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Abstract: In the paper numerical aspects of elasto-viscoplastic dynamic calculations of circular plates 
are presented. Numerical results are compared with experiments carried out in the laboratory. Each plate 
is calculated using the self-built computer program based on the finite element method. The Gaussian 
quadtrature is used for the surface integration and some difficulties concerning the choice of the order 
of this integration are discussed. To integrate the constitutive equations (the first order differential 
equations), and the equations of motion (the second order differential equations), it is necessary to use 
proper value of the time step. Some remarks on selection of this value are given. Density of the finite 
element mesh used for discretisation of the plate is studied. It was found that the number of elements 
has bigger influence on the quality of the results than the number of layers used to describe the changes 
of stresses through the thickness of the plate. Finally, some comments on the choice of the model of 
damping are made. An approximate method of introduction of this factor in the calculations is presented.
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1. Introduction
Elasto-viscoplastic dynamic calculations of plates have big industrial importance 

and are subject of interest of many scientists and laboratories all over the world. 
Dynamically loaded plates are usually components of more complex structures like 
turbo generators, aeroplanes, spaceships and other constructions subjected to high 
temperatures. There are several ways to solve this problem, but none of them is 
exact. It is always necessary to make some approximations, but a question what is 
their influence on quality of the results arises. Between the numerical methods of 
calculation, the finite element method [1], [2] is the most important nowadays. The 
most substantial approximation, that has the basic influence on the solution, is 
division of a structure into finite elements and choice of the shape function. Both 
factors must be carefully studied. From the mathematical point of view, the dynamic 
problem can be treated as a set of the second order differential equations with 
respect of time. To solve them it is necessary to include into algorithm one of many
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methods of their integration. A special class of solving algorithms for this type of 
problems has been invented [3]—[6]. The time step of integration must be properly 
selected to fulfil the stability condition and reduce the range of errors. The elasto- 
viscoplastic constitutive equations are the first order differential equations. Usually, 
3-4 equations of this type are linked and have to be solved simultaneously. The 
review of the types of the elasto-viscoplastic constitutive equations used in the 
structural analysis can be found in [7], When the problem can be restricted to small 
strains only, the most often applied are: the Perzyna method ([9], [8]), the Chaboche 
model ([10], [11]), and the Bodner-Partom approach ([12]). Result of this 
integration depends also on the value of the time step used for integration.

Plates and shells are the structures having one dimension (thickness) much 
smaller than two others. The three-dimensional description of their behaviour must 
be modified into the two-dimensional one. This problem is very complex and has 
been a subject of interest of a large group of scientists for many years. First so- 
-called “shell and plates theories” have already been invented in previous century 
[13], but the question is still open and investigated ([ 14]—[ 17]). In the present work 
the large magnitude of displacements is expected therefore the geometrically 
nonlinearity of the problem should be taken into account. In the numerical 
calculations, the first order shear deformation moderate rotation shell theory will be 
applied [18].

In this paper, the numerical aspects of the mentioned above assumptions and 
approximations will be discussed on an example of the dynamic calculations of the 
impulsively loaded circular plates. Estimation of the results of calculations will be 
based on experiments carried out on this type of plates1. They were subjected to a hit 
of nitrogen gas in the shock wave tube. In tests, steel 1 mm thick plates have been 
used in the room temperature. Full description of experiments can be found in [19].

2. Finite element mesh
To calculate any structure using the finite element method it is necessary to 

divide it into finite elements. In the literature, many types of elements, which can be 
applied in the algorithm, can be found. The choice of the certain type of an element 
is often determined by the computer program, which is going to be used. 
A researcher has two possibilities. To use a commercial program with a library of 
ready finite elements, usually having no possibilities to study all assumptions, which 
have been made, and having a restricted access to the way in which they are used. 
The other one is to build an own finite element code. This way is time consuming 
and the usage of the final product is restricted to a very narrow group of users. 
Computer programs are very large and need to be tested for many years to be sure 
that they are free of errors. The main advantage of self-built programs is the full 
access to their source code and a possibility of making necessary modifications.

In the present work, an own Fortran code has been used. The nine-node

1 All experiments have been performed in laboratories of Institute of General Mechanics 
of RWTH Aachen (Germany)
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isoparametric finite element, which had been tested in elastic dynamic calculations 
of plates and shells, has been applied ([20], [21]). Because of the rotational 
symmetry of geometry and loading only quarter of the plate has been divided into the 
finite element mesh (Figure 1). This kind of mash is determined by the type of used 
finite elements and the Cartesian co-ordinate system, which is used for description 
of the boundary conditions.

The boundary conditions and surface distribution of loading are settled by the 
support system used in the experiments and has been checked in static calculations 
of the example. The support system models the plate, wchich is not fully clamped 
and the load on the outside ring of the plate is equivalent to pressure acting on active 
part of the plate. The number of elements and nodes has an essential influence on

Figure 1. The finite element mesh and load distribution on the circular plate.

results of the calculations. On the one hand larger number of elements increases 
accuracy, on the other it also increases calculations time, which in dynamic 
approaches is very long. Usual way of examining the accuracy of results, with 
respect to number of elements, is performing tests with different numbers of them 
In the present work, tests began with 12 elements and 61 nodes. Later in each test 
additional ring of 4 elements has been added in the inner part of the plate. The 
number of elements is assumed to be sufficient, when results of two following 
calculations are similar enough
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3. Integration over the volume of the finite element
In the finite element method, to describe displacements inside the finite element 

as a function of the nodal displacements, a so-called shape function must be chosen. 
This function often depends on co-ordinates of the point where the displacements 
are calculated. Moreover, in each node of the element many components of 
displacements (often with different physical meaning like translations and rotations) 
appear. All relations between the nodal quantities and their equivalents in the space 
of an element can be gathered in a matrix of the shape functions N. Derivatives of 
the components of this matrix are used later in expressions for strains E and 
stresses s. In the elasto-viscoplastic approach a convenient way of proceeding with 
the inner element relation is division of the element into layers [22], Number of 
layers determines the distribution of strains and stresses through the plate thickness 
and has an influence on accuracy of the results. In this paper, it is assumed that the 
strains and stresses are constant through the layer thickness.

To describe equilibrium equations (which in dynamic calculations are 
represented by the equations of motion) the vector of the balanced forces Q and the 
vector of the nodal forces related to the loading R have to be calculated. They are 
obtained by integration of stresses s or distributed loading p over the element volume 
v. Typical relations for a single element e have the form:

= JBrs dv\ Re = JBrp dv. (1)
V V

Integration over the volume v can be divided intc integration over the thickness h 
and over the midsurface of the plate/shell finite element oft. As the vector s has been 
assumed to be constant through the layer thickness and material of the plate is 
assumed to be isotropic, integrals can be easily calculated over the thickness of the 
whole element. Integration over the midsurface demands application of a numerical 
procedure. The same procedure can be also applied in an estimation of the pressure 
loading on the outside surfaces of the elements. Here the Gaussian scheme of 
integration is applied. Moreover, in the isoparametric element, for transformation of 
them, the same matrix of the shape functions N as in calculations of displacements 
is used. The co-ordinates transformation is included in the process of the midsurface 
integration. The elementary surface area d o f f  can be expressed in the form:

d o  f f  = det(j)rf£ d Q , (2)

where: det(J) is the determinant of the Jacobi matrix J, which denotes the relation 
between the partial derivatives of the shape function N  in the original curved 
co-ordinate system s, <j> and the natural co-ordinates £ and 9 :

d N ds ds 'd N ' d N
d 9 ds . —  J . d s

d N dip dtp d N d N

.d 9 \ d 9 _ dtp d<t>
(3)
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The integral of any function (s,tj>), which can be expressed by a function

, is numerically calculated using the expression (Gaussian quadrature):

_ 1 1 n nJ &  M  ^  -  J J ̂ ( c . 5 ) d e t ( j y c ^ 5 = Y Z wiwj^ { hi’hj), (4)
o« -1-1 i = l j= 1

where h., h. are abscissas and IF., W weight coefficients, rt is the order of the 
numerical integration. The values of abscissas and weight coefficients can be 
found in [1], The order of integration n is related to the used type of the finite 
element. For the nine-node isoparametric element, three types of integration can 
be used. None of them is faultless. When n -  2, a so-called reduced integration is 
introduced. Its main drawback is that the mass matrix, which is necessary for the 
dynamic applications is singular and can not be inverted. The full integration 
{n = 3) leads to overestimation of stiffness of shear terms for thin structures like 
plates and shells and therefore gives wrong values of displacements. The 
compromise between these two methods is a uniformly reduced integration, in 
which for bending terms the full integration is used and for shear ones the 
integration is reduced. Unfortunately this method often gives (especially for long 
narrow structures) a so-called “hour-glass effect” — neighbouring elements have 
opposite signs of the rotational degrees of freedom. For circular plates the “hour- 
-glass effect” usually does not appear and this type of integration is used in the 
present work.

4. Integration of the constitutive equations
The constitutive equations are relations between strains and stresses. For 

isotropic elastic material only two coefficients: E -  the Young modulus, and v -  the 
Poisson coefficient, are necessary to write this relation down. If additionally, 
according to the shell theories, the plane state of stress in each layer parallel to the 
midsurface is assumed, this relation can be written in the incremental form useful in 
geometrically non-linear applications:

CU
E

' l V 0
• -  D E  - V 1 0 £„ r

r

1 - v 2
0 0 ( l - v ) / 2

y
r*y.

where: S stands for increment of stresses and t f  for increment of elastic strains.
In the viscoplastic domain, the stresses-strain relations are more complicated. 

Their three forms, for the most popular types of description, are given in Table 1.
Each column in Table 1 is a set of the first order differential equations with 

respect of time. The first obstacle is that to use them it is necessary to determine 
many material parameters. When this step is done, the problem of a solution method 
of these equations still remains. The explicit methods like: the Euler, middle point or



192 R. Klosowski

Table 1. Constitutive equations

Model Perzyna Chaboche Bodner-Partom

inelastic 
strain rate

* / 3 . s'

2

+ , 3 . s '-X 'E = — p — --------
2 J(s '-X ')

E 7 -  3 p  S 
2

deviatoric 
part of the 

stress tensor
s’ = dev(s) = s — 1/3 • tr(s)I

cumulated 
inelastic 

strain rate

/j(s'-X')-R-k\" 
P = Y\ *  /

. 2D„ Z n + lp - —r^-exp---- 7— -----
V3 U ( * ) J  l n \

Z = R + X: L -  
J(s)

W‘ = s : E '

isotropic
hardening —

R = b (R { -  R )p  

R (t = 0 )=  0
R = w,(7?, - R ) W ‘ 

/?(; = 0 ) =  /f0

kinematic
hardening — X - f o E 7-c X p

r \
X = m, ID, * X w'

V J{s) )

material
parameters Y, k, n

k, K, n, a, c, b,

R\, y
n, Dq, D \, Rq, R\ ,m \ , m2

Runge-Kutta method, or implicit like: the trapezoidal rule or the Adams- 
-Multon-Beshforth algorithms can be applied. In the considered problem the 
differential equations, which are going to be solved, have a complex form and are 
linked together. During integration, geometrical non-linearity of the problem must 
also be taken into account. For this reason, to reduce the storage of data and 
increase the speed of calculations, only the simplest methods are useable. Here the 
trapezoidal rule of integration, as relatively well stable and because of iterations 
reducing the range of errors, has been chosen.

If for any function / ( x , y) one wants to find a function y  (x), which is a solution 
of the differential ordinary equation:

= f ( x , y ) with initial condition y  [a) -  S, (6)

using the trapezoidal method of solving, he have to apply the following numerical 
expression:

y n+ i - y n = i h [ f ( xn>yn) + f { xn+v y n+\%  « = o,i,.... (7)
As the term>’ji+1 appears on both sides of the equation the iterations have to be
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performed on each step n. For the &-th iteration the relation has a form:

= 2hf ( xn+imyL)+y»+ i /i/ ( - w „ ) , (8)

where h is a step of integration.
For the first iteration the starting procedure is necessary:

y l+\= y n + h f{x n,yn) . (9)

In the literature, the following condition of stability of the method, for a single 
non-linear differential equation, can be found [23]:

h
2

d f \
dy*\

<1 ( 10)

It has to be satisfied for each equation given in Table 1, at any point in the plate 
volume, for arbitrary time step n and iteration k. In practice that means that small 
enough time step At -  h has to be used in calculations.

5. Integration of the equations of motion
The chosen method of integration of the constitutive equations needs small value 

of the time step. As for integration of the equations of motion the same time step At 
will be applied, the central difference method seems to be the most effective. It 
bases on a set of two equations describing relation between the accelerations of the
nodal points q , , the nodal velocities q, and the nodal displacements q at time t -  At, 
t, and t + At

^ 2  (@t-&t l+At )>

( i i )

To apply this method, it is convenient to write the equation of motion at time 
t in the form:

M q , + C  q , +Q ,  = R , ,  (12)

where: M, C stand for the mass and damping matrices respectively; Q( is the 
vector of nodal balanced forces including all non-linear effects; R is the vector of 
nodal loading forces.

The central difference method is conditionally stable even in its linear variant. 
The convergence of the calculations is guaranteed, when the time step A( fulfils the 
condition (the sufficient condition):

A t< A tcr- Atcr= 2/comax, (13)

where comax is the highest frequency of free vibrations of the structure.
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The value of the highest frequency a>max in pesented variant of geometrically 
non-linear calculations does not change significantly. It mainly depends on the size of 
the used finite elements: for smaller elements, smaller time step must be used. 
Condition can be checked in the initial configuration. It is enough to build the 
procedure of the highest frequency calculation. In this work, a self-built procedure 
based on the Jacobi algorithm has been used.

The central difference method becomes especially effective when the mass 
matrix M and the damping matrix C are diagonal. The well-known nodal quadrature 
method of lumping of both matrices on the level of a s'ngle element can be found in 
[1], [2]. -

k;]=jjftvj * k k * =ixlkr < kJ, m-a, <i3>
c/r ?=i

[q l= JJ (k jm k  =i ( k ,  r r k  J, ■m -a  , 04>
where i and p are matrices of inertia and damp ing properties of a finite element.

The method is a variant of the Gaussian quadrature with abscissas in the nodal 
p< :ints. In this case, at each node i all shape functions except N. have zero value, and 
that leads to diagonalisation of the matrices M and C.

6, Examples of test calculations
Several testing calculations of circular steel plates (h = 1 mm, £  = 215.7 GPa, 

v= 0,33) have been performed to check the numerical aspects mentioned before. It 
is difficult to separate each problem, therefore white one aspect of the calculations is 
examined, the other parameters are assumed to be fixed.

To start the inelastic calculations it is necessary to choose the time increment of 
integration. As it has been mentioned before, the same time step At is used for both 
time integrations. For the finite element mesh presented in Figure 1 the highest 
frequency of free vibrations is (£>max = 1 -1345179-107 s l. The corresponding critical 
time step is Arcr= 1.7628-10~7 s. The lowest free frequencies are: 
G), = 4.77228-103 s-1 and <x>2 = 1.67 08 1 0-104 s r, and are much smaller than (Omax . 
Therefore, in the calculations even a slightly smaller than Atcr value of the time step 
gives very exact results. The time step estimation with respect of integration of the 
constitutive equations is more ( ifficult. It is necessary to examine each differe
ntial function at each point, where it is calculated. It is more convenient to make 
several calculations with different values of the time step. The divergence of 
the results is cleariy visible -  after several time steps displacements are going 
to infinity and the calculations are broken. When small enough values of the time 
step are selected results are very similar. That means that local and global errors in 
this case are small.

In the present work, it has been found that the time step At=1.5-10~7s 
guarantees convergence of both types of the integration.
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As it can be seen from Table 1, the Chaboche model of the constitutive 
equations is the extension of the earlier invented Perzyna model. Both models have 
the same definition of the yield limit and the inelastic strains. Only the form of the 
hardening functions is different. The Bodner-Partom constitutive relations assume 
that the viscous effects are present from the begmning of the deformation process. 
They have the same type of description of hardening functions as in the Chaboche 
model, but inner relations used in them are different. For these reasons, calculations 
of tested examples were perfonned with the Chaboche and the Bodner-Partom 
types of the constitutive equations. In the Bodner-Partom approach the following 
values of the material parameters have been used:

E = 215661 MPa, D„= 1000ft s’1, n = 9.61, D l = 21.35 MPa, 

m{ = 0.068 MPa-1, m2 = 1.82 M Pa1, R0 = 259.38 MPa, /?, = 422.90 MPa. 

For the Chaboche equations, the material parameters have values:

E = 215661 MPa, n = 9.51, k = 210.15 MPa, K  = 14.085 MPa, 
ct = 37730, ax = 685882 MPa, R{ -  138.26 MPa, 6=17.64.

In the first set of tests, the number of layers has been investigated. The midpoint 
deflection functions are compared to experimental results in Figure 2. In these 
calculations, the Chaboche model of constitutive equations and the mesh shown in 
Figure 1 have been used. The presented time functions of displacements show that 
number of layers has a secondary influence on the quality of the results. Even for 
four layers, the results are very similar to the experimental ones. Six and ten layers 
give almost the same response.
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Figure 2. The time functions o f  the middle point deflection fo r  different number o f  layers.
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Figure 3. The timefunctions o f the middle point deflection fo r  different number 
o f elements —  the Chaboche model.

Figure 4. The time functions o f  the middle point deflection for different number 
o f elements —  the Eodner-Partom model.
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The number of finite elements is studied in Figure 3 (the Chaboche model), and 
in Figure 4 (the Bodner-Partom model). The number of layers has been restricted to 
six. In both cases, solutions for 12 and 16 elements do not coincide with the 
experimental result. A better solution has been obtained for 20 and 24 elements. 
Both types of the finite element mesh produce solutions similar to each other and to 
the function recorded experimentally. The calculations are more sensitive on the 
number of elements than on the number of layers.

Usage of the consistent mass matrix instead of the lumped one has a small 
influence on the dynamic response of a structure. Here, both calculations produce 
the same displacement functions. It is only necessary to mention that the application 
of the consistent mass matrix changes the value of the highest free frequency and 
consequently a smaller time step of the time integration must be used.

Influence of the different damping matrix forms has not been studied because of 
lack of sufficient data. To find values of the damping coefficients, it is necessary to 
make additional difficult experiments. Here, the elastic experiments have been 
compared with the calculations with a single value of the damping coefficient used in 
the lumped damping matrix for all degrees of freedom describing displacements in 
the normal to the midsurface direction. It has been assumed that the value of this 
coefficient is the outside pressure proportiona1:

=  ' { l +  P 1 Po)> (I6)

where p  is the actual value of the pressure, p0 is the atmospheric pressure (1 bar), 

p° = 600N -s/m3 is an assumed value of a damping coefficient.

7. Conclusions
The presented above calculations show, that not all numerical approximations 

used in the finite element method have the same influence on the quality of the 
results. Except of the proper identification of coefficients of the constitutive 
equations the most important are the selection of the type of the finite elements and 
their mesh. Dynamic calculations are time consuming. To calculate a single example 
it is necessary to use a high-performance workstation for more than 18 hours. In 
addition, storage of the results requires a large amount of space on a hard disk. Very 
often analysis must be restricted to the time functions of displacements in some point 
or configurations of the plate in some special time moments. An extremely large 
amount of data is necessary in the analysis of the stress distribution in the plate 
volume. In the dynamic calculations, it is necessary to keep a balance between 
increas 'ng number of elements and layers on the one hand, and the calculations time 
and storage space on the other.

A problem of identification of the damning properties of the plate material and 
surrounding space, having a big influence on the result, is still open. The damping 
description used in the paper can be treated as the first approximation and still more 
efficient method or reworking of it is necessary.
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