for case 
(c) with fluctuations is s = 0.59. For both cases (b) and (c), (5) is greater than for 
logistic case (a), as we have already indicated. It was also discussed that we get 
s(a) smaller than logistic value at old ages, say for (a) from 10 to 12. This time the 
fluctuations in T(i) do not play a dominant role and it is the accumulated mutations 
which cut population sharply. At old age, we are already close to the terminating 7"s 
and there are plenty of accumulated bad mutations ahead. We get same s = 0.20 
from computer simulation for cases (b) and (c).

Figure 4 shows some simple statistics in terms of percentage m(a) of bad 
mutations against bit position {a). This is just information on how many mutations 
would be active at age (a), if we sum up all (m) for bit positions from zero to (a).
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Figure 4. Percentage o f bad mutations versus bit position for logistic case (solid line), Penna model 
(dotted line) and model with variations in threshold (T) (dashed tine)

If mutations are randomly distributed over all bits positions, m(a) = 0.5. This is 
the logistic case (a) when initial population was created with random genome 
composition. This is a very arbitrary choice, yet it belongs to the Penna model and 
the initial population choice is totally unimportant after only first several iteration 
steps. For the Penna model we expect fewer mutations at a younger age (the best 
ones survive in evolution process), and an increase at old age (effect of bad 
mutation accumulation). This can be seen in the picture. Higher mutations 
concentration for case (c) with dispersion in (T ) indicates presence of less healthy 
individuals that exist as a result of more tolerant higher threshold (T ) for some of 
them. They pass the elimination process when cutting down all items with number of 
active mutations (ju) above (T ).

We conclude that fluctuation in threshold T(i) is important and may influence the 
age structure of population and its health condition.

4. Migration Process
In this section we consider a number of locations labeled by i, each with its own 

set of evolution parameters. One iteration step leading from the normalized 
population x.(t) = n./N. at time (t) to x.(t + 1) is the result of a scan over the whole 
population. For each item in the population we consider:

— ... start from x.(t) ...
— virtual elimination due to the Verhulst factor or for other reasons, then
— giving birth
— ... finish at x.(t + 1).

This is the Penna model which we apply for (k) iteration steps. This yields the 
new population y. = x.(t + k). Then after a given number (k) of evolutionary steps,
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we allow each individual for a migration from location i to location j  with probability 
p(i,j). The probability p(i,j)  is negotiated according to a variety of scenarios. After 
all migration moves are carried out, the full iteration cycle is then complete:

— ... fromx.(t), by elimination followed by growth, £-times, toy  = x f j  + k)...
— ... from y., by migration, to x.(l + k).

Obviously, for p(i, j)  = 0 the game desci bes independent sub-populations and 
the standard Penna model applies to each locat'on. However, when migration is 
allowed a new equilibrium is established which may be different from the isolated 
slands case. The individual picked out with a probability p(i,j) from z'-th location, 

and of destination j ,  is placed in a buffer matrix (i,j). As we said before, this action 
takes place after each (k) iteration steps with the evolution game independent at 
each location and according to the Penna model rules. The buffer concept is 
convenient since we intend to determine the p(i,j) on the basis of actual state of the 
population in each location. Therefore we freeze evolution until all migrating items 
are collected in the buffer, and then they are transfered to their destinations. This 
completes one evolution cycle of (k) ndependent iterations at each location, and 
followed by the migration controlled by current characteristics of the populations at 
each location.

For simplicity, we assume later on that the probability p(i,j) is a product, 
p(i,j) = q(i) ■ p(j)  of initial location q(i) mobility factor and probability p(j)  of 
picking out y'-th location as the destination. In this case, the decision-making- 
process splits i ito two independent steps:

— decision of moving out-of-z'-th location into a buffer (a transition camp), 
with probability q(i), then

— picking outy'-th location as destination with probabilityp(j),  and no memory 
of the past z'-th location.

Then random migration takes place if q(i) = q, location independent mobility of 
any strength, and p(j)  oc y.A/., the actual population iny-th location!, just before the 
migration. This random migration takes place only if overall characteristics for each 
location is the same and the locations differ only by their environmental capacity 
(TV.). To see this, let us consider a more analytical approach to the limiting case of 
the logistic equation R = 0, M =  0 and large threshold (T). Then the population (y.) 
after elimination and growth is expected to be:

where k. = 1 + B . The migration process alters (y.) to the new value x.(t + k):
y, = K ■ *z 0  "  * ,)’ (16)

(17)

where.
( 18)
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and the anti-symmetrical transfer matrix T = -  T is:j j  ji

Tv = (N / N)  • y.p(j, i) -  ( N / N )  • y.p(i, j). (19)

The first term represents the inflow of population into z'-th location from any 
location j ,  while the other term is the opposite. As we said, p(i,j) stands for the 
probability of an individual to migrate from location i to location j .  In the following 
we confined ourselves to the uncorrelated version when:

PiUj) = q(‘) ' P(j), (20)
and so:

T. = ( N / N )  ■ yjqU)P(i) ~ ( N / N )  ■ y,q(i)p(j)- (21)

It is easily seen for the case q(i) = q and p(j)  acy N / N ,  for the actual popula­
tion at time (t + k), just before migration, that the transfer matrix vanishes and so 
we get the claimed random migration for which x ( t  + k) = y., according to the 
Penna scheme. (We may choose different q(i) and p(j)  also leading to the neutral 
migration.) Thus for random migration we have:

<7(0 =  <7, p ( j ) * y j N / N .  (22)

For non-random migration we choose probabilities for the migration different from 
the ones leading to the random moves. For example, for:

q(i) = q/( y. A / TV), (23)

where q is a proportionality constant and the total number of the ’m ove-out-of’ 
individuals is same for each location, and independent of the actual population 
there. This is a resemblance of a ’quota’ limit policy for migrating people and the 
same for all locations, which may lead to the faster escape of individuals from 
already deserted areas. As a result we expect a new equilibrium between loca­
tions with a tendency toward clustering. Perhaps it is illustrative to consider the 
stability of two identical locations, coupled by migration process, in the simple 
logistic case. Obviously y. = y. is the solution. However, if a small fluctuation s(t) 
is allowed, then one of the locations has a surplus population, x. + e, at the cost of 
the other location population, x -  e, then the system response after one full cycle 
with s ( t  + k) = r ■ e (t). The ratio (r) may be obtained for pure logistic equ­
ation as:

r  = (1 -  fl) + (1 -  B)(q/qmJ ,  = 2B !( \+  B), (24)

with maximum (q) coefficient so that probability is less that one. The system be­
comes unstable for the mobility parameter (q) larger than a minimum q value 
when (r) exceeds one. This yields the instability regime for (q):

0 < B2/( \ -  B2) <2q < B/( 1 + B), 0 < B < 0.5. (25)

Let us summarize the main concept. In the above example we claimed 
modification of the migration probability, as compared to the reference random 
transfers, according to some environmental factors such as actual population y. N . . 
In fact we may propose:
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q(i) = q ■ (y ,N ./N )- \  (26)

q(i) = q ■ O, N . /N f ,  (27)

<7(0 = q ■ (y, N./N)+>, (28)

for the discussed clustering tendency (c), random migration and for tendency to­
wards equal population at each location (w), respectively. Alternatively, we may 
alter probability p( j )  in a similar fashion by a multiplication factor (y. N . /N )d, 
where d = - 1, 0, 1. We may account for some typical environmental factors to 
modify the probability q(i), such as:

— (y.N./N)-”1, ... actual population;
— (N.IN)~e‘, ... environmental capacity;
— [(NJN) -  (y. N./N)]~v‘, ... living space still available;

and adjust the power coefficients d = n., e., v. to get the assumed tendency for 
clusterization (c) with positive exponent coefficients, neutral (random) migration 
for zero exponent coefficients, or the opposite tendency for negative ones. Then 
we may apply similar modification not only to the out-coming population </(/), but 
to the incoming one p(j).  In each case we may discuss stability, at least for the 
logistic case.

The proposed form for q(i) is then:

q(i) = q, ■ (y,- N J N y *  ■ (.N J N y ■ ■ [(N. / N) -  ( y  K /N )r* .  (29)

where {q) is the mobility coefficient which shows the degree c f determination to 
start moving. Similarly we modify p(j)  to the fom :

P( j )  = C • (y. NJ/N ) '+n' ■ ( N J N y  • [(A.IN)  -  (y. N./ A)]+ % (30)

and all zero power coefficients correspond to random migration, positive ones indi­
cate preferences towards ciusterization and the negative ones show the opposite 
tendency. In other words, for example similar tendency toward clustering causes 
by the population factor may be produced by an increase in q(i) for smaller («.) 
(tendency for more intensive escape from smaller populations), or by increase in 
p(j)  for higher n (more likely destination of the migrants to densely populated lo­
cations).

The model is then controlled by the three parameters («., e and v.) for the 
outgoing population and another three parameters (n., t . and v ) for the in-flowing 
population. The set («., e., v., n., e., v ) = (0, 0, 0, 0, 0, 0) serves as the random 
migration reference only. In each case we use population of order of 106 or so on 
a 32 bit machine. The number of iterations necessary to get an equilibrium is about 
a couple of hundreds iteration steps.

For example we may consider (n., e., v., n., e., v.) = (1, 0, 0, 0, 0, 0) for two 
identical locations. This causes a preference towards clustering as individuals are 
forced to go by increasing (q), they are still reluctant to move out of more crowded 
locations. Analytical results for logistic case show instability above critical
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qc = 0.5 • B2/( 1 -  B2), and only for B < 0.5, which yields qc = 0.021. So we expect 
population x{q) = n /N  to stay stable at same level for both locations at the value 
x = 5/(1 + B) = 0.17 predicted by the logistic equation until about (remember non- 
deterministic implementation of deterministic logistic rules) q = 0.021, and then 
followed by perhaps a sharp decrease in population in one of the location as a result 
of instability. This is illustrated in Figure 5. It should be noticed that for still larger 
(q), when migration is forced to become very intensive, the deserted location may 
become re-occupied again.

Similar behavior is seen in Figure 6 for three locations. In this case capacity ratio 
1 : 2 : 3  was used in calculations.

However, more detailed analysis shows that, with increasing (q), we observe 
a sharp transition from 3 occupied locations to 2 non-empty sites, followed by 2 -> 1

0.30 
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0.20

X °-15 

0.10

0.05 

0.00

0.00 0.02 0.04 0.06 0.08 0.10
Q

Figure 5. Normalized population x. = n. /N. at 2 locations versus mobility (q).
Population capacities N. are same on both locations. Penna case fo r  set 

o f the model parameters (n., e., v„ n., e , v.) = (1, 0, 0, 0, 0, 0)

site transition and reentry 1 —> 3 occupied sites for intensive migration.
An opposite tendency towards avoiding overcrowded locations is demonstrated 

in Figure 7 and caused by mechanism: avoiding large territories. In this cases 
locations of larger capacities are less densely packed.

Our conclusion is that migration also alters the population growth.
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Figure 6. Normalized population x. = n. /TV. at 3 locations with capacity ratio 
1 : 2 : 3  versus mobility (q). Penna case for set o f the model parameters 

(n., er v, n., e., Vj) = (1, 0, 0, 0, 0, 0)

Figure 7. Normalized population x. = n. /N. at 3 locations with capacity ratio 
1 : 2 : 3  versus mobility (q). Penna case fo r  set o f  the model parameters 

(n., e., v , n., e , v.) = (0, - I ,  0, 0, 0, 0)
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