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Abstract: The normal shock wave turbulent boundary layer interaction still draws a great deal of attention
as a flow phenomenon. This is due to its profound importance to numerous applications. The understanding
of phenomena is crucial for future aims connected with the interaction control. Experimental investigations
of the interaction have been carried out since the 1940s. They were aimed however at the determination of
such general flow features as: pressure distribution, shock wave configuration or oil visualization of separation
structures. In order to better understand the phenomenon, measurements of the entire field are required.
At present, such measurements do not exist. A great help is expected from numerical simulations in this
respect. There is enough experimental data to check the general features of the flow obtained from calculations.
This thesis presents numerical simulations of flow that is assumed: steady, three-dimensional, compressible,
viscous and turbulent. Its general aim is to present to what extend the modern numerical methods are able
to predict the flow in shock wave turbulent boundary layer interaction including shock induced separation
structures. These structures are very sensitive to channel geometry and may be useful in the understanding
of separation’s development.

In order to illustrate the abilities of numerical simulations, one aim of the presented thesis is to investigate
the effect of the span-wise depth of the nominally two-dimensional test section. The presented results
cast some light on the common problems experienced by typical comparisons of two-dimensional
simulations to wind tunnel tests havirg a three-dimensional nature.

The first Chapter presents the basic theory of elementary structures. Considerations of elementary
structures of the flow along with their dependencies are necessary for a better understanding of the separation
flow structures induced by the boundary layer shock wave interaction. The classification of elementary
structures will be presented. In addition, the possible occurrence of bifurcation will also be studied.
The second Chapter will be devoted to studying specific cases of transonic turbulent flow. The analysis
of numerical results will be bounded to the shock wave structure. Studies shall include: the influence of the
numerical scheme, three-dimensional effects connected with the changing width of the channel,
a comparison to experiment and the influence of the symmetric boundary condition on the flow prediction
in the channel. Finally, the boundary layer influence on the A-foot structure will also be presented.
Chapter three will present the separation structures. Here too a comparison to experiments will be done.
Changes in separation structures connected with the width of the channel will be studied. The influence of
the symmetry boundary condition will be shown. Finally, the specification of the basic flow structures
will be done.

Keywords: shock wave-boundary layer interaction, flow separation, 3-D flow structures, numerical
simulations
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1. The basic theory of elementary topological structures

1.1 Introduction

In this chapter the theory of elementary structures will be presented. It will
contain the two- and three-dimensional analysis. For these two approaches the
classification of structures and some possible bifurcations of such structures will be
described. The conditions of the connections of the elementary structures will be
also considered.

These two main considerations are important when the topological analysis is
applied to fluid dynamics. Flow patterns like skin friction lines and streamlines are
important elements in the description of fluid motion from the experimental and
numerical point of view. The knowledge of basic topology is necessary to make
a proper analysis of pictures containing flow pattern lines. A consideration of
bifurcations is important when the entire class of flows are considered. Finally, the
main point of interest is to concentrate on the influence of specific parameters on
changes in flow. Such changes might include separation’s occurrence and
disappearance or any general flow pattern’s change.

Based on the velocity field, the reconstruction and recognition of the basic flow
features is possible. In this process, knowledge about the classification of
elementary structures and their basic properties is helpful. All these main goals will
be described in more details in the present chapter.

1.2 The classification of critical points

In this section the classification of elementary structures will be presented. This
task can be done using the two and three-dimensional analysis. The problem of the
classification of elementary structures is important for several purposes including:
to standardize basic flow structures and their properties, to make a conclusion about
the possibilities of changes in those structures and to make the process of obtaining
the basic skeleton of flow patterns from the vector field more efficient.

To classify the structures or to decide on the type of critical points it is
necessary to introduce a few definitions. First of these is the structural stability.
The dynamic system of ordinary differential equations is structurally stable when
the obtained system, by any small perturbation of vector field, is adequate to the
original one. To complete the definition it is necessary to specify what kind of
transformation, or mapping, is considered sufficient for both systems. The given
transformation should be a differentiable and reversible mapping which transforms
the oriented phase trajectories of the first dynamical system to the oriented phase
trajectories of the second one. There is no need for the orientation of the curves to
be the same.

In the two- and three-dimensional space the trajectories tend to the set of
measure zero-attractor. This could be a single point, a closed cycle or a strange
attractor. For two-dimensional cases of an autonomous system, the Poincaré-
-Bendinxon theorem reassures that the attractors could only be single points or
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closed curves. The three-dimensional case further expands the possibilities to the
inclusion of a strange attractor.

There are two types of isolated critical points: non-degenerate and degenerate.
The degenerate point appears when the eigenvalue of the linearized vector field is
equal to zero. The difference between these types of points is seen when a small
change in the vector field is considered. In the case of the non-degenerate critical
point it will not disappear but can change its position slightly. The degenerate
critical point can disappear, split into more non-degenerate critical points or change
to a non-degenerate critical point. The definition of the structural stability
introduces the first type of classification. In real flow, when the flow patterns are
taken into account, almost all cases have non-degenerate critical points. The
degenerate critical point gains interest when more than one specific flow patterns is
considered and information about possible bifurcations is desired. It means — when
the group of flow patterns is considered and especially when the main interést is to
study the process of changes between different flow patterns.

A study of the mentioned bifurcation will be done in the next section. In
Chapter 3, changes of structures in the transonic turbulent flow of two nozzles will
be presented. Due to this, attention in the present section will be paid to the non-
-degenerate critical points.

A consideration similar to the one for critical points can also be done for closed
curves (cycles). A cycle is degenerated if the eigenvalue of the linearized Poincaré
mapping is one. To understand this definition, an explanation of the Poincaré
transformation is necessary. It follows that if a given curve is cut by a plane
perpendicular to it, then the transformation of the point near the cut on one side
transforms it to a point near the cut on the other side (after one cycle). This kind of
transformation is called a Poincaré transformation (see Figure 1.1).

Figure 1.1. The definition of the Poincaré transformation.

Another approach to classifying the critical points is based on the linearization
of the original system of equations in the neighborhood of a critical point. The
mathematical details of such an approach are presented in Appendix A. Here the
attention will be drawn to the main assumptions. The character of a critical point
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depends on the signs and values of the eigenvalues of the linearized matrix of
coefficients in the vicinity of the critical point.

With the definitions mentioned, it is now possible to describe the classification
of critical points.

In two dimensions, the following points are possible: saddles, stable and
unstable star, degenerate and ordinary nodes, stable and unstable focal (or spiral)
points and centers. The structural stable points are saddles, nodes and spiral points.
All such points are presented in Figure 1.2.
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Figure 1.2. The two dimensional critical points. [a] node; [b] star node; [c] degenerate node;
[d] saddle; [e] focus; [f] center; [g] the trajectories are straight lines.

Usually the set of critical points is considered. For this reason it is necessary to
examine the stability of the group of singular points. The following theorem covers
stability of the vector field.
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Theorem:
The two-dimensional vector field is structurally stable when the following
conditions are met:
— The field has a finite number of critical points

— All critical points are non-degenerate
— Any of the outcome node separatrics is not the income node separatrics
— The field has a finite number of closed phase trajectories

— All closed phase curves are non-degenerate cycles

This previous classification of the vector field is generally restricted to most
cases of fluid dynamics when flow patterns are considered and also in the case of
some specific structures called bifurcation lines. The only exception to this is the
consideration of the bifurcation of flow patterns.

When the above classifications and theorems are known, the interpretation of
either skin friction lines or two-dimensional streamlines is possible.

Figure 1.3. Picture of oil flow visualization on the surface. Main flow direction: right to left.

The fist approach to analyzing possible flow structures was done by Oswatitsch
(1958) using the non-slip condition. Next, Lighthill (1963) studied and developed
the Oswatitsch solutions further. Perry and Fairlie (1974) implemented the ordinary
differential equations to describe the critical points. When the distribution of
critical points is known, flow patterns such as skin friction lines (example in Figure
1.3) or streamlines can be obtained. The solution obtained by Oswatitsch was based
on a series expansion to the second order terms and was only valid in the
neighborhood of a critical point. Later, Dallmann (1983) showed that, when
considering the higher order terms of the expansion, it was possible to obtain the
entire set of critical points.
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The subject was also studied by Tobak and Peake (1979) and Legendre (1977).
Below is a short description of the process of obtaining the skin friction lines.

The viscous flow near the three-dimensional surface will be considered. The
skin friction lines are the trajectories of the continuum vector field. (£, n) are the
coordinates of the curvilinear coordinate system. Axes y, 7 are attached to the body
and axis § is perpendicular to the surface. In the neighborhood of a critical point,
the velocity vector is parallel to the surface. Because of this, the movement of the
element of flow along the given streamlines will be described by the following
equations:

Ou
h(En) = S (En0)=Cou(En)=C P(Em), (L

hz(é,n)d -C--~ A (&.1.0)=¢w,(&,n)=¢ O(&,m), (1.2)

where 4, (&, 1) and &, (£, n) are the lengths of the vectors, (), ®,) are the com-
ponents of the rotation on the surface. Velocities (u,, u,) are the moment values
and due to this; the considerations are restricted to the stationary flow. The coordi-
nate ¢ will be the parameter and functions P and Q will depend only on that coor-
dinate. In such a case, the above system of equations is the autonomical two equ-
ation system of ordinary differential equations. If also

ou,
=uz(§,n,0), (1.3)
Bz =u%"~g»2~(€,n,0), (1.4)

are the components of the tangential surface tension in the direction £ and 7, then
the system of equations describing the skin friction patterns is given by:

hds _ Ry

Tw] Tw2

(1.5)

The orthogonal lines to the skin friction lines are the lines of the vorticity on the
surface. The critical points appear when vector (7, 7,,) is equal to zero.

In real flows, the skin friction lines are obtained either from computations
(which will be considered in Chapter 3) or by oil visualization. In such a case, the
system of critical points (not just one isolated point) is considered. In such analyses
it is helpful to take into account the theorem relating the index of the vector field
from the analysis of manifold. An investigation will be made of the closed curve
which is not intersecting the critical point, and the vector field. There will also be
an investigation involving the point on the curve that will follow the curve in the
positive direction. When this point has followed the entire trace of the curve and
has returned to the original position, the vectors will also be at the initial condition,
but on the way they could do a few cycles. The number of cycles is the index of the
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curve. With this it is possible to define the index of critical point. The considered
curve will be a circle with sufficiently small radius and with the middle in the
critical point. From the definition of the index of critical point it is easy to see that
the basic critical points have indexes —1 or +1 (node and focus +1, saddle —1).

Theorem:

The sum of index of critical points on the compact manifold does not depend on
the choice of the vector field, but is the property of the manifold itself.

This theorem excludes some combinations of critical points as impossible from
the topological point of view and is used in analyzing the skin friction lines
obtained, for instance, by oil visualization.

From this theorem, the following conditions are concluded.

— The difference between the number of nodes and foci and the number of saddles
equals two when the skin friction lines on the three dimensional body or infinite
surface are considered, Davey 1961, Lighthill 1963.

— The number of nodes and foci is equal to the number of saddles when the lines
on the three dimensional body connected without the break with the infinite
surface are considered, Tobak and Peake 1982.

— The difference between the number of saddles and the number of nodes and
foci equals one when the two-dimensional surface cuts the three dimensional
body, Tobak and Peake 1982.

— The number of saddles and the number of nodes and foci are equal when we
consider the plane perpendicular to the body, cutting the body and spreading to
infinity, Tobak and Peake 1982.

— The number of saddles and the number of nodes and foci are equal when we
consider the streamlines on the sphere in cone flow, Smith 1969.

—— The sum of the nodes and half nodes minus the sum of saddles and half saddles
equals -1 for a streamline on a two-dimensional plane cutting a three-dimensional
body, Hunt 1978.

The last four cases describe the behavior of streamlines and the two first cases
are connected with the skin friction lines.

After considering two-dimensional structures and their classification, the three-
dimensional approach will be presented. This case is usually less considered or
even neglected in most literature because of a bit larger mathematical complexity of
equations and because in most cases the three-dimensional analysis is not necessary
to investigate physical problems. In this section, and also further in other chapters,
the three-dimensional approach is necessary and the three-dimensional flow
patterns will be considered.

The mathematical details of the classification based on the linearized vector
field are presented in Appendix A. In Figure 1.4, the diagram of possible
eigenvalues is presented. The third order polynomial, obtained from the
characteristic matrix can have three real roots or one real and two complex
conjugate roots.
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Figure 1.4. Diagram of the eigenvalues.

The diagram of eigenvalues is presented to help understand the nature of the
critical points in three-dimensional space. In Figure 1.5 the classification of the
critical points in three-dimensions is presented. Some degenerate points are not
shown including the case when the phase plane is a superposition of linear two-
dimensional planes. It is interesting that there are three different types of focal
points. The projection of the trajectories on the perpendicular plane in all cases is the
same, except for the direction, but the three-dimensional curve behavior is different.
This becomes especially important when only the cross section is given because the
direction of the line could be towards the critical point. On the other hand, in three-
dimensional space this can mean that this is the stable point (the flow tends to this
point) or the unstable condition in which flow tends to infinity on
a perpendicular trajectory to the considered cross-section. This can lead to an
incorrect interpretation of some two-dimensional pictures of flow patterns because
the flow is always three-dimensional.

The consideration of the structural stability of the field is the same as in the two-
dimensional case. Also, the definition of the index of the critical point is the same as
in the case for two-dimensions but instead of the curve, the oriented surface is
considered.

The index of critical points is:
Red, >=0,i=1,2,3 —+I;
ReA >=0, ReA,>=0, A, real and negative ——1;
A, real and positive, Red, <=0, A,<=0—+1;
ReA <=0,i=1,2,3 —-1.

:hb)l\.)»—-
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Figure 1.5. Three-dimensional critical points.

Similar to the case of the two-dimensional manifold, the sum of indices depends
only on the manifold. From this it is possible to consider some specific case of
manifolds.

— For the three-dimensional space the sum of indexes should be zero

To complete the investigation of the classification of the three-dimensional
critical points it is necessary to describe the connection of the above consideration
with the solutions of the Navier-Stokes equations. There could be two approaches
divided by the reference coordinate system.

In the system connected with the moving fluid particle, the assumptions are as
follows. The system (Lagrange system of coordinates) is non-rotating and ties up
with the moving fluid particle. The neighborhood is sufficiently local for the linear
approximation to be valid. The instantancous velocity field can be expressed as:



62 J. Czerwinska

X = Ax. (1.6)
The Jacobian matrix A is a matrix 3x3, where the elements are given by:
_O0X
a; = ox, : (1.7)

This is the rate of deformation tensor and can be split into a symmetric and anti-
symmetric part.

a;=S5;+Ry, (1.8)
where the symmetric part is
1| ox, 0%,
S, =—| —+ a_— s
P73 {axj é’x,} (1.9)
and the antisymmetric part:
1|ox 29X
R, =—| —-—1L|
Y 2|:an axi:| (110)

The S‘./. is the rate of strain tensor and Rij is the rotation (or spin) tensor. The R,_j
has three independent components and these components are the three components
of vorticity.

The above set of equations represents the basic kinematics of fluid. Fluid
motions can be reduced to the above set of equations locally relative to an observer
moving with the fluid particle.

The properties of the flow patterns for the above equations could be
investigated from the equation on the eigenvalues of this system. The eigenvalues
are given by the solution of the equation:

X+ P +QA+T=0, (1.11)

where :
P=~trace [A]=—S,.j, D
Q:%(PZ _t"ace[Az]):%(Pz =555 _Rinji)’ (1.13)

T =—def{A] = ;(— P* +3PQ - trace[A’])=

1 3
s ~S.5S.S. —3R.R.R.).
3( P*+3P0-S,S S, ~3R,R,R,,) .14

g

The surface given by equations:
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-I-P(Q—ngj—i(—3Q+ PZ)—Z% -T=0

3 5 = ‘ (1.15)
1 2 2

iA0-37 )+ H(0s Py -1-0 (116

is the surface which splits solutions either to 2 complex and one real eigenvalue
(above the surface), or to three real eigenvalues (below). This consideration has to
be a bit improved in order to satisfy the non-slip boundary conditions for the
separation case. The perpendicular coordinate to the wall is x, so it is necessary to
transform the system of equation

dt,,, = xdt, (1.17)

and then the non-slip boundary condition is satisfied at x,= 0. The matrix A is no
longer the rate of deformation tensor, but it is made up of elements of the local
pressure gradients and gradients of vorticity. In the case of incompressible flow
the considerations are restricted to the plane (Q-T) in which only saddle points
(not pure nodes) are possible. In compressible flow pure node points are also
possible.

Another approach to interpret flow patterns is the global one. In such a case the
solutions of Navier-Stokes equations are examined but also in some vicinity of the
critical points. The solutions of the Navier-Stokes equations

2+ div(pV)=0, (1.18)
ot
ERY ) 1
——+grad\V-/2)-V xrotV =——divI1 +f,
= T8 2 12) . (1.19)
d( . .
p—c};(l+V 12)=diTIV + pf V - divq, (1.20)
E_K—”
P (1.21)

N N-IN-I o

i=u=) Uyx'y'z" + O(N +1), (1.22)
i=0 j=0k=0
N N-IN-I

y v= Z nyZ +0(N+1) (123)

i=0 j=0 k=0

~.
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N-1 N-1

Z'=W=iZZW,jkxiyjzk+0(N+l) (1.24)

i=0 j=0 k=0

~

The coefficients [jijk’ Vijk and VV:jk are unknown constants. Due to the flow
equations and the boundary conditions some relations between those coefficients
exist and reduce the number of coefficients that could be chosen independently. In
the case of an N order Taylor expansion the phase portrait of the truncated system is
studied. Due to this fact, it is necessary to study whether the order of expansion is
sufficient for the considered flow topology and mainly the description of the
degenerate critical points is necessary. For the case of the incompressible flow near
the viscous wall the Navier-Stokes equations can be reduced to:

=Bx+0Q(2), (1.25)
where matrix B
¢ —p. 7
X 2 px T4
B= 1 0 lpv 0|
H 21 ' (1.26)
o. —p. O,
x5 P: z

The shear stresses in respectively x and z directions are defined by
T=U (uy) |y:0, ando=pu (wy) |y=0 and wall position is at y = 0.

Above the classification of the two- and three-dimensional critical points was
presented. The attention was restricted to the non-degenerate critical points. In the
next section the degenerate and structurally unstable critical points will be
presented in more details.

1.3 Bifurcations

This section will be devoted to the subject of bifurcation. The word bifurcation
is used in the sense of the description of any qualitative change of topological
structure with some parameter. In this section some basic deformations of the
trajectories near isolated critical points or cycles will be considered. In the case of
the investigation of the whole family of different objects, like pictures of
trajectories, some general position of objects might be found. The topological
character of the system of critical points in general position cannot be changed by
small deformations. Such cases are generally more important to investigate in terms
of the analysis of some physical processes. Basic information of such analysis was
presented in the previous section. When the entire group of the family of the simple
cases of trajectories is considered and when information about the entire possible
changes is expected, there is a need to also investigate the specific class (i.e. for
critical points, degenerate critical points or for cycles — degenerate cycles.)
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The subject matter of this section falls into two parts. In the first part, basic
methods of the theory of bifurcations will be presented. The next step will be to
show some specific cases of bifurcations. The need for this is connected with
Chapter 3 in which such cases of changes of topological structures of turbulent flow
past the nozzle will be presented.

Two general problems are associated with bifurcation:
— to what extent the geometrical structure of the solution is resistant to perturbation;

— to what extent expansions in a series nearby a stationary state may be used.
These problems are connected with the structural stability.

First, attention will be paid to the definition of the co-dimension and the
k-parameter family. Both these definitions are necessary and connected somehow
with the definition of bifurcations. These definitions could be better presented and
understood with Figure 1.6.

Figure 1.6. Schematic picture of the space of the entire family of possible topological structures.
Planes present the critical parameters when the bifurcations occur. The bold line is an example
of one single family.

Figure 1.6 schematically presents the space of the entire range of families where
topological changes occur. The bold line is schematically one family (for instance it
could be one critical point.) Each single object of the family can be, of course,
moved to the general position with some change of parameter but the entire family
cannot. The planes are the values of some parameters for which the changes of
topological structures are present. It could be, for example, when the value of the
non-degenerate critical point appears. For the entire range of cases in which the
family of topological structures is considered, there always exist some critical
values of parameters, called the bifurcation parameter, which cannot be removed.
The small perturbation will only move the range of parameters a bit (see Figure
1.6.) It is also shown that the space of bifurcation parameters could have
singularities, which in Figure 1.6 are presented as a cross-section of two planes.
Such cases can be neglected when the considerations of family changing the
topological structures is taken into account due to the fact that a small disturbance
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of parameters will move the entire family (bold line in Figure 1.6) from this
singular position. It is also described as a theorem that, when the k-dimensional
family of parameters is considered, higher dimensional cases can be always reduced
to the lower level — k. It will be possible now to understand the definition of the
k-parameter family. This is the family of possible changes of topological structures
in which the changes depend on the k-parameters. In Figure 1.6, the bold line is the
one parameter family. The co-dimension of the singularity is the dimension of the
k-parameter family and it is equal k. All higher parameter singularities, when
k co-dimension is considered, can be reduced to the k- parameter case. On the other
hand, in case of the k-parameter family, the non-removable will be singularities
with dimension less than k.

With these definitions it is possible to concentrate on bifurcations. The
methodology of analyzing the bifurcations of the family can be divided into two
steps: the first one is to describe the co-dimension of the singularity and the next
one is to show all possible bifurcations in this family.

Another problem connected with bifurcation is the question of what are the
possible changes of specific structures. This is a question of how many points will
split the non-degenerate critical point (or adequate cycles). This can be checked
only by specific consideration about a chosen degenerate critical point. For
example, the saddle-node point splits into two points: saddle and node.

= x; (1.27)
y=-y. (1.28)
When the perturbation is added to the above equation
x=x’-¢g (1.29)
y==y (1.30)

it is easy to see that there are two non-degenerate critical points: saddle and node.

The k-parameters families have some global characteristic properties. One of
these is the dimension of the bifurcation diagram. The bifurcation diagram is the
diagram that presents the splitting of the space of parameters in the case of
topological changes in a dynamical system.

Here are the three basic families of bifurcation:

— one parameter family; in such a case the characteristic matrix has one zero or
a pair of imaginary — conjugate eigenvalues; examples: saddle-node bifurcation,
transcritical bifurcation, Pitchfork bifurcation (real eigenvalue), Hopf bifurcation
(pure imaginary eigenvalue).

— two parameters family; an example of the bifurcation diagram is shown in Figure
1.7.

— three parameters family.
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Figure 1.7. The bifurcation diagram for two parameter family. Cusp — triple eigenvalue, crossing
point — two double eigenvalues, line — one double eigenvalue, whole space — non-degenerate
critical point.
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Figure 1.8. Takens-Bogdanov bifurcation’s diagram.
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The following consideration can be continued for the highest dimensional
parameter families. It will become much more complicated and in the case of
usefulness for Chapter 3, those considerations are not necessary.

For the purpose of Chapter 3, one specific bifurcation should be presented. This
bifurcation is called the Takens-Bogdanov bifurcation. It is a two parameter family
bifurcation and the standard form for it is:

X=y; (1.31)

y=c,+c2x+x2+xy; (1.32)

where ¢, and c, are parameters. In Figure 1.8 the bifurcation diagram and trajecto-
ries are presented. This specific bifurcation is mentioned, because very similar
changes of critical points will be observed with changes in separation structures in
Chapter Three.

1.4 Summary

— Two-dimensional structurally stable critical points are: node, saddle and focal
point. The nodes and foci can be stable or unstable depending on the direction
of the trajectories.

— Three-dimensional structurally stable critical points are: node, saddle and focal
point. There are three types of focal points and two types of saddle points.
Saddle point in three-dimensions in two cross-sections is two-dimensional saddle
and in third direction is a two-dimensional node (stable or unstable). Due to
this there are two types of saddle points in the three-dimensional space depending
on the character of the two-dimensional node.

— Three-dimensional node can only exist for compressible flow.

— Some combination of critical points are not possible — like saddle saddle in
two-dimension. The theorem regarding the index assure which combinations
can be stable.

2. Turbulent boundary layer shock wave
interaction — flow structure

2.1 Introduction

This chapter will be devoted to the turbulent boundary layer shock wave
interaction. This phenomenon is very important for aviation and turbomachinery.
First investigations of this subject were done in the 1940’s. Such studies were
connected with the growing speed of planes. It is especially important for
supersonic aircraft in which the turbulent boundary layer separates due to
interactions with the shock wave resulting in larger drag. Similar phenomenon
exists at the rotor blades of helicopters in which the flow at the blade tip is
transonic and for planes with transonic wings where local area on the wing is
transonic. Boundary layer shock wave interaction is also important for reentry
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vehicles where, due to the mentioned interaction, the turbulent boundary layer
causes larger heating than a laminar boundary layer in the part of the vehicle where
it appears. It is also significant for inner flows such as those in turbines where
things are even more complicated by the reflection of the shock waves and there is
a need to estimate the losses cased by the turbulent boundary layer shock wave
interaction.

In this paper attention will be focused on transonic speed and the turbulent
boundary layer. Separation that appeared due to this interaction is very interesting
to study in terms of flow structures, which can be studied using methods presented
in Chapter 1. Phenomena in such flow also have a very wide range of industrial
applications.

The shock wave causes local discontinuity in parameters. In contact with the
wall, the local area has to be subsonic and this jump cannot be discontinuous. Due
to this fact, an increase of pressure has to take place along the wall in a continuous
way. In the subsonic region the streamlines diverge due to pressure increase and
move from the wall. The type of structure built of two shocks is called the A-foot.
This phenomenon depends on properties of the boundary layer as well as on the
normal shock wave far from the wall. If the pressure jump is high the boundary
layer separates. Also for larger pressure changes, the structures like the A-foot are
much wider and stronger. An example of the A-foot is presented in Figure 2.1.

:.\ ; “P‘”“Pi““‘m" i normal shock wave
vortex layer
S ST : limit of boundary layer
frod shock
P g e
sepasation buble

Figure 2.1. The structure of the shock near the viscous wall. Grey area — supersonic region.

The front oblique shock cross the normal shock dividing it to the normal shock
and rear shock. At the triple point where this splitting occurs, the vortex layer is
formed due to the different entropy production on a normal shock and A-foot. The
grey region in Figure 2.1 is supersonic.
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The shock induced separation is very sensitive to the considered channel’s
geometry. Especially in the internal flows it is highly three-dimensional. This fact
was confirmed by both experiments and computational results. In the case of the
channel it was shown that the width of the channel had a large influence on the flow
structure and separation size.

Due to this fact there was a necessity to compute three dimensional cases to
check three-dimensional effects. The three-dimensional structures of separations are
difficult to check with experiment. The computations will be compared with the
experimental data presented in [45] and [46].

2.2 Flow in a nozzle

In this section the turbulent transonic three-dimensional flow in the nozzle will
be presented. The main attention will be paid to the influence of the numerical
schemes on the structures of the separation and A-foot.

The geometry of the channel is given in Figure 2.2. For the computations the
structural grid was generated. The number of mesh points on the highest level is
165x65x%65. The grid near the viscous wall is adequately chosen to render gradients
within the turbulent boundary layer.

The computations were done using the Navier-Stokes solver kappa developed
at Karlsruhe University and its open version is available at the Institute of Fluid
Flow Machinery in Gda’nsk. More details about this solver are presented in [110].

The boundary conditions for this flow are: total pressure and temperature at the
inlet and the static pressure at the outlet of the nozzle.

The computations were made for two different numerical schemes (slip and
switch schemes) for turbulence model k-7 Launder Sharma [110]. More details
about numerical schemes are available in Appendix C. To accelerate convergence
the 3-level multigrid was used.

The difference in density for both schemes is shown in Figures 2.3. It can be
seen that the difference occurs in the vicinity of the shock and is especially big
where separation occurs for the switch scheme.

éz BE - N

.30 -0.17 -0.05 0.08 0.20 0.33
X

Figure 2.2, Mesh with the density distribution on the side wall. Flow direction is from left to right.
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Figure 2.3. Density difference between the switch and the slip scheme.

Figures 2.4 and 2.5 present the Mach number isolines in the middle cross-
section of the nozzle. The maximum Mach number in the case of the slip scheme is
1.44 and in the case of the switch scheme is 1.39 for the same boundary conditions.
The difference again appears near the shock wave. For the slip scheme shock is
stronger. As it was shown from experiments for stronger shock, the A-foot is larger
and also the separation region is longer but here there is no separation or A-shock.
Due to this fact the slip scheme will not be used for other cases although the
convergence for this scheme is faster.

| [N

0.00 0.15 0.31 0.46 062 077 0.92 108 123 1.39

Figure 2.4. Mach isolines for the switch scheme in the middle cross-section of the nozzle.
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Figure 2.5. Mach isolines for the slip scheme in the middle cross-section of the nozzle.

In Figure 2.6 the I-foot near the bottom wall is presented. The grey region is the
supersonic region. Mach isolines create a A-foot only for the case of the switch
scheme. Also it can be noted that there is a supersonic region spread downstream
indicating an existence of a rear shock. The separation bubble is quite small, but
still exists. The situation for the slip scheme is different — no separation and no
A-foot structure. The difference can be even easier noticed on the curved top wall of
Figure 2.7. The A-foot is very clear and also the supersonic area creates very
characteristic structures like in Figure 2.1. In Figure 2.7 [a], for the switch scheme,
the separation bubble is large and easy to notice. The case of the slip scheme again
is different with no A-foot or separation.

In Figure 2.8 the pressure distribution on the bottom wall in the middle of the
nozzle is presented. The red curve presents pressure for the slip scheme and the
green for the switch scheme. The difference downstream of the shock wave is
caused by the presence of separation.

Figure 2.6 a Figure 2.6 b

Figure 2.6. Mach isolines for the switch [a] and slip [b] schemes in the middle cross-section
of the nozzle near the bottom wall. The grey region is the supersonic region. In case
[a] also the separation bubble can be seen.
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Figure 2.7. Mach isolines for the switch [a] and slip [b] schemes in the middle cross-section of the
nozzle near the top wall. The grey region is the supersonic region. In case [a] also the separation
bubble can be seen as well the supersonic region extends far downstream from the shock.

The conclusion of this section is that, for the computations of the turbulent
boundary layer shock wave interaction, the switch scheme gives more acceptable
results that are closer to experiment. To explain the differences in obtained results it
is necessary to know a basic description of the schemes. The explanation of the
differences between schemes can be found in Appendix C. Also in Appendix C, the
possible reason for the results is presented.
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Figure 2.8. Pressure distribution on the bottom wall in the middle of the nozzle. Red curve — slip
scheme, green curve — switch scheme.
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Figure 2.9. Comparison between numerical calculations and experiments. Structures of the separa-
tion on [a] the side and [b] bottom wall for switch scheme. [c] The oil visualization for the similar
case, the flow on the photograph is in the opposite direction to that in Figure [a] and [b]. The oil
visualization is for M = 1.47 and numerical calculation for M, = 1.40. This explains differences in the
size of the region of separation.

Figure 2.9 presents the comparison between the experimental visualization and
the numerical computations. The experimental picture presents the oil visualization.
The flow direction is from right to left, opposite that of computations. The velocity
vector plot for the switch scheme presents very similar results to experiment. On
the side wall the vortex can be seen. There is also the separation region on the
bottom wall.

2.3 Two-dimensional flow in the curved channel

In a nozzle the shock wave spans across the whole channel and induces
separation at all walls. Therefore such a flow case is very complex as far as
separation structures are concerned. Due to this it was decided to investigate a
curved passage flow. In such a case the supersonic region is adjacent to the convex
wall and the shock wave is strong at this wall. In consequence the shock induced
separation takes place only at the convex wall. Moreover there is sufficient
experimental data for validation.

This section will be devoted to two-dimensional computations of transonic flow
in a curved channel. The main aim of this section is to estimate the basic flow
character in 2-D so that later it can be compared with similar computations for three
dimensional flows.
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Figure 2.10. The geometry of the curved channel.

The geometry of the channel is given in Figure 2.10. The number of points in
the grid for this case is 257x193.

The computations were performed for two different isentropic Mach numbers
just upstream the interaction: M, =1.35 and M, _=1.47 on the bottom wall, where
the isentropic Mach number is defined as follow:

k-1
2 |(po )*
M,=|—||— 1| -1].
5l =1 [pJ 2.1

The required isentropic Mach number was obtained by the change of the outlet
boundary condition — value of the pressure ratio.

The numerical schemes used for both cases were the slip and switch scheme. Due
to difficulties (presented in the previous section) with the slip scheme to render the
separation in the 3-D nozzle, it was necessary to check if for a very refine grid in 2-D
such difficulties also existed. The turbulence model was the non-linear k-7 of Craft,
Launder and Suga [22]. To obtain better convergence, a 3 level multigrid was used.
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Figure 2.11. The position of the cut with the geometry of the channel for an isentropic Mach number
M, = 1.47. The line perpendicular to the channel indicates the cut line.
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In Figure 2.11 the cut position in the channel is shown. At this position the
boundary layer profiles have been studied. The velocity profiles for M =1.47 in
Figure 2.12 are presented. The figure shows profiles for the bottom and top wall. It
proves that for the slip scheme the boundary layer is thicker. Table 2.1 shows the
maximum velocities and boundary layer thickness for these cases. The boundary

layer thickness was taken at a point where, u /u, = 0.995.
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Figure 2.12. Velocity profiles; green — switch scheme, red — slip scheme; [a] Without
normalization on bottom wall, [b] Normalized on bottom wall, [c] Without
normalization on top wall, [d] Normalized on top wall.

Table 2.1. Boundary layer thickness for the slip and switch schemes.

max.velocity boundary layer max.velocity | boundary layer
scheme ; ;
bottom thickness — bottom top thickness — top
switch 366 m/s 2.5 mm 318 m/s 4.5 mm
slip 368 m/s 3.5 mm 313 m/s 5.0 mm
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Figure 2.13. Comparison between two schemes. Color contour (M > 1) — switch scheme. Black —
slip scheme.

In Figure 2.13 the comparison between two schemes for M, = 1.47 is shown. It
again can be seen that the A-foot is larger for slip scheme.

Similar to the previous section, it can be seen that slip scheme has a different
dissipation near the shock and predicts a bit different position for the shock and its
strength. It seems though that the behavior of the schemes is independent of the
turbulence modeling. The tendency is the same although in the previous section
another turbulence model was used. Tatsumi, Martinelli and Jameson [172] have
shown that for both schemes the parameters in the boundary layer are different and
with growing points number within the boundary layer one cannot give a clear
answer which scheme gives the better results. For cases computed here the switch
scheme seems to be more accurate giving better agreement with experimental data
considering the separation structures and the A-foot size in three-dimensional
computations. '

Due to this fact, for further comparison, the switch scheme was used. In
Figure 2.14 the Mach number isolines for isentropic Mach number M, = 1.35 and
M = 1.47 are presented. From this picture, changes in the position of the shock can
be seen and also that the A-foot structure changes with Mach number. The A-foot is
much smaller for lower Mach number.

In Figure 2.15 the pressure distribution on the bottom wall is shown. From this
figure it can be noted again that the position of the shock and pressure drops are
different for the two cases.

The separation bubble can be seen on the vector plot in Figure 2.16. The size of
the separation bubble is for M, =1.35 — 18 mm, for M, =1.47 — 27 mm. The
A-foot height respectively 10 mm, 18 mm.
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The two-dimensional results presented in this section are an introduction to the
three dimensional flow computations in the same geometry of the channel.
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Figure 2.14. Mach number isolines in curved two-dimensional channel. [a] M, = 1.35 [b] M, = 1.47.
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Figure 2.15. Pressure distribution on the wall. Red curve — M = 1.35, green — M = 1.47.
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Figure 2.16. Velocity vector plots near the bottom wall. [a] M, = 1.35, [b] M, = 1.47.

2.4 Three-dimensional flow in the curved channel. Effect of width
of the channel
The geometry of the channel is the same as in Figure 2.10. The third dimension
has been added while taking into account two different widths of the channel:
150 mm (later it will be called the wide channel) and 50 mm (called the narrow
channel). The number of mesh points is 129x97x65. The symmetry condition was

Figure 2.17. Mach number isolines in curved three-dimensional channel for M, =1.47 [a] narrow
channel [b] wide channel.
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used, but also whole channel has been calculated for grid 129x97x97. The
computations were done using the switch scheme which behaves more accurately in
the separation region. The turbulence model used in the computations was the non-
linear k-7 model of Craft-Launder and Suga [22].

In Figure 2.17 the Mach number isolines for M, _=1.47 in the middle cross-
section of the channel are presented. Figure [a] shows the distribution for the
narrow channel and [b] for the wide one. The shock wave structure in both cases is
very different. For the wide channel the A-foot is much smaller and also the
separation is smaller. This is in reference to the boundary layer thickness. For the
narrow channel a second smaller shock also appears. It will be shown later that such
structures are also present in experiment. The position of the shock is nearly the
same, which can be also noticed from Figure 2.45 [a] and 2.47 [a].

In Figure 2.18 the Mach number isolines for M, = 1.35 in the middle cross-
section of the channel are presented. The shock waves for lower Mach numbers are
of course weaker and the A-foot is much smaller than for M, = 1.47 but still the
difference between the wide and narrow channel can be seen. Again, in the narrow
channel, the second smaller shock wave has appeared, although very weak.

0.00 015 030 046 061 0.76 091 1.086 1.21 137
[b]

Figure 2.18. Mach number isolines in curved three-dimensional channel for M, = 1.35
[a] narrow channel [b] wide channel.
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The next sections will provide details concerning flows in these two channels.
There will be a study of the boundary layer influence, shock wave structures and
also separation structures. Also the width of the channel, as well as the changes due
to the growing Mach number will be taken into account.

24.1. Boundary layer profiles

In this section the main attention will be paid to describing basic parameters of
the boundary layer for all computed cases. The boundary layer parameters influence
the A-foot structure and also the separation further downstream from the shock. The
investigation of the boundary layer will be done upstream of the shock to check
what is the influence of the boundary layer for the wide and narrow channel.

In Figure 2.19 the location of the cut for the isentropic Mach number M, = 1.47
where the boundary layer has been checked is shown.

Figure 2.20 shows the location for M_= 1.35. The cut is made in the grid points
so that locally near the wall it is perpendicular to the wall. Due to this fact, the
velocity is parallel to the wall (in the boundary layer without separation) so changes
in velocity occur mainly in the y-direction. Changes in the perpendicular velocity
are much smaller at around 1/100 of x-velocity. This confirms the assumption used
below that profiles of the boundary layer are studied based on the x-velocity
distribution, although there is some curvature of the channel.

140.4 256.3 Jrz.2 488.2 604.1 720.0

Figure 2.19. The location of cut with the geometry of the channel for isentropic
‘Mach number M_= 1.47.
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140.4 206.3 372.2 486.2 604.1 720.0

Figure 2.20. The location of cut with the geometry of the channel for isentropic
Mach number M, = 1.35.
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In Figure 2.21 the velocity profiles within the boundary layer for M, _=1.47
are presented.

Figure 2.22 presents the velocity profiles for M, = 1.35. The velocity profiles
are obtained for cuts presented in Figure 2.19 and 2.20.

Figures 2.21 and 2.22 present velocities for the bottom, side and top wall. The
green line corresponds to velocity in the wide channel while respectively the red
line corresponds to the narrow channel. The velocity is normalized to velocity in
infinity and the y-coordinate to the boundary layer thickness (see Table 2.2). The
boundary layer thickness is different for M, _=1.47 for different widths of the
channel although the character remains the same.

In Table 2.2 the maximum velocities and boundary layer thickness for both
widths of the channel are presented. The maximum velocities are about the same on
the side and bottom wall. The biggest difference is present on the top wall for high
Mach number. Also for high Mach number the difference in the boundary layer
thickness for a side wall is large. For all cases, two different Mach numbers and two
different widths of the channel, the condition on the isentropic Mach number in the
middle of the channel on the bottom wall was the basic requirement. Due to this the
outlet conditions were different. This can explain why there are differences on the
side wall boundary layer and the maximum velocity.

Table 2.2. Maximal velocity and boundary layer thickness for wide and narrow channel for
M =147 and M_=135.

bottom Side top bottom side top
M=147 | M =147 | M =147 | M =135 | M =135 | M =135
madmal velocity '
wide charnel 451 mvs | 400 /s | 320mys | 396 mys | 367 mis | 336 nvs

maximal velocity

1
charmel 448nvs | 39ms | 360mys | 40l m/s | 372 mvs | 332 mi's

boundary layer
thickness 3.1 mm Ilmm | 69mm | 42 nmm 7mm | 7.5 mm
wide channel

boundary layer
thickness 4.5 mm 75mm | 721mm | 42mm | 6.5mm | 7.5 mm
narrow channel
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Considering Figures 2.17 and 2.18 and Table 2.2 the dependence between the
boundary layer thickness and the height of the A-foot can be noticed. This will be
investigated further in the next subsection.

@ b,

10 £1.0
]
£

8 5 0.8
>
3 )
=1 >

B 6 = 0.6
g E
9 3
o o

=~ 4 504
By
o

2 £o02

// § //

Q

0 = 0.0

0 100 200 300 400 00 02 04 06 08 10
x velocity x velocity/ U infinity

[c] [,
Q

10
® 3
:

o) 508
ch )
g -~

= Zos
54 B
(o} 3

3 S04
s 3
2 / £

502

_— / E //
9]
0 = 0.0 = =

0 100 200 300 400 0.0 0.2 04 0.6 0.8 1.0
X Velocity x velocity /U infinity
el M,
1%
10 210
£
12
2
8 = 0.8
Q
3 )
5 =
>
5 6 Los
5 9
N c
<}
(3] g /
>~ 4 £ 0.4
/ 5
T
rd E
2 © 0.2
4 =
// g
/ > L_——
9 i 0.0
0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0
x velocity x velocity /U infinity

Figure 2.21. Velocity profiles for M, = 1.47; green -wide channel, red - narrow channel [a] Without
normalization on bottom wall, [b] Normalized on bottom wall, [c] Without normalization on side
wall, [d] Normalized on side wall, [e] Without normalization on top wall, [f] Normalized on top wall.
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Figure 2.22. Velocity profiles for M, = 1.35; green — wide channel, red — narrow channel [a] Without
normalization on bottom wall, [b] Normalized on bottom wall, [¢] Without normalization on side wall,
[d] Normalized on side wall, [e] Without normalization on top wall, [f] Normalized on top wall.



The Analysis of Separation amd Methods of Three-dimensional Flow Structure... 85

2.4.2 The shock wave characteristic

Figures 2.23-2.28 show the flow region near the shock wave for both channels
with M, = 1.47. The grey area is the supersonic region (M > 1). Cuts are done in the
grid points and the numbers associated with them represent the node numbers that
correspond to the distance from the side wall. Table 2.3 shows the position of these
nodes in the wide and narrow channel.

Table 2.3. Node positions for the wide and narrow channels. The table presents the node numbers
and corresponding positions from the side wall.

node wide channel [mm] narrow channel [mm]
38 2.9519 0.9643
40 3.8105 - 1.2452
42 49156 1.6069
44 6.3369 2.0725
46 8.1637 2.6715
48 10.5091 3.4415
50 13.5167 4.4393
52 17.3670 5.6985
54 22.2856 7.3226
56 28.5521 9.3979
58 36.5086 12.0430
60 46.5667 15.4031
62 59.2119 19.6531
64 75.0000 25.0000

Figures 2.23-2.28 allow the study of both the changes in the separation region
size and the A-foot structure. The A-foot is smaller for the wide channel. For the
narrow channel, a smaller second shock can be seen. The flow is supersonic in the
entire region upstream the shock. From Table 2.3 and the following Figures, it can
also be concluded that the shock penetrates the boundary layer near the side wall.
Another result from analysis of the figures is that for the narrow channel, the
position of the shock changes more with the cut position than for the wide channel.

Figures 2.29-34 show the same cuts but for M_ = 1.35. It can be seen here that
the A-foot is similar for the two channel types. In addition, the supersonic region is
smaller than for higher Mach number, and for the narrow channel, the second
smaller shock exists. In the case of a small isentropic Mach number, the supersonic
region for the narrow channel only exists near the shock.
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Figure 2.23 e Figure 2.23 f

Figure 2.23. Mach isolines for M, = 1.47 for the wide channel [a] 38, [b] 40, [c] 42,
[d] 44, [e] 46, [f] 48.
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Figure 2.24 ¢

Figure 2.24 f

Figure 2.24. Mach isolines for M, = 1.47 for the wide channel [a] 50, [b] 52, [c] 54,
[d] 56, [e] 58, [f] 60.
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In Figures 2.35-2.40 the Mach isolines for the spanwise-streamwise cuts are
shown. The numbers refer to the j-node number (j =1 at the bottom convex wall
and j = 97 at the top concave wall). Due to the fact that the channel is curved, these
cuts are also made by curved surfaces projected onto a plain surface. Noting this
fact, it follows that the position of the cut gives only a general orientation about
plane location. Grid point 48 is in the middle of the channel. It can be seen that the
shock at this position is weaker than the one closer to the bottom wall. It can also be
noted that the curvature of the shock near the side wall is caused by the side wall
boundary layer shock wave interaction. In addition, the side wall structures of the
separation can be seen. The Mach isolines have a bit different behavior for wide
and narrow channel, although cuts are done in the same positions for both channels.
For the narrow channel, the second small shock can be seen again. The supersonic
regions for narrow and wide channel are different. For the narrow channel some
supersonic flow downstream to the main shock also exists.

Figure 2.26. Mach isolines for M, = 1.47 for the narrow channel [a] 62, [b] 64.
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Figure 2.27 a

Figure 2.27 b

Figure 2.27 ¢

Figure 2.27 e Figure 2.27

Figure 2.27. Mach isolines for M, = 1.47 for the narrow channel [a] 38, [b] 40, [c] 42,
[d] 44, [e] 46, [f] 48.
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Figure 2.28 a Figure 2.28 b

Figure 2.28 ¢ Figure 2.28 d

Figure 2.28 ¢ Figure 2.28 f

Figure 2.28. Mach isolines for M, = 1.47 for the narrow channel [a] 50, [b] 52, [c] 54,
[d] 56, [e] 58, [f] 60.
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Figure 2.29 ¢ Figure 2.29d

Figure 2.29 ¢ Figure 2.29 f

Figure 2.29. Mach isolines for M, = 1.35 for the wide channel [a] 38, [b] 40, [c] 42,
[d] 44, [e] 46, [f] 48.
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Figure 2.30 a Figure 2.30 b

Figure 2.30 ¢ Figure 2.30 f

Figure 2.30. Mach isolines for M, = 1.35 for the wide channel [a] 50, [b] 52, [c] 54,
[d] 56, [e] 58, [f] 60.
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Figure 2.31 a Figure 2.31 b

Figure 2.31. Mach isolines for M= 1.35 for the wide channel [a] 62, [b] 64.

Figure 2.32 a Figure 2.32 b

Figure 2.32. Mach isolines for M, = 1.35 for the narrow channel [a] 62, [b] 64.



94 J. Czerwinska

Figure 2.33 a Figure 2.33 b

Figure 2.33 ¢ Figure 2.33d

Figure 2.33 e Figure 2.33 f

Figure 2.33. Mach isolines for M, = 1.35 for the narrow channel [a] 38, [b] 40, [c] 42,
[d] 44, [e] 46, [{] 48.
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Figure 2.34 ¢

Figure 2.34 ¢

Figure 2.34. Mach isolines Jor M, = 1.35 for the narrow channel
[d] 56, [e] 58, [1] 60.

Figure 2.34 b

Figure 2.34d

Figure 2.34 f
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Figure 2.35. Mach isolines of the spanwise-streamwise cut in the wide channel [a] 24, [b] 32,
[c] 40, [d] 48 for M, = 1.47.
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Figure 2.36. Mach isolines of the spanwise-streamwise cut in the narrow channel [a] 24, [b] 32,
[c] 40, [d] 48 for M = 1.47.

Figures 2.39 and 2.40 show the Mach isolines for M, = 1.47 and the supersonic
region (M > 1). For both channels, the 1-foot near the side wall can be seen. The
A-foot on the side wall is bigger for the wide channel at which point the boundary
layer thickness is also greater.

Figure 2.41 shows the sonic contour (M > 1) for the wide channel while Figure
2.42 shows the sonic contour (M > 1) for the narrow channel. Both presented cases
are for M, = 1.47.

Figure 2.43 shows the sonic contour (M > 1) for the wide channel while Figure
2.44 shows the sonic contour (M > 1) for the narrow channel. Both presented cases
are for M, = 1.35. In both, the supersonic region grows for a corresponding growth
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Figure 2.37. Mach isolines of the spanwise-streamwise cut in the wide channel [a] 24, [b] 32,
[c] 40, [d] 48 for M = 1.35.

Figure 2.38. Mach isolines of the spanwise-streamwise cut in the narrow channel [a] 24, [b] 32,
[c] 40, [d] 48 M _=1.35.

in Mach number but the region’s change in shape is more pronounced for the
narrow channel.

This review of results will be closed with a presentation and comparison of the
shock behavior for both channels. Figure 2.45 presents the Mach isolines (M > 1)
for both channels. Figure [a] presents the case for M = 1.47 while Figure [b] shows
the case for M,_=1.35. All cases are studied in the middle cross-section of the
channel. The figures show the large height of the A-foot — for the narrow channel.
The position of the shock is much different for higher Mach number but the angle
of interaction (the angle where the flow separates from the wall) is the same for
both channels.
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Figure 2.39 ¢ Figure 2.39d

Figure 2.39. Mach isolines in a spanwise-streamwise cut of the wide channel [a] 23, [b] 25, [c] 38,
[d] 48 M, = 1.47.

Figure 2.40 e Figure 2.40 f

~

Figure 2.40. Mach isolines in a spanwise-streamwise cut of the narrow channel [a] 24, [b] 25,
[c] 26, [d] 38, [e] 45, [f] 48 M = 1.47.
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Figure 2.44. The sonic contour for the narrow channel with M =135
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Figure 2.45. Mach isolines (Ma>1) for both channels. Black — wide channel, color — narrow
channel; [a] M =147, [b] M _=1.35.

Figure 2.46. Mach isolines (Ma > 1). Black — M _=1.35 color —
[b] narrow channel®

M _=1.47; [a] wide channel;

Figure 2.46 presents Mach isolines. Figure [a] is for the wide channel with both
Mach numbers and Figure [b] is for the narrow channel with both Mach numbers.
Most notable from these figures is the difference in the shock position evident due
to a growing Mach number.

Finally, to specify the position of the shock on the bottom wall the pressure
distribution in the middle of the channels is shown in Figure 2.47. Table 2.4
presents the values of the height of the A-foot.

Table 2.4. Normalized height of A-foot and Reynolds number based on the boundary layer thickness
for the narrow and wide channel.

Re (M =147) | h/s (M =1.47) Re (M =1.35) h/s (M =1.35)
wide channel 71600 5.86 93090 2.11
narrow channel 105000 5.97 93090 2.35
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Figure 2.47. The normalized pressure distribution on the bottom wall in the 2D channel (red);
and in the middle of the bottom wall in 3D: narrow channel (black), wide (green). It can be seen

the changes in position of the shock and differences in pressure distribution downstream.

[a] M= 1.47; [b] M = 1.35.

2.4.3 Shock structure — comparison with experiment

In this section, a comparison with experimental data will be presented.
Attention will be paid to the basic shock parameters including the height of the
A-foot structure and its connection with the boundary layer thickness.

presented in Table 2.5.

In the Karslruhe experiments of Doerffer [45] the narrow channel was investi-
Boundary layer thicknesses for both cases, as well as for computations, are

gated. The wide channel was studied in experiments carried out in Warsaw [46].

Table 2.5 Boundary layer thickness for experiments and numerical calculations.
M =147 M =135
boundary | thickne:
oundary layer thickness 236 23]
wide channel experiment [mm]
boundary layer thickness 31 42
wide channel calculations [mm] | '
boundary layer th'zckness 316 391
narrow channel experiment [mm]
boundary layer thickness 45 47
narrow channel calculations [mm] ' '
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The thickness of the boundary layer in experiments is different for narrow and
wide channels. The same tendency in numerical calculations can also be seen but
the numerical boundary layer is thicker than experimental one. There are several
causes for this difference. One can be connected with the numerical boundary
conditions. The inlet boundary layer, which has its origin in the pressure conditions,
is different than the experimental one. Downstream, the boundary layer can be
modified by the flow but it cannot be efficient enough. The best way to assure that
the inlet boundary layer has no influence would be to give the same boundary layer
profile at the inlet as in experiment. Such data was not available. Another reason for
the difference in the boundary layer profiles can be connected with the thickness of
the boundary layer at the side walls. The measurements of such quantities were not
done. Both the cases for the narrow and wide channels show that the side wall
boundary layer has a large influence on both the shock structure and separation
region. Due to this, information about the side wall boundary layer would be
helpful in the comparison of numerics to experiment.

Table 2.6 presents the A-foot height normalized by the boundary layer thickness.
The tendency that the A-foot grows for larger Mach numbers is the same for both
experiments and calculations.

Table 2.6 Normalized height of A-foot for experiments and numerical calculations for narrow and
wide channel.

W (M =1.47) hs (M =1.35)
wide channel experiments 4.98 1.8
wide channel calculat;'ons 5.86 2.11
narrow channel experiments 6.87 2.97
narrow channel calculations 5.77 2.35

Figure 2.48 presents another way of comparison. The function of Mach number
and Reynolds number is considered. The function is given by the relation [45, 46]:

e (M - 1)Re‘°-‘1

(1 " MZJE 22)
2

The normalized A-foot height is plotted as a function of Mach and Reynolds
number. The solid line presents experiments for the narrow channel, triangles are
points from experiments in the wide channel and circles present numerical
calculations. The results are in quite good agreement. It can be seen that the points
from calculations are a bit higher then experiments. The reason for this can be the
difference of the boundary layer on the side walls. Also, information about
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turbulence in the experiment are missing and thus could be helpful for choosing the
proper turbulence model or setting boundary conditions for turbulence level or
length scale.
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Figure 2.48. Comparison between experimental data and computations; triangles — experiments in
wide channel; solid line — experiments in narrow channel; circles — numerical results.
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Figure 2.49. Comparison between experimental data and computations — pressure distribution on
the bottom wall in the middle cross-section.
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Figure 2.49 shows the pressure distribution in the middle of the channel for the
wide and narrow channels. The considered isentropic Mach number is M, = 1.47.
The differences in distribution after the shock are caused by the separation. The
turbulence modeling still could not precisely predict the behavior of the separation
region although the tendency (angle of the curve) is similar for experiment and
calculations.

The last comparison of this section will be the presentation of the shock wave
structure obtained by Schlieren photography. Figure 2.50 shows pictures for the
narrow [a} and wide [b] channels with an isentropic Mach number M, = 1.47. This
Figure can be compared with the Mach isolines of Figure 2.17.

Two differences between the narrow and wide channels can be noticed:
—  The A-foot in the middle of the wide channel is smaller than in the narrow one

— In the narrow channel, a second shock (connected with after expansion) is
observed while only a single one is observed in the wide channel

Both above observations were true for experiment and numerical calculations.

Figure 2.50. Schlieren visualization, [a] wide; [b] narrow channel.

2.4.4. Influence of the symmetric boundary condition on the structure of the shock
wave :

In the previous section, computations used the symmetry condition. The
structure analysis, which will be presented in Chapter 3, shows that this condition
has an influence on the structures of the flow. Due to this, calculations were done
without an assumption of symmetry. The numeric simulation used a grid of size of
129%x97%97.

Because of this it was necessary to show, the influence of that condition on the
global flow parameters.

In Figure 2.51 Mach, isolines for isentropic Mach number M, =1.47 in the
middle cross-section of the curved channels are presented. Again in the narrow
channel, the A-foot is larger and the second smaller shock exists.
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Figure 2.51. Mach number isolines in the curved three-dimensional channel for M,_= 1.47 and the
middle cross-section. Calculations were done without the condition of symmetry. [a] narrow channel
[b] wide channel.

Figure 2.52 show the pressure distribution on the bottom of the channel in the
middle cross-section for the wide and narrow channels. The red lines represent
pressure resulting from the calculation in the middle of the channel with the
assumption of symmetry while the black lines show results of the computation with
no assumption of symmetry. he difference between the two can only be seen in the
region of separation.

In Chapter 3 the structures of the separation will be studied for both boundary
conditions. A significant difference in separation for each of the two computations
will be shown. The current section shows that there is no difference in the shock
and flow structures for the two cases, as was expected.
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Figure 2.52. Pressure distribution in the middle of the curved three-dimensional channel for
M, = 1.47 on the bottom wall. The red curve corresponds to the computations with the symmetry

condition while the black corresponds to the computations done on the whole channel.
[a] narrow channel [b] wide channel.

2.5 Summary

The A-foot height depends on the boundary layer. With a thicker boundary layer,
the A-foot is larger. This tendency is similar for both experiment and numerical
calculations.

The A-foot height depends on the Mach number. Larger Mach numbers result
in a growth of the A-foot. This is observed in both calculation and experiment.

The width of the curved channel has a large influence on the A-foot structure. In
the narrow channel, the A-foot is larger due to the thicker boundary layer and
there is also a second smaller shock due to the stronger interaction of the side
walls boundary layers. Calculations agree with the experimental data.

The symmetry condition in the middle of the channel has no influence on the
shock and flow structure.

The numerical scheme used can cause large differences in the shock structure.
The switch scheme gives better agreement to experimental data than the slip
scheme.

Two-dimensional calculations are more similar to the calculations in the wide
channel (pressure distribution). Three-dimensional effects cannot be properly
rendered by two-dimensional calculations.
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3. Shock induced separation

3.1 Introduction

In this Chapter the flow structures induced by the normal shock boundary layer
separation will be studied. Consideration will be restricted to the three-dimensional
curved channel computations presented in Chapter 2. The separation region for that
type of channel occurs only at the bottom wall and some small structures can be
seen near the bottom on the side walls.

The aim will be to study the two-dimensional structures on the walls and the
three-dimensional structures of the separation. The structures obtained by
computations will be compared with experimental photographs of oil visualization.
The influence of the isentropic Mach number, width of the curved channel and the
symmetry conditions on the separation structures will be studied.

3.2. Computations using the symmetry condition

In this section the separation structures for M, =1.35 and M, = 1.47 will be
presented. Attention will be focused on computations carried out on a grid of size
(129%x97x65) with the use of the symmetry condition in the middle of the channel.
For all Figures in this section the flow direction is from left to right.

3.2.1 Separation structures for M, = 1.35

Figure 3.1 presents flow for M, = 1.35 in the wide channel. The side wall and
bottom wall are shown. Observation of the side wall shows a saddle point and
bifurcation line. These are the first structures which occur and are connected with
shock induced separation. Such structures extent normal to a wall are
characteristically small with comparison to the geometry of the channel. Shock
wave causes a sudden inclination of lines towards the bottom wall (Figure 3.1 [a]).

All these lines run into a bifurcation line above the bottom wall.The bifurcation
line is connected with the comner vortex which appears due to the shock’s
interaction with the boundary layer.The corner vortex will continue to exist for
a higher Mach number and its presence will be shown in further Figures. Figure 3.1
[b] shows the structures occurring on the bottom wall. Here, the beginning of
separation occurs near the side wall.In Figure 3.1 [b] upper limit is a center line and
the lower one is the side wall.

In Figure 3.2 the structures for the narrow channel with M, = 1.35 are plotted.
The bottom wall structures look quite similar to those for the wide channel. The
only difference is that near the saddle point the origin of the focal point can be seen.
Similar to the wide channel, separation on the bottom wall occurs near the side
wall. The influence of the side wall is bigger for the narrow channel.

Both Figures 3.1 and 3.2 illustrate that for M, = 1.35 the separations induced by
the shock wave boundary interaction starts to appear, but it is restricted to the
vicinity of the bottom-side wall corner.
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Figure 3.1. Structures of the separation for the wide channel for M, = 1.35 [a] side wall
[b] bottom wall.

3.2.2 Separation structures for M, = 1.47

For Mach number M, = 1.47 the shock induced separation is much larger. In
Figure 3.3 [a] the side wall for the wide channel is shown. This picture looks very
similar to figure 3.1 [a] except that the angle of the lines is more steep. The
topological structures on the side wall for M, =1.35 and M, = 1.47 are the same.
Figure 3.3 [b] presents the middle cross-section of the channel (where the symmetry
boundary condition was assumed). Here the vortex can be seen which is present in
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Figure 3.2. Structures of the separation for the narrow channel for M, = 1.35 [a] side wall
[b] bottom wall.

the middle of the channel. Figure 3.4 [a] presents the bottom of the channel. The
separation for this case of Mach number is present even in the middle of the
channel. Structures at the side wall (bottom line on the Figure) are similar to those
seen for M,_=1.35. In the middle of the channel there are two points: node and
saddle. They correspond to two saddle points in figure 3.3 [b]. As it was shown in
Chapter 1, the three-dimensional saddle point is represented as a saddle point in two
planes and in one plane as a node. Due to this the saddle point from the middle of
the channel in Figure 3.4 [a] in the third cross-section, perpendicular to the middle
line is a node. Other points will be similar. There is one more interesting
observation. Due to the symmetry condition the flow upstream and within
separation is slightly directed to the center of the channel. Figure 3.4 [b] shows the
three-dimensional structures and includes a vortex in the middle of the channel. The
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Figure 3.3. Structures of the separation for the wide channel for M, = 1.47 [a] side wall
[b] middle cross-section wall.

view is from the outlet end of the channel. This vortex is not seen in Figure 3.4 [a],
but the reverse flow flow in the separated area is caused by its presence. It can be
observed that the flow from the side wall moves in the direction of the bottom wall
where it causes the vortex. Also from this Figure it can be noted that the side
boundary layer has a large influence on the global behavior of the flow. Again it can
be observed that the separation structures are very flat compared to their width.
Figure 3.5 presents the side wall and middle cross-section for the narrow
channel. The side wall structures are different than those for either M, = 1.35 or the
wide channel. On the side wall the vortex can be seen. The middle cross-section is
similar to the wide channel. In Figure 3.6 the bottom wall structures are presented.
The structure seen there is much different than for the wide channel. Near the side
wall (bottom line in Figure) two focal points and one saddle point appear. The
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Figure 3.4. Structures of the separation for the wide channel for M, = 1.47 [a] bottom wall
[b] three-dimensional structures.

center line structures are the same as for the wide channel. The flow direction
before the separation is again forced by the symmetry condition so that the flow is
directed towards the node. Due to the presence of the focal points, to fulfill all
conditions, the saddle point appears. Figure 3.7 shows the three-dimensional
structures in two views.The lines are obtained by integration forward and backward
starting from points near the bottom wall. It can be seen that part of the flow near
the bottom wall has its origin at the side boundary layer. Similar influence of the
side wall was observed for the wide channel. Due to the vortices on the bottom
wall, the three-dimensional structures of the narrow channel are again different than

those for the wide channel.
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Figure 3.5. Structures of the separation for the narrow channel for M, = 1.47 [a] side wall
[b] middle cross-section wall.
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Figure 3.6. Structures of the separation for the narrow channel for M_=1.47 on the bottom wall.

In Figure 3.8 the structures for isentropic Mach number M, = 1.47 for a course
grid (eight times less points) are presented. For the narrow channel the grid renders
the general character of the separation region while, for the wide channel, the
separations is not present in the middle of the channel.
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Figure 3.7 a

Figure 3.7 b

Figure 3.7. Three-dimensional structures of the separation for the narrow channel for M, = 1.47
[a] view from the top; [b] view from the side wall.

Figure 3.8 b

Figure 3.8. Coarse grid influence on the separation structures for M, _= 1.47 [a] wide channel
[b] narrow channel.
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3.3 The computations of the entire curved channel

This section will show the differences in the structures which occur due to the
assumption of the symmetry condition for the flow. The grid for computing the
entire channel was 129x97x97. Only the case for the developed separation at Mach
number M, = 1.47 will be considered.

In Figures 3.9, 3.10 and 3.11 the structures for the wide channel for M, = 1.47
are shown. Figure 3.9 [a] presents the middle cross-section, 3.9 [b] presents the
bottom wall,_ 3.10 presents the cut across the channel and 3.11 presents the two side

(a]

Figure3.9a

[b] enane motnt

seddie polint

Figure 3.9b

Figure 3.9. Structures of the separation for the wide channel for M_= 1.47 [a] middle cross-section
[b] bottom wall.
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walls. Figure 3.11 [a] presents the side wall which is a line on top of figures 3.9 [b].
The side wall from Figure 3.11 [b] is indicated by the bottom line in Figure 3.9 [b].
The middle cross-section (see Figure 3.9 [a]) is similar to the case computed with
the symmetry condition (Figure 3.3 [b]). The bottom wall structure is completely
different from Figure 3.4 [a]. The entire separation region is not symmetric. In the
middle of the channel a separation saddle appears instead of a separation node (see
Figure 3.4 [a]). It was stated in Chapter 1 that connection of saddle points is
structurally unstable. In Figure 3.9 [b] the saddles are not connected and, due to
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Figure3.10 b
Figure 3.10. Structures of the sepuration for the wide channel for M, = 1.47 [a] downstream the
separation region [b] vortex in the bottom corner.
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this, they are slightly non symmetric. In computations for the wide channel with the
symmetry conditions the direct connection between separation and reattachement
critical points is imposed. Therefore a node-saddle combination is forced by
symmetry. Flow near the middle of the channel upstream of the separation region
for the entire channel is directed away from the center. A change of the character of
a point in one cross-section causes a change of the character of a point in another
cross-section. This means that the general three-dimensional character of the
structure is also changed and it follows that focal points appeared for computations
of the entire curved channel.

Figure 3.11 a

nodal polmt
.&\tk_«‘(‘
g

Figure 3.11. Structures of the separation on the side walls for the wide channel for M,_= 1.47
[a] wall on top in Figure 3.9 [b] down wall in Figure 3.9.
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In Figure 3.10 the cut across the channel is presented. Figure 3.10 [a] shows the
separation size compared to the width of the channel while Figure 3.10 [b] shows
the comer vortex. Figure 3.11 presents the side walls. The structures are
topologically similar to the computations for the wide channel with the symmetry
condition.

Figures 3.12, 3.13 and 3.14 present the structures for the narrow channel. In F
igure 3.12 [a] the middle cross-section is shown. The topological structures are the
same as for the narrow channel with the symmetry condition. The bottom wall
structures are different than those of Figure 3.6. The direction of the upstream
separation region is connected with the saddle point in the center and it is different
than for calculations with the symmetry condition. The entire structure is slightly
non-symmetric. This Figure also shows the sizes of the separation region. There are
lines which indicate the size of separation region in the center for the wide channel
(59 mm). The size of the wide channel separation is 70 mm. The separation region
for the narrow channel is larger.
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Figure 3.12. Structures of the separation for the narrow channel for M, = 1.47
[a] middle cross-section [b] bottom wall.
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Compared to the width of the channel, the area occupied by separation for the
narrow channel is much larger than for the wide channel. This is connected with the
fact that the boundary layer on the side wall has a large influence on the separation
region. It can also be noted that the separation appears further upstream for the wide
channel. In Figure 3.13 the cut across the channel is presented. Downstream
towards the separation region the node can be seen (Figure 3.13 [a]) while Figure
3.13 [b] again shows a corner vortex. Figure 3.14 [a] presents the side wall for the
wall indicated as a top line in Figure 3.12 [b] and Figure 3.14 [b] with the side wall
which is the bottom line of Figure 3.12 [b]. Both structures are topologically the
same and agree with the structure for the narrow channel computed with the

symmetry condition (see Figure 3.5 [a]).

(a]

nodal point

Figure 3.13 a

(b]

Figure 3.13 b

Figure 3.13. Structures of the separation for the narrow channel for M =147
[a] downstream of the separation region [b] vortex in the bottom corner.
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Figures 3.15 and 3.16 present the three-dimensional structures. In Figure 3.15
the three dimensional structures for the narrow channel are shown. The vortex has
an origin on the bottom wall and the core of the vortex is directed towards the
center. At the bottom wall it spirals in and in the middle of the channel it spirals
out. Due to this, it must go through the critical point which is shown in Figure 3.15
[b]. This critical point is the vortex of type [g] or [e] from Figure 1.5 in Chapter 1
while the vortices on the bottom wall and middle cross-section are of type [f] in
Figure 1.5. In the wide channel it is similar except that the change of the character
of the vortex appears closer to the center. This causes larger non-symmetry for the
wide channel (See Figure 3.16).
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Figure 3.14. Structures of the separation on the side walls for the narrow channel for M, = 1.47
[a] wall on top in Figure 3.12 [b] down wall in Figure 3.12.
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Figure 3.15 a

Figure 3.15 b

Figure 3.15. Three-dimensional structures of the separation for the narrow channel for M, = 1.47
[a] center vortex [b] flow patterns.

A better understanding of the changes of the structures which occur due to the
changes of the width of the channel or to the influence of the symmetry condition is
aided by the diagram of the Takens-Bogdanov bifurcation. This shows the possible
changes of the critical points including the appearance of the node, node saddle
points or saddle focal points. This diagram is presented in Chapter 1 in Figure 1.8.
It can explain, for instance from a topological point of view, the appearance of the
vortex on the side wall for the narrow channel. It shows that on the bifurcation
between one single saddle point, one saddle and one focal point that a saddle node
connection can appear. This could be checked by making the computations for the
channel with a width between the two considered cases.
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Figure 3.16. Three-dimensional structures of the separation for the wide channel for M, = 1.47.

3.4 Comparison with experiment

In Figure 3.17 oil visualization pictures for an isentropic Mach number
M_=1.35 are shown. For the wide channel, no structures can be recognized. For
the narrow channel, some vortices are present but similar to the wide channel there
is no separation in the middle of the channel. It can be observed that the behavior is
similar for computations. The first separation occurs on the side wall. For the
narrow channel in computations there are no vortices but the tendency for flow
patters to create vortices can be noted (see Figure 3.2).

Figure 3.18 presents the flow for the isentropic Mach number M, =1.47.
Considering the computations of the entire channel, the structures for the wide
channel are the same as in the experiment. There are differences in the
computations for the narrow channel. It can be noticed that the vortex occurred on
the side wall in both computations and experiment. Such a vortex is not present for
the wide channel. The tendency for the size of the separation region (larger for the
narrow channel) can also be seen. The difference is that the structure for
computations is closer to the wall and also less detailed. This is not connected with
grid size because for the narrow channel the same grid was sufficient to render flow
structure similar to the experiment. The same is true with the turbulence model. It
gave results with good agreement for the wide channel. Due to this it seems that the
reason for this fact could be the differences in the boundary layer on the side wall
for experiments and numerics. The information about the boundary layer for the
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experiment is not available. The computations and also experiments proved that
shock induced separation in the curved channel is sensitive to the side wall
boundary layer. It follows that this parameter is necessary for a correct comparison
between numerics and experiment.

Mw =135

Rq&ui 5.6x IOL

Figure 3.17. Oil visualization for M, = 1.35 [a] wide channel; flow direction is from right to left;
[b] narrow channel.

M=147

“
Re, + 55410
&

[b]

Figure 3.18. Oil visualization for M, = 1.47 [a] wide channel; flow direction is from right to left;
[b] narrow channel.

3.5 Summary

— The structures of separation depend on the Mach number for both experiment
and computation. The separation is larger for M, = 1.47. With an increasing
Mach number, separation appears first on the side walls- bottom wall corner.

— The structures of separation depend on the width of the channel.

— The separation region is longer for a narrow channel for both experiment and
computation. The size of the separation region relating to the width of the channel
is also larger for the narrow channel than for the wide channel.
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— The computed structures for the wide channel are similar to experiment. The
direction of the non-symmetry of the computations can be caused by small
numerical disturbance and for instance for a bit different grid it can changed for
opposite.

— The computed structures of the narrow channel are a bit different than those
obtained experimentally. This is probably caused by the differences in the side
boundary layer between numerics and experiment. Information about the
experimental boundary layer thicknesses are not available. It was shown that
the side boundary layer has an influence on the structures of separation near the
side and bottom walls. Due to this, information about the side boundary layer is
very important for comparison.

— There is a very large influence of the symmetry condition on the structures of
separation. The symmetric flow due to the separation became non-symmetric.
The global separation structures are non-symmetric because of topological rules.

— It seems that the resolution of the grid was enough to render structures similar
to experiment

— The used numerical scheme and turbulence model proved to be sufficiently
efficient for an analysis of such highly complicated three-dimensional separation
structures.

4. Conclusion

The boundary layer shock wave interaction is a complex phenomenon to study.
The experimental and numerical investigations help in better understanding of this
interaction. Due to the existence of three-dimensional effects the numerical study
demands the application of as advanced numerical methods as it is possible. Any
kind of restriction, like for instance the symmetry condition with the symmetric
geometry, has a large influence on the computation results as it was shown in the
presented thesis. The tree-dimensional effects especially for the shock and
separation structures are so strong that widely used assumption about two-
-dimensionality for nominally two-dimensional geometry, cannot provide correct
understanding of the boundary layer shock wave interaction.

It was shown that recent numerical methods are capable to predict the flow
structure and shock induced separation structure with quite a good agreement with
experiments. For the considered cases a large influence of the numerical scheme on
the A-foot structure and separation was obtained. Analysis carried out allowed to
indicate which one is adequate for the investigated flow.

The topological methods help to analyse the complex structures of the flow. In
some cases, like for the computations with the symmetry condition, they give the
answer why such condition cannot be realized in real flow. The non-symmetry of
the flow is forced by the nature of shock induced separation structures.

The future work could concentrate on the better understanding of influence of
the parameters of the boundary layer or turbulence on the shock induced separation
structures.
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Appendix A

Classification of critical points

In this appendix the basic mathematical calculations for obtaining the linear
classification of critical points are presented. First, the two-dimensional case will be
considered. The equations are given as follows:

X =ax +by; (A.])
y=cx+dy. (A2)

The characteristic matrix looks like:

a-A b
c  d-al (A3)
The solution of the system of ordinary differential equations is:
X=X+ Klexp(/llt) + Kzexp(lzt); (A4)
y=y,+ K3exp(/llt)+ K4exp(ﬂ,2t); (A.5)

where x, and y, are the coordinates of the critical point. The classification of the
critical point is based on the values of the eigenvalues A, and A,:
1. 4, <0and A,<0and 4, # 0 stable node

2. A,=A,=Aand A <0 and the array of coefficients is proportional to the identity
matrix — star stable node. Any small perturbation can cause a change in the
stable node or focus

3. A,=4,=2 and A <0 and the matrix of coefficient is not proportional to the
identity matrix — degenerate stable node. Any small perturbation can cause
a change to the stable node or focus

4. A,>0and 4,>0and 4, # A, unstable node A, =4, =41 and A< 0

5. A, =A,=Aand A > 0 and the matrix of coefficients is proportional to the identity
matrix — unstable star node. It is not structurally stable and any small
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perturbation causes a change in the unstable node or focus

A, =2,= A and A >0 and the matrix of coefficients is not proportional to the
identity matrix — degenerated unstable node. It is not structurally stable and
any small perturbation causes a change in the unstable node or focus

7. A,>0and A,<0or A <0and A, >0 saddle
8. 4,,=axif and a <0 — stable focus

9. 4,
10,

11.

12.

13.

14.

,=a*iff and a> 0 — unstable focus

A,= *ip and a=0 — center. It not structurally stable and any small

perturbation causes a change in the stable and unstable focus

A, =0and A, < 0 The trajectories in phase space are parallel straight lines. It is
not structurally stable and any small perturbations causes a change in the stable
node or saddle

A, =0 and A, > 0 The trajectories in the phase plane are the parallel straight
lines. It is not structurally stable and any small perturbation causes changes in
the unstable node or saddle

A, =0and A, = 0 and the matrix of coefficients is equal to zero — all points are
points of equilibrium. It is not structurally stable and any small perturbation
changes the system to the system with one point of equilibrium — star node

Al =0 and 12 =0 and the matrix of coefficient is different from zero — the

system is not structurally stable and any small perturbation changes the system
to the system with one critical point — degenerated stable or unstable node

All the above cases were presented in Chapter 1. The next part of the appendix
will consider three-dimensional critical point classification also regarding linear
ordinary differential equations theory. The equations are given as follows:

X=ax+a,y+a,z (A.6)
y=bx+b,y+bz; (A7)
X=cx+cy+cs2. (A.8)

The characteristic matrix looks like:

a-A a a,
b, b-A b (A9)
e ¢ c—A
The solutions of the system of ordinary differential equations are:
X=X+ K,exp(llt)+ Kzexp(/lzt)+ K3exp(/13t); (A.10)
Y=y, + K4exp(llt)+ Ksexp(lzt) + K6exp(l3t); (A.11)

z=2zy+ K7exp(/'L,t)+ ngxp(lzt)+ ngxp(l3t); (A.12)
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The classification of critical point is based on the values of the eigenvalues 4,
and 4, and A,

10.
11.

12.

13.
14.
15.
16.
17.
18.
19.

20.
21.
22.
23,

-l R

A, A, A, > 0 unstable node

129722 73

A,A,4.<0

12 %722 53

A, A, >0 and A, < 0 saddle type one
A, A, <0 and A, > 0 saddle type two

12 %72
A, =A,=A,=Aand A > 0 and the coefficient matrix is different than the identity
matrix - unstable degenerate node. It is not structurally stable and any small

perturbation causes a change in the unstable node or focal point

. A,=A4,=A,=Aand A< 0and the coefficient matrix is different than the identity

matrix — stable degenerate node. It is not structurally stable and any small
perturbation causes a change in the stable node or focal point

. A,=A4,=4,=A4 and 4> 0 and the coefficient matrix is equal to identity

matrix — unstable star node. It is not structurally stable and any small
perturbation causes a change in the unstable node or focal point

A, = 2,= A, = Aand A <0 and the coefficient matrix is different than the identity
matrix — stable star node. It is not structurally stable and any small perturbation
causes a change in the stable node or focal point

0<A <ail,;=a +if unstable focal point type one
a<A <0and A,,=a *if stable focal point type one

A, <0and >0 and 4,;=a *+if unstable on the plane, but stable in
three-dimensional space focal point type two

A,>0and a<0and 4,;=a +if stable on the plane, but unstable in the three
dimensional plane focal point type two

0<a<Ai and 4,,=a +if unstable focal point type three

A <a<Oand 4,,=a +if} stable focal point type three

A, >0 A,,=+if unstable center

A, <0and 4,,;=+if stable center

A, =0and 4, 4, > 0 and a, = 0 unstable node two dimensional

A, =0and 4, 4, <0 and a = 0 stable node two dimensional

A, =0andA,>0andA,<0anda,=0o0rd, =0andA,<0and A,>0anda =0
saddle two dimensional

A, =0a<0and A,;=a +if and a, =0 stable focal point two dimensional
A, =0a>0and A,;=a +if and a, = 0 unstable focal point two dimensional
A,=0and 4,,= +if and a, =0 center two dimensional

A, =0and A,, 4, > 0 and matrix of coefficients different than identity matrix -

2> 73
— unstable degenerate node
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24,

25,

26.

27.

28.

29.

30.

31.

A, =0 and 4, 4, < 0 and matrix of coefficients different than the identity
matrix — stable degenerate node

A, =0and A,>0and A, <0 or A, =0 and 4, < 0 and A, >0 and matrix of
coefficients different than the identity matrix — degenerate saddle

A, =0 a<0and A,,=a +i and matrix of coefficients different than the
identity matrix stable degenerate focal point

A, =0 a>0and A,;=a +if and matrix of coefficients different than the
identity matrix unstable degenerate focal point

A,=0and 4,,= £if8 and matrix of coefficients different than the identity
matrix — degenerate center

A, =A,=0and 4, > 0 trajectories are parallel straight lines. The system is not
structurally stable and any small perturbation causes a change in the unstable
node or saddle

A, =4,=0and A, <0 trajectories are parallel straight lines. The system is not
structurally stable and any small perturbation causes a change in the stable
node or saddle

A, = A, = A, = 0 and the matrix of coefficients is different from zero. The system
is not structurally stable and any small perturbation causes changes to the
degenerate node (stable or unstable)

Most of the considered cases are presented in Figures 1.2 and 1.5 in Chapter 1.

Appendix B
Dynamical systems on the manifold

This chapter will be devoted to the presentation of basic definitions and
theorems connected with the dynamical systems on the manifold. This will
complete considerations presented in Chapter 1 where the knowledge of all the
definitions was assumed. The present chapter helps to understand better the
considerations of Chapter 1.

First, the attention will be paid to the definition of the compact manifold.

Definition of the manifold:

The differentiable n-dimensional manifold is an arbitrary set M, whose elements
are called points, together with the structure on it. The set M is the union ef a finite
or countable by infinite collection of subset with properties.

1.

Each system has a defined local coordinate systems, which is identifiable with
the Euclidean coordinate systems in Euclidean space.

Each non empty intersection of a pair of subsystems of the manifold has defined
on it at least two coordinate systems, the restriction of first and second one. It is
necessary that each of the coordinate system’s intersections are identifiable
with Euclidean n-space and each of these coordinate systems can be expressed
in terms of the other in a one-to-one differentiable manner.
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Definition of the compact manifold:

The topological space X is compact if every countable collection of open sets
covering X contains sub-collections already covering X.

The next part will contain the definition of the dynamical system and some
aspects of the critical point theory.
Definition of the dynamical system:

A dynamical system on a manifold is the smooth vector field on it.
Definition of the critical (singular) point:

The x, is called a critical (singular point) of the field y = y(x) if y(x,) = 0.
Definition of the isolated critical (singular) point:

The singular point is an isolated singular point, if for all other points of some
small neighborhood of it, y(x) does not vanish.
Definition of the non-degenerate critical (singular) point:

The critical (singular) point is non-degenerate if

oy°
(axﬂ}*o (B.1)

The non-degenerate singular point of the vector field is necessarily isolated.

Definition of the index of the singular point:
The index of the critical (singular) point is

ay*
det| ——
sgn e[&x”]

Appendix C
Numerical schemes: switch and slip

vexy = 581(Ase s 2,) (B2)

In this section the following equation will be considered:

9v,0/0)_,
ot Ox

It can be approximated at the grid node i in conservation form by the scheme:

(C.1)

dv,
ijd7+(h. 1 —h ;J=0. (C2)

h,-+% is the numerical flux between cell i and i+1 and Ax is the mesh interval.

The first order scheme, which satisfies the local extremum diminishing principle
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(the local maxima do not increase and local minima do not decrease,) is obtained by
approximating the flux as:

I
IS SV =)= Dy (C.3)

d

where d,,, =1 Av,.,=a, (v, —V;) is the first order diffusive flux computed

i+t
at the cell interface i+1. Wave speed is a(v) =3f/dv.

Higher order non-oscillatory schemes are derived by introducing anti diffusive
terms in a controlled manner, introducing approximate switch or by using limiters.

C.1 High-Resolution switched schemes

As was mentioned before, high-resolution switch schemes require that an anti
diffusive term be introduced. By subtracting neighboring differences, the third order
diffusive flux can be obtained as follows:

d =a Av ,—(Av_ 3 +HAV ,]. (C.4)

This scheme produces substantial oscillation in the vicinity of shock waves,
which can be eliminated by switching locally to the first order scheme. The switch
scheme given above can be improved as follows:

d,»+l = £fi)lAvi+_ - g,(-j)l[Av,u,i _2Av,-+l +Av'__lJ (C.5)
2 2 2 2 2

where

2 :
£?) =mm(al,a2S4a |
i+—

fa ) (C.6)
2 2
5(.4)1 =max[0,[3, a 1 —ﬁzé‘@n ] (C.7)
1+E 1+5 :+5
S is the maximum of Q in the chosen neighborhood where Q is as follows:
‘ Av  —Av !

_ 1+E I—E
9 P+(1-e)B+eh| (C.8)
B = Ale + Avi_l , (C.9)

2 2
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P, =|Av,,,|+2jAv| +]Av,_|. (C.10)

The value of epsilon is usually taken as 2, P is a threshold to assure that the
denominator cannot be zero. a, =Y, B, = Y is chosen to scale diffusion to the level
corresponding to up-winding. a,, 3, are chosen to switch the diffusion term from
third to first order fast enough near the shock waves.

C.2 Symmetric limited positive scheme

Another method for obtaining a high order non-oscillatory scheme is to
introduce flux” limiters. In this scheme, third order diffusion defined by equation
(D.2) is modified by introducing a limiter which produces an equivalent three point
scheme with positive a coefficient. The limiter L(u, v) must have following
properties:

1. L(u,v)=L(v,u);

2. Llau,av)=al(u,v);

3. L(u,u)=u;

4. L(u,v)=0ifuand v have opposite signs.

The diffusive flux for a scalar conservation law is

%y =0y [Av,u _L{AV,-A o ] (C.11)
2 2

The main restriction for this case is that the limiter must be zero when the Ai+%

and A,_ L have opposite signs. This means that there is a local extremum at i or i+1.

If they have the same sign and A,,, has the opposite, the damping is similar to the

central difference formula. In the case of a shock when the upstream flow is

constant, then A,_ 1= 0 and Ai+»21 prevent canceling any part of A, L because it is

limited by A, .
2

A limiting function can be used such as:

L(u,v) = S(u,v)min(!u + v| / 2,alu

v)), (C.12)

,a

where

S(u,v)= %sign(u) + sign(v). (C.13)

Comparison of both schemes shows that the slip scheme has different
dissipation near the shock waves than the switched scheme. It can also be noted that
the vicinity of the A-foot structure and separation region is characterized by a few
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local extrema. Due to this fact, the grid in this area should have much higher
density otherwise slip scheme limitation causes damping that is too large (extrema
cannot be caught so easily) and no separation occurs. Because of this, the number
of grid points near the shock wave and boundary layer interaction for the slip
scheme should be very high. This is not so easy to obtain for three-dimensional
calculations due to computer memory limitation. The switch scheme seems more
advisable, because it gives more accurate results, for the considered grid resolution
for the flows with shock waves and separations.
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