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Abstract: In the paper the vortex in cell method for the simulation of the viscous flow in a complex 
geometry was described. Vorticity field is approximated by the collection of the particles that carries the 
circulation. The local velocity of a particle was obtained by the solution of the Poisson equation for the 
stream function by the grid method and then interpolation of velocity from the grid nodes to the vortex 
particle position. The Poisson equation for the stream function was solved by fast elliptic solvers. To be 
able to solve the Poisson equation in a region with a complex geometry, the capacitance matrix technique 
was used. The viscosity of the fluid was taken in a stochastic manner. A suitable stochastic differential 
equation was solved by the Huen method. The non-slip condition on the wall was realized by generation 
of vorticity. The program was tested by solving several flows in channels of different geometry and at 
a different Reynolds number. Here we present the testing results concerning the flow in a channel with 
sudden symmetric expansion, for the flow in channel with backward step, and the flow over building 
systems.
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1. Introduction
The vortex method belongs among the particle methods. It means that for the 

solution of the equation of motion we utilized the “particles” that are called vortex, 
which serve as a carrier of circulation [5, 6, 9, 15, 19, 25], The calculations were 
carried out in lagrangian coordinates. Generally the vortex methods are divided into 
the direct method, in which the velocity of the vortex particle is calculated by the 
summation of the contribution from all particles that exist at the flow by virtue of 
the Biot-Savart law [7], and the method called vortex-in-cell method [9], Due to 
the fact that the number of operations in the direct vortex method is in each time 
step proportional to the square of the number of particles that are in the flow 
~0(N2), computational time for solutions of the specific problems is very large. On
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the other hand, in the vortex in cell method [9], the velocity is calculated through 
differentiation of the stream function, which is obtained by the solution of the 
Poisson equation on the numerical grid. The number of operations per one time step 
is proportional to 0(N+M\ogM), where M  is the number of points on the mesh, and 
that results i i essentially reducing the computational time. Here we described the 
vortex-in-cell method. We wrote the general proposed program on the basis of the 
vortex i.i cell method and tested it solving several problems, and then compared the 
results with experimental data or with numerical results obtained by a different 
method.

2. Description of the Vortex-in-Cell Method
The non-dimensional equations of incompressible fluid motion in two-dimen­

sional space transformed to the vorticity transport equations [7] take the form:

+ ( u • V) co = —  A co 
d t  Re (1)

a d vA t/r = - co, u = — ,
d y

By/
B x  ’ (2)

where CO is the non-zero component of the vorticity vector, u = (u,v) is the velocity 
divided by the uniform inlet velocity U, vj/ is the stream function, t — is the time, 
and Re is the Reynolds number defined as Re = Uh/v, where v is the coefficient of 
kinematic viscosity.

The vortex method is based on the so-called viscous splitting algorithm. First, 
the Euler equation (v = 0) is solved; then the diffusion equation is solved. Due to 
the fact that the diffusion is taken into account in the stochastic manner, we can 
interpret the equation of fluid motion in terms of the stochastic processes. One can 
note that due to the incompressibility of the fluid, V • u = 0, the equation (1) can be 
rewritten as: ' ■

—  + V- (ucu) = —  A co (3)
d t  Re 1 '

Equation (3) is identical, with respect to form, to the forward Kolmogorow- 
Fokker-Planck equation that describes the probability density called transition 
density for the stochastic (Markov) process [17]:

P ( X ( t ) e A , t )  = ^ G (x , t ;a ,0 )d x ,
A

where P is probability, G(x,t;afi) is a solution of equation (3). In the theory of the 
stochastic differential equation, it is shown that the stochastic process that is de­
scribed by a stochastic differential equation (in the Ito sense) [17]:
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dX(t) = u(x, t) dt + (5)

has the transition density function that satisfies equation (3), where W means the 
Wiener process. So equation (5) described the convection and diffusion process 
and can be regarded as the fluid motion equation.

For the solution (5) we used a viscous splitting algorithm [6, 19]: velocity 
(drift) is calculated for inviscid flow and the last term is added in order to take into 
account the diffusive property of the viscosity of the fluid. In the present work 
instead of the commonly used Euler scheme that has the order of convergence of 
only 0.5, for the solution of equation (5) we use the generalized Huen scheme that 
has the order one [17]:

n +1 -  Xp + — ( u" (xp ) + U (Xp) )a t +
Re

A/ A Wn , (6)

* n I “where x p =xp + u ( Xp) A t+  —  At A w n, A IE is an increment of the
V Re

Wiener process, and At is a time step. It is well known that the increments of the 
Wiener process are the ..idependent Gaussian random variables with mean E(AIVJ 
= 0 and variance E((AIVJ2) = At; so it is relatively easy to generate it by pseudo­
random generator of numbers with uniform distribution and using the Box-Muller 
transformation [17],

Now we describe the vortex-in-cell (VIC) algorithm for obtaining the inviscid 
velocity field u(tqv). Vorticity co (x,y) is approximated by the linear combination of 
the Dirac measures:

t o  = ( * - * ; ) ,  r p = h2co"(xp), (7)
t>

where p  is the number of the vortex particle. Approximation (7) is understood in 
the sense of measure on R 2 [25]:

^a{x)dx* 's2 jD (xp)h1. (8)
p

We assumed that we were able to solve the Poisson equation for the stream 
function (2) by the finite difference method. The computation goes as follows:

1. At first the redistribution of the mass of vortex particles on the grid nodes is 
done:

<9>
p

where (pj(x)=(p((x-xJ)/h), is a B-spline of order m [26, 18]. For m=  1 the 
B-spline has the form:
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H * l  for  |*|<1
0 for  |* | >1, ( 10)

and the redistribution process (9) corresponds to a well known area-weighted 
interpolation scheme [8], In the present work we use the B-spline of the first 
order in the cells that adjoin the boundary of the domain flow and outside these 
cells we used the B-spline of the 3rd order that takes the form [18, 26]:

<?(*) =

j in ’2 j

- - | x | 3 +jc2 — 2 1 jc | + — 
6 3

0

1*1*1

1 < | x | < 2

1*1- 2 .
(1 1)

The B-splines satisfy: cp(x) = <p(-x) and \cp(x)dx = 1. To obtain the vorticity in 
the grid node, we should divide the circulation of the node obtained from (9) by 
the volume of the cell h2. Instead of this, in order to overcome some difficulties 
related to the accumulation of the parades, Cottet [10] proposed the calculation 
of the volume of the node through pos' ion of the particles around the node:

p  p

Then the vorticity in j  node is calculated as:

( 12)

V j  ( X P )r j _ _p_______
J j (13)

2. We solved the Poisson equation for the stream function with a boundary condi 
tion that assured cancellation of the normal component of the velocity field on 
the wall (y/ = const, e.g y/ = 0 and y/ = Q, where Q is a flow rate)

Ay/ = -co . (14)

The velocity at the grid nodes is calculated by central difference:

v7(*y i yj2 + h )-v (x jl,y j2 -h)
2 h

V (*/, + ft,yh ) -  V (*/, -  h-> Ty,)
2 h
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3. The value of the velocity from the grid nodes is interpolated to the position of 
the particles:

where lh is the base function of the lagrangian interpolation. In the present work 
we took as lh(x) the B-spline (p(x) of order one. This ends the computation 
process for the VIC algorithm.

To satisfy the non-slip condition on the wall {dy/ldn = 0) we utilised the 
vorticity generation process. In numerical practice when fluid equations are 
formulated in iy -  co terms, one comes across the problem of the determination of 
the vorticity value on the wall. In literature we can find a whole family of different 
approximate formulas allowing one to make this [13, 23]. One of the oldest and 
simplest is the Thom’s formula [23]:

Formula (17) may be obtained from equation (14) when one writes it on the wall 
and takes hto account the fact that (y/. j-y/. ,)/(2Ay2) = 0 (index -1 is related to the 
“ghost” point outs'de the computational domain). At each time step it is assumed 
that the formula designates the proper amount of vorticity on the wall. If old vortex 
particles that already exist in the flow give to the boundary point (by redistribution) 
the vorticity ©o|d then to the nodes point on the boundary the new portion of 
vorticity is added:

The new portion of vorticity conev/ is redistributed among the nv vortex particles 
giving them the circulation T = ((oncwh2)/nv where nv was chosen in such a way 
that |r| < 0.05, (n = 24-11). A similar process generation of vorticity was success­
fully applied a papers [5, 28]

Instead of formula (17) the Woods fonnula was also tested: coB = -31/q/Ay2-  
—(1 /2)rOj [13, 23], where yr, co[ correspond to the stream function and vorticity 
values at distance Ay from the wall. Woods formula has the same order of accuracy 
and gave results similar to the Thom’s formula (17).

The final step in obtaining the solutions is the displacement of the vortex 
particles in accordance with fonnula (6), and the whole process begins again from 
step 1.

For the solution of the Poisson equation fast elliptic solver was used To be able 
to solve the Poisson equation in irregular region capacitance matrix technique was 
used. The capacitance matrix technique is well described in many places in 
literature [3, 24, 27].

u" (xP) = ( * „ -* ,) .
/2 (16)

2
(17)

C O B ~  ( 0  new  +  ( 0  old ■ (18)
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3. Exemplary Numerical Results

3.1 Flow in channel with sudden expansion
At first we will present the results related to flow over the plane symmetric 

expansion (Figure 1).

y *

u j W 0! W

_i~ i
h

__ i________________ X..............................

Figure 1. Skech o f the geometry for the flow over a plane symmetric sudden expansion

The length of computational domain was taken as 32h, where h =  1 is the height 
of the step. The expansion ratio was WJW-M3 or 1/2.

From the literature it is known that as the Reynolds number is increased the 
flow undergoes several changes [4, 12, 14]. For a small Reynolds number, (Re ~ 56) 
the lengths of separation regions behind each step are equal and velocity profiles 
are symmetrical. The growth of the Reynolds number (Re ~ 125) causes the loss of 
symmetry. One of the recalculation zones becomes larger. Further growth of the 
Reynolds number (Re ~ 252) causes changes in the picture of the flow that are 
explained in the term of a bifurcation theory [14], Figure 2.

Figure 2. Averaged streamlines with velocity profiles at Re-56, Re=125 and Re=252, W=3h, W =h. 
Dashed lines mean the streamlines have values less than zero or greater than l
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Figure 3. Comparison o f the numerical results o f velocity distribution across the vertical section with 
measurements taken from [12], Re=56, W J  W=!/3

Calculated velocity distributions across a vertical cross section of the channel 
for different values of x for Re = 56 were compared with experimental 
measurements published in paper [12] and it is presented in Figure 3. The agree­
ment is good but one may notice that the distribution of the velocity near the wall is 
not as smooth as we had expected it to be.

The vortex method provides a natural possibility for visualization of the flow 
and its analysis in terms of vorticity distribution by tracing the position of the 
vortex particles. Figure 4 presents the sequence of the vortex particle positions at 
Re = 1000, W J W -  1/2. For T = 40 we can see very clearly the vortex structures 
that are in good qualitative agreement with the results presented in work [4] (see 
Figure 5). We used the red color (dark and light) for marking the vortex particles of 
the negative sign, and the blue color (dark and light) for the positive sign of vortex 
particles. The darker points correspond to the value of circulation that is greater 
than the mean value, calculated separately for positive and negative vortex 
particles.

We also carried out the calculation for flow at a very high Reynolds number 
(Re = 105). We must say that we are conscious of the objections, which correspond 
to the problem of numerical diffusion, the resolution and so on. The aim of these 
numerical experiments was just to check the possibility of the VIC method for 
modeling of such a flow. As it was pointed out by Chorin [8], one should keep in 
mind the difference between modelling with vortices and numerical approximations 
of solution of a fluid motion equation by the vortex method. It seems that the last
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experiment belongs to the “modelling”. This means we tried with the help of 
a moderate number of vortices to get qualitative understanding of the vorticity field 
dynamic at a very high Reynolds number. The sequence of the vortex particles for 
the flow at Re = 105 is presented in Figure 6. It is easy to notice the presence of 
vorticity filaments — thread-like structures that arc regarded as typical structures 
of two-dimensional turbulence [2, 16, 20, 22], One can observe that filaments are 
accompanied by a large coherent vortex structure that stabilises them, [16, 20, 22]. 
These large vortex structures are build with both sings of vortex particles. Vortices 
of the same sign may undergo merging and vortices of opposite sign may form 
dipoles [20, 22].

T=10, Re=1000. N =93360

T=20, Re=1000 N= 140996

N =184860

Figure 4. Evolution o f the vorticity in channel with sudden symmetric expansion, Re=I000, 
W /  W=l/2. N means the number o f  particles

Figure 5. Scanned picture o f the experimental visualization from the Cherdron, Drust, 
and Withelow paper [4](Figure 9d)



Vortex-in-Cell Method for the Simulation o f Two-Dimensional Viscous Flow 351

T=10,
[

Re=100000. N=91282 
_______

_____io
N=134614T=20, Re=lOOOOO, 

f~ EPHES5

Figure 6. The sequence o f  the vortex particle position at Re=IOOOOO, W /  W=0.5

3.2 Flow over the backward-facing step
For the flow over the backward-facing step there are well-documented 

experimental [1, 11] and numerical data [15, 21] available from literature. So this 
flow is a good example for testing the program. At first we checked the lengths of 
the recirculation zone behind the step at different Reynolds number. It is known that 
the reattachment length jr = jc / / /  (see Figure 7) increases approximatly linearly as 
the Reynolds number increases.

Figure 7. Sketch o f  the geometry fo r  the flow over backward-facing step
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In Figure 8 we showed the averaged streamlines for different Reynolds numbers 
(Re = 100, 200, 300, 400, 500, 600). For calculation purposes we took At = 0.01, 
Ax = Ay = 0.05, L = 12H, H = 1, U= 1. To reduce the statistical perturbations due to 
stochastic manner of solution of the diffusion equation we carried out an averaging 
process. The averaging was done for 200 time steps form T=38-h40. The linear 
growth of the recirculation zone is visible. For Reynolds number Re < 300 the 
agreement with the experiments are very good [ 1, 11] but for Re > 300 the length of 
the recirculation zone is underestimated.

Re=400

Re=600

0 2 4 6 8 10 12

-0.020 -0006
...I J  J .l . i l .L L .
0000  0016  0 124

_1_
0.232 0340  0.448 0.520

Figure 8. Averaged streamlines at Re = 100, 200, 300, 400, 500, 600, t e  [38,40], A t=0.0J

It is difficult to indicate one special reason for that. It is known that for Reynolds 
number Re »= 229 [11] the velocity starts to oscillate near the re-attachment point. 
Due to vorticity generation on the wall and the stochastic manner of simulation of 
viscosity of the fluid, the flow is permanently perturbed and it is difficult to deter­
mine precisely the position of the re-attachment point. The same effect was obse­
rved, in the direct vortex method used for the simulation of this flow [19].

In order to see the qualitative changes that the vorticity field undergoes when 
the Reynolds number increased we present in Figure 9 the vorticity field created by 
the vortex particle position at different Reynolds numbers in the same time T = 40. 
In the first frame (Re = 100), the vortex particles are uniformly spread throughout 
the channel. When the Reynolds number increases, we see that a potential core (the 
space without any vortex particles) appears. This potential core grows when the
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T , u - roios

Figure 9. The vorticityfield created by vortex particle positions at different Reynolds number 
and in the same dimensionless time T=4<)

Reynolds number is increased. It is easy to notice the filaments of vorticity and the 
large vortex structure at high Reynolds numbers.

In Figure 10 the sequence of the instantaneous vortex particle position was 
shown at Reynolds number Re = 10\ It is interesting to notice the vorticity shedding 
phenomena from the point on the upper wall (opposite to the comer of the step). 
The remarks that were made at the end of section 3.1 about the behaviour of the 
vorticity at large Reynolds numbers is also true in this case. The vorticity has 
a tendency to create filaments. We see that filaments are accompanied by large 
coherent vortex structures that stabilize them, and vortices of the opposite sign form 
a dipole structure [20, 22, 16], These large vortex structures arc built with both 
positive and negative signs of vortex particles.

3.3 Flow over a system of buildings
In paper [29] interesting pictures of the How over the system of buildings were 

published. The flow was visualized using smoke (see Figure 11 for scanned pictures 
from that paper). The pictures illustrate how minor design modifications can make 
a large difference in wind velocity at the pedestrian level (between the building). In 
the paper [29] there was a notice that “the high buildings cause the high velocities by 
deflecting the upper and faster atmospheric layers down to the ground; where they 
impinge on the ground, the velocities may be double the value they would be in the 
absence of the building".



354 II. Kiulela

1

05

0

T=5 , Re=100000, N=30526

T=10 . Re=100000. N=43908
J 10

T=15 . Re=100000 N=55684

T=20 , Re=100000. N=68287

T=25 . Re l̂OOOOO, N=78514

T=30 , Re=100000, N=83850

T=35 . Re=100000, N=78964

T=5 , Re=100000, N=30526

Figure 10. The sequence o f  the vortex particle positions in channel over 
backward-facing step. Re=IOs

Figure 12 shows the scheme of the configuration of the buildings that was taken 
to the calculation. As a unit length the height /; of the smaller building was taken, 
h = \ .  The height of the higher building was 3//. At the inlet the velocity U= 1, 
Re = Uh/v was taken. The dimension of the computational domain was taken 
15/7 x 6/;. On the upper boundary it was presumed that the normal velocity is zero. 
So the generation of the vorticity took place only at the rigid boundary at the 
bottom and on the surface of the building. Gird steps was taken as Ax = Ay = 0.1, 
At = 0.01.
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Figure II. Scanned pictures o f the flow visualization around two models 
o f tall buildings taken from the paper by H. Thomann [29]

Figure 12. The scheme o f the computational domain for the flow over the system o f  buildings: 
a) the plain system o f buildings b) modified system o f buildings

Figure 13 shows the streamlines that were obtained by vortex method. The 
shapes of the streamlines and generated structures are in good qualitative agreement 
with the experimental pictures presented in Figure 11. For numerical calculation we 
choose Re = 2000, Re = Uh/v.

The vortex method has the natural possibility of analyzing the flow features in 
term of vorticity through vortex particle positions. In Figures 14 and 15 the 
sequence of the vortex particle positions for the plain (unmodified) and modified 
system of building was presented. We started the calculation from the potential 
flow. For t > 0 the viscosity of the fluid started to play a role. One can see the 
development of the Kelvin-Helmholtz type vortex structure. This vortex structure
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Figurel3. Streamlines o f  the flow  over the buildings obtainedfrom the calculation. To visualize the 
structures o f  streamlines better, the zebra technique o f  drawing was used

T=3 T=20

0  5

T=5
* 10 15

0 5

T=10
* 10 15

5 * 10 15

0 5 x 10

T=30

15

T=40

Figure 14. The sequence o f the instantaneous positions o f  the vortex particles, Re= 10000
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T=3 T=15

Figure 15. The sequence o f the instantaneous positions o f the vortex particles 
fo r  modified structure o f  buildings, Re=10000

Figuirel6. Instantaneous vorticity field that was created by the vortex 
particle positions and related to its velocity field
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induced an air velocity greater than the velocity of the air coining toward the fronts 
of the buildings. This is clearly visible in Figure 16, where the close-up of the 
frame for T = 20, together with the velocity field, was presented.

A small element in front of the tall building was added to lower the velocity on 
the pedestrian level between the buildings. That velocity was reduced several times. 
It is interesting to notice the influence of that small construction on the voruti^ 

distribution behind the tall building (compare the relevant frames in Figures 14 and 
15). We notice that the added construction destabilized the vortex Kelvin- 
Helmhoftz structure, and the distribution of the vorticity behind the tall building is 
more chaotic.

4. Concluding Remarks
It seems that now it is not far from the creation of a general flow simulation 

package based on the vortex method into which the user needs only enter minimal 
data concerning boundaries in order to be able to perform the numerical 
investigations. The present paper is a move in that direction. Vortex methods 
provide natural, useful tools for analysing flow in terms of vorticity dynamics, and 
the visualisation of the flow by vortex particles. The study of the evolution of the 
vorticity field helps one to understand the features of flow in a complicated 
geometry. It is one of the few methods which give reasonable results at large 
interval of Reynolds numbers trying to solve the Navier-Stokes directly. Further 
study on the VIC method should clarify the problem of numerical diffusion that 
may be introduced by a numerical grid. It is believed that the introduction of the 
deterministic method of the diffusion simulation instead of stochastic one should 
improve the numerical results.
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