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Abstract: A new probability distribution is obtained, termed the mixed pixel distribution, appropriate 
for the mixing proportion in digital images when the point spread function has a bivariate normal density. 
It is used to derive the distribution of pixel values in X-ray CT images where pixels may be a mixture 
of two tissue types. In a simulation study it is shown that, by fitting this distribution to histograms of 
pixel values, tissue proportions are estimated more accurately than using threshola-based methods.
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1, Introduction
The primary application of X-ray computed tomography (CT) as with several 

other non-invasive medical imaging techniques, is diagnosis by detection of 
physiological abnormalities. However, X-ray CT also has the potential to be used 
quantitatively, to estimate tissue volumes, in human obesity studies, for example. 
Here, we describe a quantitative application involving estimation of sheep tissue 
proportions as part of a sheep breeding programme. However, the methodology is 
generic and could be used with other subject domains and imaging modalities.

The protocol established in the SAC-BioSS CT Unit in Edinburgh, is to obtain 
a conventional X-ray image and three anatomically-located CT cross-sectional
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images for each sheep. For example, Figure la shows a lumbar image. For 
a discussion of the use of medical imaging devices to estimate sheep composition, 
see Simm (1992). In CT, X-rays are projected through a subject from different 
directions, and a computer reconstructs an image of the distribution of tissue types 
from the transmitted X-rays. As is the convention with X-ray plates, light areas in 
the image denote regions which transmitted less X-rays. The lightest area is the 
backbone.

Figure 1. X-ray CT lumbar image o f a sheep: a) original (with the white square identifying 
the sub-image in Figure 3a), b) after processing to remove internal organs and cradle 

in which the sheep is lying, and with a stretched grey-scale pixel display, 
to emphasise differences between fat and lean tissues

The muscles and internal organs appear slightly lighter than the fat tissue 
because they are slightly more opaque to X-rays. The U-shaped plastic cradle in 
which the sheep was lying can also be seen. X-ray attenuation is measured in 
Hounsfield units, which range between -1000 and about 1000. For an introduction to 
image analysis see, for example, Glasbey and Horgan (1995).

From images such as Figure la, we wish to estimate the animal’s fat and muscle 
tissue volumes. Our approach has three stages, first we automate the identification 
of relevant tissue areas in the CT images, by excluding the internal organs and 
cradle, to produce images such as Figure lb; then we estimate fat and muscle 
proportions; and finally we infer whole-body tissue proportions by pooling 
information from the CT images and a conventional X-ray image. For a method 
which addresses the first stage, see Glasbey, Robinson and Young (1999). In this 
paper we focus on the second stage, estimation of tissue proportions from images 
like Figure lb.

One way of estimating tissue proportions is by first classifying each pixel 
separately. However, this is unnecessary if we only want to know overall 
proportions. We can simply analyse the histogram of pixel values, such as that 
shown in Figure 2, obtained from Figure lb. The smaller peak on the left of Figure 2 
is produced by fat tissue, and the larger peak on the right is the result of muscle.
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Pure tissues of either type have only a narrow range of pixel values. The many 
pixels falling between these peaks are caused by mixed pixels, which are part 
muscle and part fat (or part bone, etc.) Currently, areas are estimated simply by 
thresholding at the midpoint between the two peaks in the histogram. Here we 
propose a new mixed pixel distribution, and use it to derive a more efficient method 
for estimating tissue proportions. We develop the theory in section 2, and conduct 
a simulation study in section 3, to compare the results with those obtained by other 
methods.

-150 '/5  -100 -75 -50 -25 0 ?h  50 75

pixel value

Figure 2. Histogram ofpixel values in Figure lb, for a restricted range of Nouns field values

2. A new mixed pixel distribution
In order to identify the appropriate distribution to account for mixed pixels, we 

first need to model the spatial response of a pixel, the so-called point spread 
function. There are several methods for doing this (Dore, Kearney and De Guise, 
1997). Here we adopt a simple approach: we chose part of the image containing the 
edge of the cradle in which the sheep is lying, identified by the white square in 
Figure la, which we know to be a step edge.

We modelled data near the edge of the cradle by pixel (i, j)  having a predicted 
value of g.j, given by:

g,, =a + p(f> cjj[_
T

V

where dy =y -  -/(k, - i f  +(k2-  j ) 2. ( 1)

Here, we assume that this part of the cradle can be approximated by an arc of 
a circle with radius y, centred at (Kr K2), d.. is the distance from pixel (/, j)  to the 
edge, background and cradle pixels have mean values of a and (a  +/?) respective­
ly, and 0 is a 0-1 function that specifies the response of a pixel, after scaling by r.
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It is the one-dimensional integral of the two-dimensional point spread function. 
We estimated the 6 parameters (a, (5, z, y, k,, k2) in (1) by minimising the sum- 
of-squares of the difference between the data and the model, for several choices 
of <j>: a logistic function, a normal integral and a linear ramp. Table 1 summarises 
the results.

Figure 3. Data used to estimate point spread function: a) subimage from Figure la  together 
with estimated edge of the cradle, b) data near the edge o f the cradle plotted against that distance, 

together with fit o f model (I) using a normal integral function

Table I. Least squares fit of model (1) to data in Figure 3b

<t> ramp logistic normal integral

sum o f  squares 19.4 18.8 18.1

The normal integral gave the best fit, and is also the only one of the three that 
corresponds to an analytically simple two-dimensional point spread function, in this 
case a bivariate normal density. Therefore, we chose:

<t>(x) = <&(x) = -jL= [ e~y2/2dy,
-v/2 n

where O is the standard notation for a normal integral. Figure 3a shows the esti­
mated edge of the cradle superimposed on the sub-image, and Figure 3b shows 
data and fitted values plotted against D, from which we see that the agreement 
between the model and the data is very good. The most important parameter is r, 
which we estimate to be 0.41.

The standard use of the point spread function in image analysis is in 
deconvolution, to restore the preblurred image. However, this is not our purpose, 
because we are not interested in the individual classification of each pixel in the
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image. Instead, we use the point spread function to derive the appropriate 
distribution to fit to histograms such as Figure 2. For simplicity we restrict attention 
to only two tissue types, though the method is extendible to more. Let us assume 
that a proportion p  of pixels are pure fat, and these pixel values are normally 
distributed with mean u , variance cr̂ . Similarly, assume that a proportion pm of 
pixels are pure muscle, normally distributed with mean p , variance a  2. From the 
value of r, it is reasonable to specify that any pixel more than one unit distant from 
a tissue boundary is either pure fat or pure muscle. The remainder of the pixels, 
proportion (1 - pf ~ pm), are mixed. We will assume that tissue boundaries are 
sufficiently smooth to be approximated locally by straight lines, and that a negligible 
number of pixels are affected by more than one boundary. We claim that the 
distance, D, from a random line to a randomly chosen pixel within one unit distance 
of it, is uniformly distributed between -1 and +1. The justification is as follows:

The perpendicular distance from a pixel at (i,j) to the straight line, y  = A (x -  c), is:

A ,  =
x/l + A2

Without loss of generality we can assume that the slope | A | > 1, because if not 
we simply need to exchange x and y. The line intersects the .t-axis at c, and we

can choose the .v origin to be such that c‘e [ -^ ,+  T]. Further, we assume that the
positioning of the sheep in the X-ray machine has sufficient variability that we can 
assume the boundary is positioned randomly with respect to the pixel lattice, and

therefore that c is uniformly distributed between - r  and +T, i.e.:

It follows that:

U
1 1
2 ’+ 2

\

,v/ [ V1 + A2 ’ Vl + A2

If we restrict to points on the .v-axis (i.e. y = 0), and choose i at random from the set 
(-n, -(n  -1), ..., n), for n > 1, subject to the restriction that D. e [-1,+ 1] then it is 
not difficult to see that:

D.,0~ U ( - 1,+ 1).

The same result applies for other values of j  e ( - ( f t -1), - ( n - 2), ..., (/?— 1)) pro­
vided that | A | > 1. Therefore, if we also choose j  at random from the set 
(—(«—1), -(« -2 ), ..., ('J-l)) then:

D.,. ~ U (-1,+ 1),

which is the result we require.
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In a mixed pixel, the proportion of fat, denoted p , is related to D by:

p  =  O

Differentiating this, we obtain:

dp _ e

V T J

-DU2t ‘

dD V 2/rr2
As D has probability density function:

f {D)  = \>dD for 1 > D > -1, 

it follows that the probability density function for p is:

f i P) -
J2nz

2e
-— - d p2 '-D‘ /2z

gt'1’ (p)l I2dp for d > ( l / r )> p > 0 ( - l / r ) .

(2)

(3)

Figure 4 shows this distribution. As far as we are aware, it has never previously 
been proposed. It is not included in the many distributions given by Johnson, Kotz 
and Balakrishnan (1994), derived from the normal distribution. We term it the mixed 
pixel distribution. Santago and Gage (1995) also derived a mixed pixel distribution 
but, in our view, mistakenly assumed p to be uniformly distributed.
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Figure 4. The new mixed pixel distribution for p, the proportion of fa t in a mixed pixel, given by (3)

Conditional on p the pixel value is normally distributed, as follows: 

y \ p ~  N({ppy +(1 - p ) p m} , { p a j  +(1 - p ) o 2m}). (4)
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By convolving this with (3), we obtain the distribution of mixed pixels:

(• <t>(l/r) e  ' "  ’  ' '
t.i'-ppi /  ]2/ 2[pcr7 -t-d-picr,;, ]

/ + 0 - p K 2J

dp
(5)

This has no analytic solution, but can be computed by numerical integration for 
any specified values of the parameters.

Finally, we combine (5) with that for pure pixels, to obtain a probability density 
function of pixel values of:

f * ( y )  = p ,  I-------=  +  p,n — 7— 7 +  (1 -  P f  ~  Pm ) f ( y )• ( 6)
p i t a }  p n o l

We can estimate the 6 parameters (pf , pm, a 2, a 2, pj.,pn)  in (6) numerically by 
maximising the log-likelihood:

L = 5 > vlog /* (T ),
>•

where ny is the number of pixels taking value y  in histograms such as Figure 2. 
Or, we could assume p , pm, <72 and a  2 are known and only estimate pf and pm. 
Figure 5 shows the fit to the histogram in Figure 2, with all six parameters estima­
ted. For comparison, the histogram of pure pixels alone is also shown for the same 
values of p , pm, a j  and a 2, from which the effect of mixed pixels is evident. 
The agreement between the data and the distribution given by (6) can be seen to 
be excellent.

SOI
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pixel value

Figure 5. Histogram ofpixel values in Figure lb, together with: (—) maximum likelihood fit of 
distribution (6) and, (-----) the same distribution but with the mixed pixel component omitted
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3. Simulation
We compared three methods for estimating tissue areas from a histogram of 

pixel values:
1. Choose a threshold midway between the means of the two normal densities:

. _ Hf+Hn,
2 ’

and estimate the fat area by the number of pixels less than tr This is the 
method in current usage in the SAC-BioSS CT unit.

2. Choose as a threshold the point of minimum misclassification, where the two 
normal probability densities cross. This is the solution of:

1—  exp
1

= —  exp< -O’- / O '
2cr:

which leads to:

+2(crj-a;„)\og(af / a j
l2~ , 2 2 ,

where the sign of ± is chosen to ensure j.if  < t2 < Hm. Again we estimate the 
fat area by the number of pixels less than /

3. Fit (6) numerically by maximum likelihood to the histogram, and estimate the 
fat area to be proportional to {p f + \ ( \ -  p f -  p m)}.

Further, we either assumed that values of pf , pm, a- and cxm2 were correctly 
known, or had to be estimated from the histogram by maximum likelihood. For the 
two threshold methods, we fitted a mixture of two normal distributions, excluding the 
mixture component.

Images were simulated of size 60 x 60 to approximate the number of pixels in 
histograms such as Figure 2. A set of seven randomly-positioned parallel lines were 
simulated which crossed each image, to represent alternate layers of fat and muscle 
tissue. By choosing seven boundaries, the number of mixed pixels matched that in 
typical sheep CT images. True tissue areas were computed using standard formulae 
from coordinate geometry. Perpendicular distances of pixels were computed from 
their nearest boundary. Pixels more than a unit distance from a boundary and lying in 
a fat region, were generated from normal distributions with mean fi = -125, 
variance a j = 300, chosen to represent typical values from sheep CT images. 
Similarly, muscle pixels were generated from normal distributions with mean 
pm = 45, variance crj = 500. The remainder of the pixels were represented as 
mixed pixels. Based on the distance, D to the nearest boundary, p was computed 
using (2), and then a pixel value was drawn from the distribution given in (4). Finally, 
a histogram of pixel values was computed from each simulated image.
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The six methods of estimation were compared on the basis of the root mean 
square error (RMSE) of estimated fat area, averaged over 100 independent 
simulations. If, in the /th simulation, the true fat area is F and the estimated area 
using a particular method is f ., then

100
RMSE = J —  V  (F -  F ]>2 

T l O O ^

Results are given in the middle row of Table 2. We see that the new method outper­
forms both of the threshold-based ones, irrespective of whether parameters are 
known or have to be estimated. To check the sensitivity of the results to the particu­
lar choices of parameters, simulations were repeated for other values of a: and a j ,  
it not being necessary to also vary ft/ and j.im. These are also given in Table 2. The 
threshold methods sometimes give biased results and this accounts for the RMSEs 
sometimes being large. The new method, both when parameters are known or esti­
mated, consistently estimates fat area more accurately than the other methods, 
except when a 2 = 600, a  2 = 1000, often by a considerable margin.

Table 2. Root mean square errors o f estimated fat area, by applying six methods to data from 100 
simulations for each of a range of values of ay  and o f

parameters known parameters estimated
1

°7
2

TT m t\ h new 11 h new

150 250 6.0 25.2 4.7 9.5 51.4 5.0
500 13.5 57.0 5.4 8.5 74.6 8.1

1000 51.4 79.7 7.3 27.0 95.0 18.6
300 250 5.8 11.2 5.2 8.4 13.4 5.5

500 10.9 23.5 5.8 9.5 38.3 8.5
1000 48.6 47.6 7.7 30.3 64.5 22.3

600 250 21.1 39.0 6.6 19.6 33.9 8.7
500 13.3 9.4 7.1 18.8 18.5 9.9

1000 30.9 26.4 8.9 22.1 46.1 24.9

4. Discussion
We have developed a new mixed pixel distribution, and demonstrated its use in 

estimating tissue proportions in images more accurately than using threshold-based 
methods. Although the application used X-ray CT images and involved estimation of 
sheep tissue proportions, the methodology is generic and could be used with other 
imaging modalities and subject domains, such as human obesity studies.

Further work is needed to develop efficient estimators when more than two 
tissue types are present. It may be necessary to take into account a pixel’s spatial 
context, i.e. values of neighbouring pixels. Methods have already been developed for 
cases in remote sensing where the image is multivariate (Foody and Cox, 1994).
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Also, the assumption that distances D are uniformly distributed between -1 and +1 
may need to be modified for images with many fine tissue structures, by using 
nonparametric density estimation.
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