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Abstract: Due to sharp practical and ethical constraints imposed on medical measurements, the parameter 
estimation procedure designed for diagnosis and therapy, is often a difficult problem. When blood 
sampling provides the data, the number of samples and the measurement interval should be minimised. 
We have implemented D, E, S, A-optimal sampling schedule (OSS). These OSS have minimal size, which 
means that number of samples is equal to the number of model parameters that are being estimating. 
Setting-up the results of D, E, S and A approaches allows to compare their efficiency and usefulness. 
Illustrative examples are presented.
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1. Introduction
Advanced mathematical modelling and identificalion methods are being 

necessary in investigation of biomedical system kinetics. Usually more or less severe 
limitations are imposed on the experiment conditions. The more frequent limitations 
concern number of input and output ports (often only blood is accessible) and the 
whole amount of blood allowed drawing from the object. The latter is equivalent to 
establishing as short measurement interval and as small number of samples as it is
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possible and sufficient for model identification purpose. The above causes that 
optimal choice of experiment variables is of primary importance [1-3].

This paper presents minimum size OSS determined one by one by means of D, 
E, S and A criterion. Finally their reliability, efficiency and practical applicability is 
analysed and compared. In this subject literature opinions of high usefulness of the 
D criterion are presented, while the others are said to be less useful, difficult and 
complicated [2, 3], As more powerful software and hardware is available, we have 
decided to verify this opinion. The questions arise:

— Do particular criterions deliver the same/similar/different optimal sampling 
points?

— Which of them is the most optimal and gives the best improvement of identifi
cation result?

— Which of then i is most re'iatle and useful?

The aim of the paper is to find out ar. answer to the above questions.

2. System under consideration
The system under consideration is described, on a t+ T  time interval, as follows: 

x(r,p) = jf[x(r, p),u(/),/; p], u(/)> 0,
y(r) = g[x(r,^p], (j)
z ( / * ) = ,p)+c(f*), k = \,...,N, t0 < tk < T.

We assume the model is so called a constrained structure, which means that 
additional independent algebraic inequality or equality, relating x and p, are imposed 
These constraints are written generally as the reladonship:

G (x(/,p),p)<0. (2)

State vector x denotes measured amount or concentral )n of considered 
quantity, u is a test input, y  is a measurable output, z(/, p) is a noisy discrete time 
measurement of y  at f  ne tk and e(tk) is an additive error. We assume the error is 
zero-mean Gaussian noise with variance <J2(tk). Functions / and g, not necessarily 
linear vector functions, define the particular model structure. The vector p > 0 is an 
unknown parameter set, i = 1,2, ..., P. N  is the number of output samples.

It is assumed that the model is uniquely structurally identifiable for the designed 
input-output experiment and that this assumption was previously checked up. 
Adoption of the optimisation procedures requires a priori knowledge of unknown 
parameter vector p, which we assume is known, for example as the mean 
population or as the result of an intuitively designed experiment. The goal to be 
achieved is to get the most accurate vector p by intentional choice of SS. Opf mal 
SS is the one which assures the best quality of p from among the others calculated 
for optional sampling schedule design.
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3. Optimal SS design
Cramer-Rao theorem says: covariance matrix of unbiased parameter estimates 

COV(p) has the inverse of the Fisher information matrix M as a lower bound, 
namely COV(p) > M_l(p). For OSS design the matrix M is only a function of 
sampling schedule M=M (SS, T). The Fisher information matrix is a measure of the 
amount of information, relatmg unknown p, available from the noisy data.

Let us define sensitivity function matrix S p

Sp =
y

8yi(p,t)
dP j

ty\
dp,

dyN
dp.

dy,
dpP

gy.v
dpP

(3)

It is the Jacobian J  of the output wi.h respect to the parameters and may be 
evaluated at some point p* in the parameters space.

When the noises in the data have a zero mean unity variance and the same 
normal distributr on at each tk sampling point, and e(tk) are uncorrelated, then Fisher 
information matr ; M is as follows

M ( p ) = k ] = J r J ’

r n N

k=\

dy(p,tk)
dPi

dy(p t j )

dPj '

(4)

When variances in each data point <J2(tk) are different, then:

M (p )= J r [R ]-'j. (5)

R denotes the covariance matrix of the noisy data. Particular o 2(tk) form the 
main diagonal of the R matrix.

Let us define matrix W which generic element w denotes relative sensitivity. It 
shows degree to which change A A., in parameter A .,i=  1,2, ..., P being estimating, 
depends on change Ay. in a measured sample y , j  = 1, 2, ..., N:

A A X A y , wn w,2 ••• W \ N A y ,

a a 2

=  W-
A y 2

=

w2. w22 •'• W 2  N A y  2

A A P _ _ A ) ’ p  _ _ w p \ W p 2  • • w P N  _ _ A y  p  _

(6)

Matrix W can be expressed by means of Jacobean matrix J  as follows:

w = [ j rj ] V . (7)
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Four objective functions for SS optimisation have been considered. Every one of 
them delivers a set of sampling points, which are optimal with respect to the 
particular cri erion. The criteria being tested are:

For D-optimal SS design: max(detM), detM is determinant of M;
For E-optimal SS design: ?nin(max?*M), XM are eigenvalues of M"1;
For S-optimal SS design: max(W), W is relative sensitivity matrix;
For A-optimal SS design: min(traceM"1).

4. Constrained non-linear programming
Let us state a problem:

minimize / ( p) subject to:
p

me equality constraints Gj (p) = 0 , i = 1, . . me , 

m -  me inequality constraints G, (p) < 0 , / = me + 1, m , (8)

P/A

A lower bound and an upper bound puA limit the set of designed parameters, 
which are optimal in some way.

When both, /(p )  and G(p) are linear, the above problem is called linear 
programming. Quadratic programming concerns quadratic objective function /'(pi 
and linear constraints. In non-linear programming objec; we function and constraints 
are non-linear.

Nowadays, in constrained programming problem, methods based on the Kuhn- 
Tucker equations solution are being used [4, 5], These equations are necessary 
conditions for optimality of a constrained problem. The Kuhn-Tucker equations, 
referring to (8), are:

/ ( p * ) + Z A‘VG/( p *)=0’
/=1 •

VG,(p*)4 0 , i = \,...,mc , (9)

A* >0, i = me + \,...,m.

The first equation shows disappearance of the gradient between objective 
function / ( p) and the active constraints Gjp) at the solution point p*. To cancel 
these gradients it is necessary to match magnitude o f/an d  VG. It is done by means 
of Lagrange multipliers A..

The solution of the Kuhn-Tucker equations forms the basis of non-linear 
programming algc:* thms. From among different the algorithms the sequential 
quadratic programming is said to be the most efficient and accurate. Basing on (8), 
the sequential quadratic programming requires formulation of quadratic programming
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sub-problem. It requires quadratic approximation of Lagrangian function'

m
£(p > ^ )= / (P )  + X A' £/(*)• (10)

1=1

The sequential quadratic programrr mg consists of three main stages:

— updating of the Hessian matrix of Lagrangian function,
— quadratic programming problem solution,
— line search and merit func* on calculation.

For solving D, E, S and A-op mal SS problem MATLAB implementation of 
sequential quadratic programming was used.

5. Case under study
For examination and for comparison of the D, E, S, A-optimisation methods a

two-compartmental model function has been chosen:
\

y  = A, exp(- A2t)+ A3 exp(- A4t) (11)

with the parameter vector p = [A{ A2 A} AJ  = [19 0.02 6 0.5]. The exact model 
function, as described above, was then taken as the base for simulation yielding 
1000 sets of data. Every set contains 1501 samples related to subsequent time 
points in time interval te(0, 150), with step dt = 0A. Simulated data are generated 
by adding uncertainty selected randomly from normal distributed population of va

lues N(0,>/0.341) to the exact model response.
Next, for generated data, the model parameters were reestimated. As an 

example parameter estimates A.±dev std, CV%, i=  1, 2, 3, 4 for 10 out of 1000 
data sets are presented in Table 1. The results were obtained from fitting the model 
function to the particular set of s .nulated data.

Figure 1. Exact modelfunction (solid line) and the upper and the lower set o f simulated data. The other 
simulated data is held within these upper and lower limits
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Table 1. Parameter estimates A. ± dev std, CV%, i= l, 2, 3, 4 for 10 exemplary sets o f simulated data

Ai ±  dev std (CV %) Ai ± dev std {CV %) A i±dev std {CV %) A 4+  dev std {CV %)

1 19 .0 8  +  0 .0 6 9 5 1  (0 .36% ) 0 . 0 2 0 1 4  ± 9 . 2 9 1 e - 5  (0 .46% ) 5 .9 6 5  ±  0 .2 5 6 8  (4.3% ) 0 .5 6 5 4  ±  0 . 0 4 0 8 9  (7.2%)

2 19 .0 0  ± 0 . 0 7 4 0 7  (0 .39% ) 0 . 0 1 9 9 4  ± 9 . 5 4 9 e - 5  (0 .48% ) 5 .771 ± 0 . 2 3 3 8  (4.1% ) 0 .4 5 5 5  ± 0 . 0 3 1 8 1  (7%)

3 18.91 ± 0 . 0 7 3 1 1  (0 .3 9% ) 0 . 0 1 9 8 6  ± 9 . 5 2 9 e - 5  (0 .48% ) 6 .0 2 6  ± 0 . 2 4 1 8  (4%) 0 .4 8 1 8  ± 0 . 0 3 3 0 6  (6.9%)

4 19.01 ±  0 . 0 7 5 3 8  (0.4% ) 0 . 0 2 0 0 4  ±  9 .8 3 5 e -5  (0 .49% ) 5 .9 1 9  ± 0 . 2 4 7 3  (4.2% ) 0 .4 8 0 7  ±  0 . 0 3 4 3 8  (7.2%)

5 19 .0 4  ± 0 . 0 7 1 1 8  (0 .3 7% ) 0 . 0 2 0 0 6  ±  9 .4 7 5 e -5  (0 .47% ) 6 .3 3 0  ± 0 . 2 5 9 2  (4.1% ) 0 .5 5 2 3  ±  0 . 0 3 8 0 6  (6.9%)

6 18.73 ± 0 . 0 7 3 8 8  (0 .3 9% ) 0 .0 1 9 6 3  ± 9 . 5 7 1 e - 5  (0 .49% ) 6 .4 3 9  ±  0 .2 3 7 5  (3.7% ) 0 .4 5 9 8  ± 0 . 0 2 9 1 3  (6 .3%)

7 18.95  ± 0 . 0 6 9 2 3  (0 .3 7% ) 0 . 0 1 9 8 4  ±  9 . 158e-5  (0 .46% ) 6 .1 5 2  ±  0 .2 5 0 0  (4.1% ) 0 . 5 4 0 6  ±  0 . 0 3 7 0 2  (6 .8%)

8 1 9 .1 5 ± 0 .0 7 2 9 4  (0 .38% ) 0 . 0 2 0 1 9  ± 9 . 6 4 7 e - 5  (0 .48% ) 5.791  ± 0 . 2 5 7 9  (4.5% ) 0 .5 3 3 7  ± 0 . 0 4 0 1 9  (7.5%)

9 1 8 .9 3 ± 0 .0 7 9 7  (0 .4 2% ) 0 .0 1 9 9 5  ±  10 .14e-5  (0 .51% ) 5 .5 7 7  ±  0 .2 3 2 9  (4.2% ) 0 .4 1 4 4  ± 0 . 0 3 0 2 6  (7.3%)

10 1 9 .0 9 ± 0 .0 7 2 2 1  (0 .38% ) 0 . 0 1 9 9 9  ± 9 . 4 3 8 e - 5  (0 .47% ) 5 .8 7 2  ±  0 .2 4 6 9  (4.2% ) 0 . 5 0 6 0  ± 0 . 0 3 6 1 8  (7 .1%)

After 1000 simulation runs we obtained 1000 normally distributed estimates 
for each A.. Calculated mean parameter estimates A,, their standard devia
tions o  A = std devA and the errors A = (A .-A j )/A.[%] are presented in Table 2. 
Percentage coefficient of variation CV% is defined as CV% = gaJA ..

Table 2. Mean parameter estimates A., standard deviations <JA and the errors A [%] obtained after 
1000 simulation runs

A a [%]

A 18.99197 0.07497 0.042

A 0.019987 0.00009 0.065

A 6.008938 0.24663 0.148

r A 0.499735 0.03522 0.053

The obtained parameter estimates A, are very close to the initial values of para 
meters A.. It validates the adopted simulation technique and assures that the 
simulation is not the reason for discrepancy, which may appear in results obtained 
through D, E, S, and A-optimal design.

6. Optimal SS
The whole process of simulation and parameter estimation, delivered 1000 

simulated model functions. For each func*:on we assigned an optimal sampling 
schedule OSS, consisting of 4 optima! samples [t, t2 t3 / J ,  using one by one the 
D, E, S, A-opfimisation criteria. In that way, we have obtained optimal sampling 
sets: DOSS, EOSS, SOSS and AOSS respectively for D, E, S and A-optimal 
design. As an example, the results obtained for 10 out of 1000 simulated sets of data
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Table 3. Optimal sampling schedules DOSS, EOSS, SOSS and AOSS respectively for D, E, S and 
A-optimal design for 10 exemplary simulated model functions

D O S S  

[r, t2 t4 ]

E O S S

[h  C  h  C ]

S O S S

\t\ t2 f  C  ]

A O S S

['. h  k  c ]
1 0.0 1.7 8 .7 5 8 .8 0.2 0 4 7.7 85 .3 0.0 1.7 9.3 102.1 0.0 0.8 7.8 8 5 .3

2 0.0 2.1 10.3 6 1 .2 0 .3 0 .5 9.1 8 6 .3 0.0 2.1 11.0 104.2 0.0 0 .9 9.3 86.0

3 0.0 2.0 9 .9 6 0 .9 0 .3 0.5 8.7 86.1 0.0 2.0 10.6 104.2 0.0 0.8 8.9 8 6 .4

4 0.0 2.0 9 .9 6 0 .5 0 .3 0 .5 8.7 8 5 .6 0.0 2.0 10.6 103.4 0.0 0.8 8.9 8 5 .5

5 0.0 1.7 8 .9 5 9 .2 0.2 0 .4 7.9 8 5 .6 0.0 1.7 9.5 102.6 0.0 0.8 7.9 8 5 .6

6 0.0 2.1 10.3 6 1 .9 0 .3 0.5 9.1 8 7 .4 0.0 2.1 11.0 105.5 0.0 0.8 9.2 87 .3

7 0.0 1.8 9 .0 6 0 .0 0.2 0 .4 8.0 86 .5 0.0 1.8 9 .6 103.6 0.0 0.8 8.1 86.6

8 0.0 1.8 9.1 5 9 .2 0.2 0 .4 8.1 8 5 .0 0.0 1.8 9 .7 102.2 0.0 0.8 8.1 8 5 .0

9 0.0 2.3 11.1 62.1 0 .4 0.6 9.7 86.1 0.0 2.3 11.9 104.8 0.0 1.0 10.0 86.1

10 0.0 1.9 9.5 60.1 0.2 0.5 8.4 85 .8 0.0 1.9 10.1 103.4 0.0 0.8 8.5 8 5 .8

are presented in Table 3.Then we have analysed scatter in t., i = 1, 2, 3, 4. Analysing 
bar charts, i.e. histograms of a particular t. on 1000 simulation runs, we concluded 
that time points t are normally distributed. In Figure 2 histograms for optimal points 
11 mean optimal sampling points _t. and their standard deviations ai = stddevt, 
subsequently for D, E, S and A-optimal design are presented.

7. Results
From among all simulated sampling points in every simulation run, we have 

chosen the samples, which were located in points previously calculated as optimal. 
This gave us 4000 (a 1000 for each optimisation criterion) reduced, individual optimal 
sampling sets |7 t21 f j.  For every set, the model function parameters 
p = [AtA2A3A4] were reestimated. Histograms presented in Figure 3 show scatter 
in reestimated A , i = 1, 2, 3, 4 for every considered optimisation criteria. Assuming

normal distribution of A we have calculated A and o\. In brackets are showni I Aj

deviations A ~ (A 1-  A f /  Ai [%], <ja denotes standard deviation in a particular A..

Calculated deviation A = (Al -  A ^ f  At [%] is smaller than CV% = aA /A .  for each 
considered optimisation criteria.

Percentage fraction of whole number of SS optimisations, which did not give 
optimal SS but delivered a set of 4 time points is shown in Table 4. The points are 
not coordinates of global minimum (or maximum) value of objective function but are 
coordinates of a local minimum (or maximum) value of objective function.

8. Conclusions
As we can see from Table 3, different optimisation criteria, used for the same 

data, give different optimal SS. On 1000 optimisation runs, for each criterion, we
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Table 4. Percentage fraction of the whole number 1000 oj'SS optimisations, which instead of OSS, 
delivered not optimal set of 4 time points being coordinates of a local extreme

DOSS 5.9%

EOSS 33.1%

SOSS 4.1%

AOSS 13.7%

obtained the following mean optimal sampling schedules:

DOSS = [0 1.9 9.6 60.3],
EOSS = [0.2 0.5 8.5 85.9],
SOSS = [0 1.9 10.2 103.4],
AOSS = [0 0.8 8.6 85.8],

The detailed conclusions are:

— DOSS and SOSS sets of points are very close, with the exception of the last 
optimal point, which for the S-optimal design is considerably bigger than for 
the D-optimal design.

— E-optimal design, unlike the other criteria under investigation, gives EOSS, 
which does not contain the point t  =  0 as the first optimal point.

— The last two points in EOSS and AOSS are almost the same, while the first 
two points differ noticeably.

Before we form a judgement of superiority of one criterion over the others, let 
us analyse individual results. As a factor of OSS quality, one should consider ability 
of particular OSS to yield parameter estimates as close to their initial values A. as 
possible.

As it results from Figure 3, according to the above criterion, the worst is

E-optimal design. Deviation A = (A. -  A)/A. [%] (in brackets) is as big as 16% and 
49% respectively for A} and A4. This is not a satisfactory result: reduced EOSS 
causes considerable worsening of parameter estimates accuracy and leads to the 
estimates which differ noticeably from their real values.

Remaining optimisation criteria give very similar results, with acceptable error 
levels. Deviations, for particular methods and individual parameters, are compared in 
Table 5. As it results from the table, for D-optimisation, deviations Aa of three 
parameters Ar Av A} from their initial values, are smaller than for the other criteria. 
Deserving attention is also S-optimisation: the maximal deviation, i.e. Aa = 4.7% is 
the smallest from among the other maximal deviations Aa = 6.2% for D-optimisation 
and Aa = 7.2% for A-optimisation. The best result for S-optimisation is due to the 
rule adopted: each parameter has its representative in sampling schedule being 
optimised, its optimal time point in the SOSS.



EOSS t\ h h U

h 0 1.9138 9.6131 60.2844

a, -  std  dev, 0 0.1294 0.5320 0.7713

150 i -------- -  -----------1 150 ; 150 -------------------------------1 400

EOSS t\ h h u
h 0.2435 0.4657 8.5101 85.8939

<y, = std  dev, 0.0414 0.0614 0.4492 0.5731

EOSS h h h U

h 0 1.9092 10.2785 103.4664
a, = std  dev, 0 0.1376 0.5782 0.6934

Figure 2. Scatter in optimal sampling points 055=11! t, t} t J, mean optimal sampling points
I 1000

l  = ------ y  t' and their standard deviations a , = std dev, for D, E, S and A-optimisation
1 0 0 0  f i  '< '■
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15 20 25 0.01 0.02 0.03 0 5 10 0 1 2

D O S S A i A  3 A 4

J 1 8 . 9 0 9 3  ( 0 . 5 % ) 0 . 0 1 9 9  ( 0 . 5 % ) 6 . 0 9 2 0  ( 1 . 1 5 % ) 0 . 5 3 3 3  ( 6 . 2 % )

a  a , 0 . 9 4 3 3 0 . 0 0 2 1 1 . 0 7 1 5 0 . 1 9 0 5

15 20 25 0.01 0.02 0.03 0 5 10 0 1 2

D O S S A i A 2 A 3 A 4

A, 1 8 . 9 7 2  ( 0 . 1 4 % ) 0 . 0 2 0 3  ( 1 . 4  % ) 7 . 1 4 8 8  ( 1 6  % ) 0 . 9 8 1 4  ( 4 9  % )

O  A, 0 . 9 7 1 0 0 . 0 0 2 3 1 . 5 5 8 2 0 . 5 7 8 9

D O S S A, A 2 A 3 A 4

A, 1 8 . 8 6 4  ( 0 . 7  % ) 0 . 0 1 9 9  ( 0 . 5  % ) 6 . 1 3 1  1 ( 2 . 1  % ) 0 . 5 2 4 8  ( 4 . 7  % )

a  a . 0 . 9 8 3 6 0 . 0 0 2 6 1 . 1 1 0 3 0 . 1 9 6 4

0 0 0 0 
15 20 25 0.01 0.02 0.03 0 5 10 0 1 2

D O S S A i a 2 A 3 A 4

A, 1 8 . 8 2 0  ( 0 . 9  % ) 0 . 0 2 0 1  ( 0 . 5  % ) 6 . 2 2 6 7  ( 3 . 6  % ) 0 . 5 3 8 8  ( 7 . 2  % )

°  a , 1 . 0 0 1 1 0 . 0 0 2 3 1 . 1 2 0 8 0 . 2 2 0 2

Figure 3. Histograms perform scatter in A., i-1 , 2, 3, 4 calculated fo r  1000 simulation runs. The 
parameter estimates are based on individual OSS for each o f  the considered criteria
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Table 5. Comparison o f  deviations A A o f  parameter estimates A. from their initial values. The shaded 
area refers to the worst criterion

DOSS SOSS A OSS BOSS
A A, [%] 0.5 0.7 0.9 0.1
A A , [%] 0.5 0.5 0.5 1.4
4 , ,  [%] 1.15 2.1 3.6 16
A a , [%] 6.2 4.7 7.2 49

Table 6. Comparison o f  standard deviations a  A ofparameter estimates A, The shaded area refers to 
the worst criterion

DOSS SOSS A OSS BOSS

A, 0.9533 0.9836 1.0011 0.9710
0.0021 0.0026 0.0023 0.0023

a A, 1.0715 1.1103 1.1208 1.5582
0.1905 0.1964 0.2202 0.5789

In Table 6 standard deviations aA of parameter estimates A ,■ are presented. 
D and S-optimisations give very similar results, for A-optimisation the particular <ja 
values are slightly bigger than for the latter, while E-optimisation gives the worst 
results.

Finally, as far as efficiency of OSS being designed is concerned, D and 
S-optimisations are almost equally good. The results are presented in Table 4. 
Percentage fraction of not optimal (locally optimal) results are 4.1% and 5.9%, 
respectively for S and D-optimisation. For A and E-optimisation we obtained 
respectively 13.7% and 33.1%. It allows forming the opinion of poorer robustness 
and practical usefulness of A and E-optimisations.

Let us sum up all the presented results:

— By comparison with the other criteria, D-optimisation approved their useful
ness and high accuracy of reestimated parameters.

— As it turned out, S-optimisation can be considered as a very competitive choice 
with regard to D-optimisation. Both the methods give very similar accuracy 
of parameter estimates, while S-optimisation is more robust. It gives the smallest 
number of local extreme from among all considered methods.

— S-optimisation assures that every parameter has its representative in sam
pling schedule, its individual optimal point in SOSS.

— Accuracy of parameter estimates based on E-optimisation is significantly worse 
in comparison to the other criteria

— A-optimisation, despite satisfactory good accuracy of parameter estimates, 
should not be recommended due to high rate of not globally optimal results.
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