
TASK QUARTERLY3 No 4 (1999), 397-408

3D THI NNING AND ITS APPLICATIONS 
TO MEDICAL IMAGE PROCESSING

KALMAN PALAGYI1, ERICH SORANTIN*;
CSCNGOR HALMAI1 AND ATTILA KUBA1

‘Department o f Applied Informatics, Jozsef Attila University,
H-6701 Szeged P.O. Box 652, Hungary 

palagyi@ infu-szeged.hu

2Department o f Radiology, Karl Franzens University, 
Auengruggerplatz 34, A-8036, Graz, Austria

Abstract: Skeleton is a frequently used feature to represent general form of an object. The importance 
of that region-based shape feature shows an upward tendency in medical image processing, too. This 
paper summarizes the major skeletonization approaches, the parallel thinning methodologies in 3D. and 
some emerged medical applications. An application to calculate the cross-sectional profiles of blood 
vessels is also presented.
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1. Skeleton and skeletonization techniques
The notion of skeleton was introduced by Blum [3] as the result of the Medial 

Axis Transform. It is a region-based shape feature/descriptor, which summarizes 
the general form of objects/shapes. A very illustrative definition of the skeleton is 
given using the prairie-fire analogy: the object boundary is set on fire and the 
skeleton is formed by the loci where the fire fronts meet and quench each other. 
This definition can be naturally extended to any dimension. In the 2D/3D Euclidean 
space, the skeleton is the locus of the centers of all maximal inscribed disks/balIs. 
Note that maximal inscribed /?D hyperspheres are to be considered in /iD. The 
equivalence of the “meeting points” of the prairie-fire and the centers of maximal 
inscribed hyperspheres has been proved by Calabi and Hartnett [7]. The continuous 
skeleton of a solid 3D box is illustrated in Figure 1.

There are two major methods for shape representation. The first method 
describes the boundary that surrounds an object. The second one gives
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Figure 1. Skeleton o f a (3D) solid box

a representation of the region that is occupied by the object to be analyzed. 
Boundary-based techniques are widely used but there are some deficiencies which 
limit their usefulness in practical applications, especially in 3D [29]:

— methods of differential geometry are rather sensitive to noise;

— occlusion may seriously disturb boundary-based descriptors;

— they are not appropriate to extract global shape features and to make them 
explicit;

— they can rather insufficiently reveal the hierarchical organization of the shape.

The concept of skeletonization (i.e., skeleton extraction from discrete binary 
images) should be able to help exactly at the points listed above. The local object 
symmetries represented by the skeleton certainly cannot replace boundary-based 
shape descriptors, but complement and support them.

During the last two decades skeletonization has become a challenging research 
field. There are two major requirements to be complied with [29], The first one is 
geometrical. It means that the skeleton must be in the “middle” of the object and 
invariant under geometrical transformations including translation, rotation, and 
scaling. The second one is topological requiring the produced skeleton to be 
topologically equivalent to the original object.

Three major discrete skeletonization methods have been proposed:

— using distance transformation;

— extracting from Voronoi-diagram;

— thinning.
The first method is to find the maximal inscribed hyperspheres. It requires the 

following 3-step process:



3D Thinning and its Applications to Medical Image Processing 399

1. The original binary picture is converted into another one containing feature and 
non-feature elements, where feature elements belong to the boundary of the 
discrete object.

2. The distance map is generated where each element has a value that approxi­
mates the distance to the nearest feature element [4],

3. Local maxima or ridges in the distance map are detected as skeletal points.

The result of the distance transformation depends on the selected distance and 
the ridge extraction is a rather difficult task. The distance map based method fulfils 
the geometrical requirement if a good approximation to the Euclfdean distance is 
applied, but the topological correctness is not guaranteed.

The Voronoi diagram of a discrete set of points (called generating points) is the 
partition of the given space into cells so that each cell contains exactly one 
generating point and the locus of all points which are nearer to this generating point 
than to other generating points. It has been shown that the skeleton of an object 
which is described by a set of boundary points can be approximated by a subgraph 
of the Voronoi diagram of that generating points [6]. Both requirements can be 
fulfilled by the skeletonization based on Voronoi diagrams but it is regarded as an 
expensive process, especially for large and complex objects [21].

The thinning process is a frequently used method for producing an 
approximation to the skeleton in a topology-preserving way [14], It is based on 
digital simulation of the fire front propagation: border points (i.e., object points that 
are “adjacent” to the background) of a binary object that satisfy certain topological 
and geometric constraints are deleted in iteration steps. The entire process is repea­
ted until only the “skeleton” is left. The iterative process is shown in Figure 2. The 
topologically oriented thinning pays less attention to the metric properties of the 
object, therefore, the invariance under rotation (object orientation) is not guaranteed.

Figure 2. Thinning o f a doughnut-like 3D object. Results o f the layer by layer deletion steps are 
denoted by different grey-levels. The darkest points belong to the “skeleton ". (A point o f a 3D binary 

picture can be modelled by a lattice point or by a unit cube. In this figure cubes represent points
belonging to the actual object)



We prefer thinning, since it:

— preserves topology;

— makes easy implementation possible (as a sequence of local Boolean opera­
tions);

— takes the least computational costs;

— can be executed in parallel.

2. Parallel thinning in 3D
A 3D binary’ picture [14, 15] is a mapping that assigns the value of 0 or 1 to /  

each point with integer coordinates in the 3D digital space denoted by Z3. Points 
having the value of 1 are called black points, while 0’s are called white ones. Black 
points form objects of the picture. White points form the background and the 
cavities of the picture. Both the input and the output of a picture operation are 
pictures. Thinning is a picture operation which is regarded as a reduction (i.e., it can 
change some black points to white but white points remain the same). A thinning 
algorithm does not preserve topology [15] if:

— any object in the input picture is split (into two or more ones) or completely 
deleted,

— any cavity in the input picture is merged with the background or another 
cavity, or

— a cavity is created where there was none in the input picture.
There is an additional concept called a hole in 3D pictures. A hole (that 

doughnuts have) is formed by 0’s, but it is not a cavity [14]. Topology preservation 
implies that eliminating or creating any hole is not allowed.

Each thinning algorithm can be sketched by the following program: 
repeat
changing “deletable ’’ border points to white 
until no points are deleted

Existing 3D thinning algorithms differ from one another in two regards:

— How to organize an iteration step (i.e., the kernel of the repeat cycle)?

— Which types of border points are regarded as “deletable”?

A simple point is an object point whose deletion does not alter the topology of the 
picture [20]. Note that the simplicity of a 3D point can be decided by investigating its 
3x3x3 neighborhood [14, 15]. Thinning algorithms delete simple points, which are not 
end-points, since preserving end-points provides important information relative to the 
shape of the objects. Curve thinning preserves line end-points while surface 
thinning does not delete surface end-points (see Figure 3).

Note that the Euclidean skeleton represents some kinds of local object 
symmetries [29]. The skeleton of a 3D object can contain some surface patches
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Figure 3. A 3D synthetic object containing a character "A "(left); its medial surface (centre);
its medial lines (right)

(representing mirror symmetry and/or rotational symmetry) and some line segments 
(representing axial symmetry). The results of the surface thinning algorithms are 
closer to the 3D Euclidean skeleton than the “skeletons” produced by curve thinning 
algorithms. Axial symmetry is emphasized by curve thinning and other kinds of 
symmetries are suppressed. Extracting curve skeleton or medial lines is more 
relevant for a “tubular” object (e.g., blood vessels, some kinds of bones, and airway 
trees) than producing its surface skeleton or medial surface.

Most of the existing thinning algorithms are parallel, since the fire front 
propagation is by nature parallel. (This means that all border points satisfying the 
deletion condition of the actual phase of the process are simultaneously deleted.) 
Those algorithms delete a set of simple points that can alter the topology. Three 
methods have been proposed to overcome this problem:

1. Algorithms belonging to the first type do not divide an iteration step into 
subiterations [17-19]. In order to preserve topology, these fully parallel algo­
rithms investigate some additional points that are in the 5X5X5 neighborhood 
but not in the 3X3X3 neighborhood.

2. The second type of algorithms examines the 3 x3 x3 neighborhood of each bor­
der point. Iteration steps are divided into a number of successive subiterations, 
where only border points of certain kind can be deleted in each subiteration. 
Consequently, each subiteration uses a different deletion rule. These algorithms 
are called directional or border sequential ones. Since there are six kinds of 
major directions in 3D images, six-subiteration directional thinning algorithms 
were generally proposed [2, 12, 16, 22, 31]. Note that Palagyi and Kuba have 
been proposed an eight-subiteration algorithm [24] and a twelve-subiteration 
one [25], too.

3. The third approach is the subfield sequential method. The set of points Z3 is 
divided into more disjoint subsets which are alternatively activated. At a given 
iteration step, only border points of the active subficld are designated to be
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deleted. Two subfield sequential 3D thinning algorithms working in cubic grid 
have been proposed so far [1,27], Both algorithms use eight subfields. It is not 
by accident, since using those eight subfields ensures the topology preserva­
tion. Note that Palagyi and Kuba proposed a hybrid thinning algorithm using 
both subfield sequential and directional approaches [23],

The above three thinning methods are proposed to answer the first question: 
How to organize an iteration step of parallel thinning for providing topology 
preservation? The second important question is: Which types of black points are 
designated to be deleted? Some algorithms (in each phase) delete all simple points of 
a given type which are not end-points [1, 2, 16], others give the prescribed 
neighborhood of dcletable points [12, 17, 18, 22-25, 27, 31]. Curve thinning (or 
medial line thinning) preserves line end-points while surface thinning (or medial 
surface thinning) does not delete surface end-points [16, 31], Note that different 
surface end-point characterizations have been proposed by various authors [1,2, 12, 
16, 17,31].
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3. Skeletons in medical image processing
The importance of the skeleton as a region-based shape feature shows an 

upward tendency. Some important applications have I appeared in medical image 
processing, too.

Van den Elsen et al. [32] extracted ridge-like features in their medical image 
registration method. They used 3D thinning to eliminate unwanted thick ridges and 
blobs.

Various authors built distance maps from the extracted features in their 
registration methods [5, 13]. More accurate matching based on distance transfor­
mation can be reached if thinned feature data set is used. Thinning provides relevant 
information and reduces the feature search space of the geometric model to be 
evaluated.

Gerig et al. [11] used 3D thinning for symbolic description of cerebral vessel 
tree. Szekely et al. [28] applied a 3D thinning algorithm for structural description of 
cerebral vascularity. Ma and Sonka [18] developed a 3D algorithm for thinning 
airway trees extracted from 3D CT studies.

Ge, Stelts and Vining [10] applied curve thinning for virtual colonoscopy. The 
resulting skeleton can be successfully used to guide the auto-piloting of virtual 
colonoscopy.

Naf et al. [21] proposed skeletons for the characterization and recognition of 3D 
organ shape. They illustrated the power of skeletal representation by two appli­
cations: bone thickness characterization (for optimal prosthesis placement in hip joint 
replacement operations) and generation of skeleton of a human brain (for analyzing 
its cortical structure).

A method has been published by Tari et al. [30] for extracting shape skeletons 
from (gray-scale) medical images.

Palagyi and Kuba have developed four different 3D thinning algorithms [22-25].



3D Thinning and its Applications to Medical Image Processing 403

Note that the three directional ones [22, 24, 25] (using six, eight, and twelve 
subiterations, respectively) are capable of extracting both medial lines and medial 
surfaces. On the other hand, the foAAAh algorithm [23] was developed only for 
curve thinning.

Those algorithms have been tested for several synthetic and medical objects. 
Here we present two examples: both surface thinning and curve thinning of a human 
ventricle (Figure 4) and surface thinning of blood vessels of a human liver (Figure 5) 
are illustrated.

Figure 4. Thinning of a human ventricle extractedfrom a (grey-scale) 3D MR brain study (left); the 
result ofsurface thinning (centre); the result o f curve thinning (right). The skeletons were processed 

by the eight-subiteration directional algorithm [24]

Figure 5. Thinning of blood vessels o f a human liver (left); the result o f curve thinning (right). 
The skeleton was processed by the six-subiteration directional algorithm [22]

4. Application to calculating cross-sectional profiles
Curve thinning can be used as in our example for calculating the central path 

within a prior segmented tubular structure: for calculating cross-sectional profiles in 
order to quantify narrowing in vessels or airways inter-observer of physicians up to 
50/path planning of virtual endoscopy [26].
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We used the cross-sectional profile in patients suffering from infra-renal aortic 
aneurysms (AAA). AAA are abnormal dilatations of the main arterial abdominal 
vessel due to atherosclerosis. AAA can be found in 2% of people older than 60 
years. If the diameter is more than 5 cm, then the person is at high risk for-AAA 
rapture, which leads to death in 70-90% of cases. For therapy two main options 
exist: surgery or endoluminal repair with stentgrafts. For optimal patient 
management the AAA extent regarding the “true diameter” as well as the distance 
to the renal arteries and the aortic bifurcation have to be knowr

For imaging of AAA different imaging modalities can be used, most often Spiral 
Computed Tomography (S-CT). Since these AAA extend in any direction of 3D, an 
axial S-CT slices never “true diameter” i ; dep'ctec'

Apply' g tl iwning to S-CT slices allows to calculate the central path of the 
abdominal aorta. Along the medial axis the 3D cross-sectional profde as well as the 
3D diameter are calculated and depicted as a ! ne chart, where all relevant clinical 
informat m is depicted.

The major phases of the proposed method are described as follows:

— segmentation, computation of the AAA skeleton produced by curve thinning;

— separation of the AAA central path from that skeleton;

— smoothing of the AAA central path and calculation of the AAA crossectional 
profile orthogonal to the central path.

AAA segmentation was performed by an in house developed semiautomated 
software usii g snakes. The segmented voxels were interpolated in order to obtain 
isotropic voxels, meaning that all voxels had the same extension in every direction of 
the 3D space. Finally, the segmented voxels were saved as a binary volume (3D 
binary picture). The AAA skeleton was computed by appb ng a six-subiteration 
directional thinning algorithm [22], The raw skeleton and its medial path are 
illustrated in Figure 6. This was followed by the separation of the AAA central path 
from the side branches. The segmented AAA and the computed 3D skeleton were 
converted accord ’g to the standards of the Virtual Reality Modelling Language 2.0 
(VRML) [8]. Using a VRML editor the operator could inspect interactively the 
trachea and the 3D skeleton from any view within the 3D space — either from 
outside or from nside. The operator marked the startpoint and the endpoint of the 
central path \V :h a color different to that of the remaining 3D skeleton. Afterwards 
the shortest path in the skeleton between the startpoint and endpoint was computed 
using a shortest-path searching algorithm [9], The determ led central path was 
represented by a sequence of vectors from the starting point to the endpoint. Those 
vectors formed a zigzag line. The smoothing method connected the middle point of 
each vector. 100 iterations of this algorithm produced a sufficient straight medial 
axis. Figure 7 demonstrates a viratal angioscopic view with the calculated AAA 
central path. Orthogonal to the Aa A medial axis the cross-sectional area was 
calculated from the interpolated data volume, wh' h represented the segmented 
AAA. Finally a line chart was drawn, where for every point of the AAA medial
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Figure 6. Raw skeleton as a result of the applied curve thinning (top) and the determined central path 
(bottom). (The skeletal parts are superimposed to the original object)

Figure 7. Corresponding parts o f the original central path and the smoothed one

axis, the crossectional area was plotted against the distance in 3D to the vocal 
cords. The positions of the stored anatomic landmarks were automatically marked 
on the charts.
Acknowledgements

This work was supported by OTKA T023804 and CEEPUS A-34 Grants.



406 K. Palagyi, E. Sorantin, C. Halmai and A. Kuba

References

[1] Bertrand G. and Aktouf Z., A 3D thinning algorithms using subfields, in Proc. SPIE 
Conf. on Vision Geometry III 2356,113-124,1994

[2] Bertrand G., A parallel thinning algorithm for medial surfaces, Pattern Recognition 
Letters 16,979-986,1995

[3] Blum H., A transformation for extracting new descriptors o f shape, Symposium on 
Models for the perception o f Speech and Visual Form, 1964

[4] Borgefors G., Distance transformations in arbitrary dimensions, Computer Vision, 
Graphics, and Image Processing 27,321 -345 ,1984

[5] Borgefors G., Hierarchical chamfer matching: A parametric edge matching 
algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 
849-865,1988

[6] Brandt J.W. and Algazi V.R., Continuous skeleton computation by Voronoi diagram, 
CVGIP: Image Understanding 55,329-338,1992

[7] Calabi L. and Hartnett W.E., Shape recognition, prairie fires, convex deficiencies and 
skeletons, Am. Math. Monthly 75 ,335-342, 1968

[8] Carey R. and Bell G., The Annotated VRML 2.0 Reference Manual, in The VRML 2.0 
Handbook: Building Moving Worlds on the Web, Eds.: Hartmann J„ Wemecke J., 
Carey R., Addison-W esley Devekopers Press, 197,1996

[9] Connan T.H., Leiserson C.E. and Rivest R.L., Introduction to Algorithms, MIT Press, 
1993

[10] Ge Y., Stelts D.R. and Vining D.J., 3D skeleton for virtual colonoscopy, in Proc. 4lh Int. 
Conf. Visualization in Biomedical Computing, VBC’96, Lecture Notes in Computer 
Science 1131, Springer, 449-454,1996

[11] Gerig G., Roller Th., Szekely G., Brechbiihler Ch. and Kiibler O., Symbolic description 
o f 3-D structures applied to cerebral vessel tree obtained from MR angiography 
volume data, in Proc. 13th Int. Conf. Information Processing in Medical Imaging, 
IPMI’93, Lecture Notes in Computer Science 687, Springer-Verlag, 94—111,1993

[12] Gong W.X. and Bertrand G., A simple parallel 3D thinning algorithm, in Proceedings 
10th IEEE International Conference on Pattern Recognition, 188-190,1990

[13] Jiang H., Robb A. and Holton K.S., A new approach to 3-D registration o f 
multimodality medical images by surface matching, in Proc. SPIE Conf. on 
Visualization in biomedical computing 1808,196-213,1992

[14] Kong T.Y. and Rosenfeld A., Digital topology: Introduction and survey. Computer 
Vision, Graphics, and Image Processing 48 ,357-393,1989

[15] Kong T.Y., On topology’ preservation in 2-D and 3-D thinning, Int. J. o f  Pattern 
Recognition and Artifical Intelligence 9, 813-844, 1995

[16] Lee T., Kashyap R.L. and Chu C., Building skeleton models via 3-D medial surface/ 
axis thinning algorithms, CVGIP: Graphical Models and Image Processing 5 6 ,4 6 2 -  
478,1994

[17] Ma C.M., A 3D fully parallel thinning algorithm for generating medial faces, Pattern 
Recognition Letters 16,83-87,1995

[18] Ma C.M. and Sonka M., A fully parallel 3D thinning algorithm and its applications, 
Computer Vision and Image Understanding 64,420^-33, 1996



3D Thinning and its Applications to Medical Image Processing 407

[19] Manzanera A., Bernard T.M., Preteux F. and Longuet B., Medial faces from a concise 
3D thinning algorithm, in Proc. 7th IEEE Int. Corif. on Computer Vision, ICCV’9 9 ,1999, 
to appear

[20] Morgenthaler D.G., Three-dimensional simple points: Serial erosion, parallel 
thinning and skeletonization, TR-1005, Computer Vision Laboratory, Computer 
Science Center, Univ. o f  Maryland, College Park, MD., 1981

[21] N af M„ Szekely G., Kikinis R., Shenton M.E. and Kiibler G., 3D Voronoi skeletons and 
their usage for the characterization and recognition o f 3D organ shape, Computer 
Vision, Graphics, and Image Processing 66 ,147-161,1997

[22] Palagyi K. and Kuba A., A 3D 6-subiteration thinning algorithm for extracting 
medial lines, Pattern Recognition Letters 19,613-627,1998

[23] Palagyi K. and Kuba A., A hybrid thinning algorithm fo r  3D medical images, Journal 
ofComputing and Information Technology 6 ,149-164 , 1998

[24] Palagyi K. and Kuba A., Directional 3D thinning using 8 subiterations, in Proc. 8,h 
Int. Conf. on Discrete Geometry for Computer Imagery, DGCI’99, Lecture Notes in 
Computer Science 1568, Springer, 325-336,1999

[25] Palagyi K. and Kuba A., A parallel 3D 12-subiteration thinning algorithm,
Graphical Models and Image Processing 61 ,199-221 ,1999

[26] Rubin P. and Johnston N., Measurement o f the Aorta and Its Branches with Helical 
CT, Radiology 206,823-829,1998

[27] Saha P.K., Chaudhury B.B. and Majumder D.D., A new shape-preserving parallel 
thinning algorithm for 3D digital images, Pattern Recognition 30, 1939-1955, 199'

[28] Szekely G., KollerTh., Kikinis R. and Gerig G., Structural description and combined 
3-D display for superior analysis o f cerebral vascularity from MRA, in Medical 
Imaging: Analysis o f  multimodality 2D/3D images, !OS Press, 183-194,1995

[29] Szekely G., Shape characterization by local symmetries, Habilitationsschrift, Institute 
for Communication Technology, Image Science Division, ETH Zurich, 1996

[30] Tari S., Shah J. and Pien H., Extraction o f shape skeletons from grayscale images, 
Computer Vision and Image Understanding 66,133-146 ,1997

[31] Tsao Y.F. and Fu K.S., A parallel thinning algorithm for 3-D pictures, Computer 
Graphics and Image Processing 17,315-331,1981

[32] Van den Elsen P. A., Maintz J.B.A., Pol E.J.D. and Viergever M. A.,
Image fusion using geometrical features, in Proc. SP1E Conf. on Visualization in 
biomedical computing 1808,172-186,1992


