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Abstract: The normal shock wave turbulent boundary layer interaction still draws a great deal o f attention 
as a flow phenomenon. This is due to its profound importance to numerous applications. The understanding 
of phenomena is crucial for future aims connected with the interaction control. Experimental investigations 
of the interaction have been carried out since the 1940s. They were aimed however at the determination of 
such general flow features as: pressure distribution, shock wave configuration or oil visualization of separation 
structures. In order to better understand the phenomenon, measurements o f the entire field are required. 
At present, such measurements do not exist. A great help is expected from numerical simulations in this 
respect. There is enough experimental data to check the general features o f the flow obtained from calculations. 
This thesis presents numerical simulations of flow that is assumed: steady, three-dimensional, compressible, 
viscous and turbulent. Its general aim is to present to what extend the modem numerical methods are able 
to predict the flow in shock wave turbulent boundary layer interaction including shock induced separation 
structures. These structures are very sensitive to channel geometry and may be useful in the understanding 
of separation’s development.
In order to illustrate the abilities of numerical simulations, one aim of the presented thesis is to investigate 
the effect of the span-wise depth of the nominally two-dimensional test section. The presented results 
cast some light on the common problems experienced by typical comparisons of two-dimensiona; 
simulations to wind tunnel tests having a three-dimensional nature.
The first Chapter presents the basic theory of elementary structures. Considerations o f elementary 
structures of the flow along with their dependencies are necessary for a better understanding o f the separation 
flow structures induced by the boundary layer shock wave interaction. The classification of elementary 
structures will be presented. In addition, the possible occurrence of bifurcation will also be studied 
The second Chapter will be devoted to studying specific cases of transonic turbulent flow. The analysis 
of numerical results will be bounded to the shock wave structure. Studies shall include: the influence of the 
numerical scheme, three-dimensional effects connected with the changing width of the channel, 
a comparison to experiment and the influence of the symmetric boundary condition on the flow prediction 
in the channel. Finally, the boundary layer influence on the A-foot structure will also be presented. 
Chapter three will present the separation structures. Here too a comparison to experiments will be done. 
Changes in separation structures connected with the width of the channel will be studied. The influence of 
the symmetry boundary condition will be shown. Finally, the specification of the basic flow structures 
will be done.

Keywords: shock wave-boundary layer interaction, flow separation, 3 D flow structures, numerical 
simulations
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1. The basic theory of elementary topological structures

1.1 Introduction
In this chapter the theory of elementary structures will be presented. It will 

contain the two- and three-dimensional analysis. For these two approaches the 
classification of structures and some possible bifurcations of such structures will be 
described. The conditions of the connections of the elementary structures will be 
also considered.

These two main considerations are mportant when the topological analysis is 
applied to fluid dynamics. Flow patterns like skin friction lines and streamlines are 
important elements in the description of fluid motion from the experimental and 
numerical point of view. The knowledge of basic topology is necessary to make 
a proper analysis of pictures containing flow pattern lines. A consideration of 
bifurcations is important when the entire class of flows are considered. Finally, the 
main point of interest is to concentrate on the influence of specific parameters on 
changes in flow. Such changes might include separation’s occurrence and 
disappearance or any general flow pattern’s change.

Based on the velocity field, the reconstruction and recognition of the basic flow 
features is possible. In this process, knowledge about the classification of 
elementary structures and their basic properties is helpful. All these main goals will 
be described in more details in the present chapter.

1.2 The classification of critical points
In this section the classification of elementary structures will be presented This 

task can be done using the two and three-d Vnensional analysis. The problem of the 
classification of elementary structure; is important for several purposes including: 
to standardize basic flow structures and their properties, to make a conclusion about 
the possibilities of changes in those structures and to make the process of obtaining 
the basic skeleton of flow patterns from the vector field more efficient.

To classify the structures or to decide on the type of critical points it is 
necessary to introduce a few definitions. First of these is the structural stability. 
The dynamic system of ordinary differential equations is structurally stable when 
the obtained system, by any small perturbation of vector field, is adequate to the 
original one To complete the definition it is necessary to specify what kind of 
transformation, or mapping, is considered sufficient for both systems. The given 
transformation should be a differentiable and reversible mapping which transforms 
the onented phase trajectories of the first dynamical system to the oriented phase 
trajectories of the second one. There is no need for the orientation of the curves to 
be the same.

In the two- and three-d'.mens onal space the trajectory tend to the set of 
measure zero-attractor. This could be a single point, a closed cycle or a strange 
attractor. For two-dimensional cases of an autonomous system, the Pomcare- 
-Bendinxon theorem reassures that the attractors could only be single points or
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closed curves. The three-dimensional case further expands the possibilities to the 
inclusion of a strange attractor.

There are two types of isolated critical points: non-degenerate and degenerate. 
The degenerate point appears when the eigenvalue of the linearized vector field is 
equal to zero. The difference between these types of points is seen when a small 
change in the vector field is considered. In the case of the non-degenerate critical 
point it will not disappear but can change its position slightly. The degenerate 
critical point can disappear, split into more non-degenerate critical points or change 
to a non-degenerate critical point. The definition of the structural stability 
introduces the first type of classification. In real flow, when the flow patterns are 
taken into account, almost all cases have non-degenerate critical points. The 
degenerate critical point gains interest when more than one specific flow patterns is 
considered and infonnation about possible bifurcations is desired. It means — when 
the group of flow patterns is considered and especially when the main interest is to 
study the process of changes between different flow patterns.

A study of the mentioned bifurcation will be done in the next section. In 
Chapter 3, changes of structures in the transonic turbulent flow of two nozzles will 
be presented. Due to this, attention in the present section will be paid to the non- 
-degenerate critical points.

A consideration similar to the one for critical points can also be done for closed 
curves (cycles). A cycle is degenerated if the eigenvalue of the linearized Poincare 
mapping is one. To understand this definition, an explanation of the Poincare 
transformation is necessary. It follows that if a given curve is cut by a plane 
perpendicular to it, then the transformation of the point near the cut on one side 
transforms it to a point near the cut on the other side (after one cycle). This kind of 
transformation is called a Poincare transformation (see Figure 1.1).

Figure 1.1. The definition o f the Poincare transformation.

Another approach to classifying the critical points is based on the linearization 
of the original system of equations in the neighborhood of a critical point. The 
mathematical details of such an approach are presented in Appendix A. Here the 
attention will be drawn to the main assumptions. The character of a critical point
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depends on the signs and values of the eigenvalues of the linearized matrix of 
coefficients in the vicinity of the critical point.

With the definitions mentioned, it is now possible to describe the classification 
of critical points.

In two dimensions, the following points are possible: saddles, stable and 
unstable star, degenerate and ordinary nodes, stable and unstable focal (or spiral) 
points and centers. The structural stable points are saddles, nodes and spiral points. 
All such points are presented in Figure 1.2.

Figure 1.2. The two dimensional critical points, [a] node; [b] star node; [c] degenerate node; 
fd j saddle; [e] focus; [f] center; [g] the trajectories are straight lines.

Usually the set of critical points is considered. For this reason it is necessary to 
examine the stability of the group of singular points. The following theorem covers 
Stability of the vector field.
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Theorem:
The two-dimensional vector field is structurally stable when the following 

conditions are met:
— The field has a finite number of critical points
— All critical points are non-degenerate
— Any of the outcome node separatrics is not the income node separatrics
— The field has a finite number of closed phase trajectories
— All closed phase curves are non-degenerate cycles

This previous classification of the vector field is generally restricted to most 
cases of fluid dynamics when flow patterns are considered and also in the case of 
some specific structures called bifurcation lines. The only exception to this is the 
consideration of the bifurcation of flow patterns.

When the above classifications and theorems are known, the interpretation of 
either skin friction lines or two-dimensional streamlines is possible.

Figure 1.3. Picture o f  oil flow  visualization on the surface. Main flow  direction: right to left.

The fist approach to analyzing possible flow structures was done by Oswatitsch 
(1958) using the non-slip condition. Next, Lighthill (1963) studied and developed 
the Oswatitsch solutions further. Perry and Fairlie (1974) implemented the ordinary 
differential equations to describe the critical points. When the distribution of 
critical points is known, flow patterns such as skin friction lines (example in Figure 
1.3) or streamlines can be obtained. The solution obtained by Oswatitsch was based 
on a series expansion to the second order terms and was only valid in the 
neighborhood of a critical point. Later, Dallmann (1983) showed that, when 
considering the higher order terms of the expansion, it was possible to obtain the 
entire set of critical points.
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The subject was also studied by Tobak and Peake (1979) and Legendre (1977) 
Below is a short description of the process of obtaining the skin friction lines.

The viscous flow near the three-dimensional surface will be considered. The 
skin friction lines are the trajectories of the continuum vector field. (£ , rj) are the 
coordinates of the curvilinear coord'nate system. Axes %, rj are attached to the body 
and axis £ is perpendicular to the surface. In the neighborhood of a critical point, 
the velocity vector is parallel to the surface. Because of this, the movement of the 
element of flow along the given streamlines will be described by the following 
equations:

where h{ (£ , rj) and h2 (%, ry) are the lengths of the vectors, (o,, co2) are the com­
ponents of the rotation on the surface. Velocities (w , k ) are the moment values 
and due to this; the considerations are restricted to the stationary flow. The coordi­
nate £ will be the parameter and functions P and Q will depend only on that coor­
dinate. In such a case, the above system of equations is the autonomical two equ­
ation system of ordinary differential equations. If also

are the components of the tangential surface tension in the direction t, and q, then 
the system of equations describing the skin friction patterns is given by:

The orthogonal lines to the skin friction lines are the lines of the vorticity on the 
surface. The critical points appear when vector (rwl, tw2) is equal to zero.

In real flows, the skin friction lines are obtained either from computations 
(which will be considered in Chapter 3) or by oil visualization. In such a case, the 
system of critical points (not just one isolated point) is considered. In such analyses 
it is helpful to take into account the theorem relating the index of the vector field 
from the analysis of manifold. An investigation will be made of the closed curve 
which is not intersecting the critical point, and the vector field. There will also be 
an investigation involving the point on the curve that will follow the curve in the 
positive direction. When this point has followed the entire trace of the curve and 
has returned to the original position, the vectors will also be at the initial condition, 
but on the way they could do a few cycles. The number of cycles is the index of the

h. (ft = ft^r(ft n ,o)=-c®2 ($, r?)=C /*(£,•

hi = ^ Hi f a 71’0) = 1 & T?) = C Q fc r l) ( 1.2)

(1.1)

(1.4)

(1.3)

htd^ _ h2drj
(1.5)



curve. With this it is possible to define the index of critical point. The considered 
curve will be a circle with sufficiently small radius and with the middle in the 
critical point. From the definition of the index of critical point it is easy to see that 
the basic critical points have indexes -1 or +1 (node and focus +1, saddle -1).

Theorem:
The sum of index of critical points on the compact manifold does not depend on 

the choice of the vector field, but is the property of the manifold itself.
This theorem excludes some combinations of critical points as impossible from 

the topological point of view and i? used in analyzing the skin friction lines 
obtained, for instance, by oil visualization.

From this theorem, the following conditions are concluded
— The difference between the number of nodes and foci and the number of saddles 

equals two when the skin friction lines on the three dimensional body or infinite 
surface are considered, Davey 1961, Lighthill 1963.

— The number of nodes and foci is equal to the number of saddles when the lines 
on the three dimensional body connected without the break with the infinite 
surface are considered, Tobak and Peake 1982.

— The difference between the number of saddles and the number of nodes and 
foci equals one when the two-dimensional surface cuts the three dimensional 
body, Tobak and Peake 1982.

— The number of saddles and the number of nodes and foci are equal when we 
consider the plane perpendicular to the body, cutting the body and spreading to 
infinity, Tobak and Peake 1982.

— The number of saddles and the number of nodes and foci are equal when we 
consider the streamlines on the sphere in cone flow, Smith 1969.

— The sum of the nodes and half nodes minus the sum of saddles and half saddles 
equals -1 for a streamline on a two-dimensional plane cutting a three-dimensional 
body, Hunt 1978.

The last four cases describe the behavior of streamlines and the two first cases 
are connected with the skin fitgtion lines

After considering two-dimensional structures and the-' classification, the three- 
dimens ;onal approach will be presented. This case is usually less considered or 
even neglected in most literature because of a bit larger mathematical complexity of 
equations and because is most cases the three-dimensional analysis is not necessary 
to investigate physical problems. In this section, and also further in other chapters, 
the three-dimensional approach ij necessary and the three-dimensional flow 
patterns will be considered.

The mathematical details of the classification based on the linearized vector 
field are presented in Appendix A. In Figure 1.4, the diagram of possible 
eigenvalues is presented. The third order polynomial, obtained from the 
characteristic matrix can have three real roots or one real and two complex 
conjugate roots.
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Figure 1.4. Diagram o f the eigenvalues.

The diagram of eigenvalues is presented to help understand the nature of the 
critical points in three-dimensional space. In Figure 1.5 the classification of the 
critical points in three-dimensions is presented. Some degenerate points are not 
shown including the case when the phase plane ;s a superposition of linear two- 
dimensional planes. It is interesting that there are three different types of focal 
points. The projection of the trajectories on the perpendicular plane in all cases is the 
same, except for the direction, but the three-dimensional curve behavior is different. 
This becomes especially important when only the cross secfor, is given because the 
direction of the line could be towards the critical point. On the other hand, in three- 
dimensional space this can mean that this is the stable point (the flow tends to this 
point) or the unstable condition in which flow tends to infinity on 
a perpendicular trajectory to the considered cross-section. This can lead to an 
incorrect interpretation of some two-dimensional pictures of flow patterns because 
the flow is always three-dimensional.

The consideration of the structural stability of the field is the same as in the two- 
dimensional case. Also, the definition of the index of the critical point is the same as 
in the case for two-dimensions but instead of the curve, the oriented surface is 
considereo.

The index of critical points is:
1. ReX. >= 0, / = 1, 2, 3 ---- l-l;
2. ReXx >= 0, ReX2 >= 0, A3 real and negative----- 1;
3. Aj real and positive, ReX2<- 0, A3<= 0 ---- hi;
4. ReX. <= 0, / = 1, 2, 3 ----- 1.
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Figure 1.5. Three-dimensional critical points.

Similar to the case of the two-dimensional manifold, the sum of indices depends 
only on the manifold. From this it is possible to consider some specific case of 
manifolds.

— For the three-dimensional space the sum of indexes should be zero
To complete the investigation of the classification of the three-dimensional 

critical points it is necessary to describe the connection of the above consideration 
with the solutions of the Navier-Stokes equations. There could be two approaches 
divided by the reference coordinate system.

In the system connected with the moving fluid pari icle, the assumptions are as 
follows. The system (Lagrange system of coordinates) is non-rotating and ties up 
with the moving fluid particle. The neighborhood is sufficiently local for the linear 
approximation to be valid. The instantaneous velocity field can be expressed as:
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x = Ax.
The Jacobian matrix A is a matrix 3X3, where the elements are given by:

( 1.6)

v dx (1.7)

This is the rate of deformation tensor and can be split into a symmetric and anti­
symmetric part.

a'j = Sij + Rj > (1.8)

where the symmetric part is

and the antisymmetric part:

1 d i. dk:
= — + — L

2 dxj d x t \

_ 1 ~ d x t * * j ]
~ 2 d xj dx, _

(1.9)

( 1.10)

The S.. is the rate of strain tensor and R.. is the rotation (or spin) tensor. The R 
has three independent components and these components are the three components 
of vorticity.

The above set of equations represents the basic kinematics of fluid. Fluid 
motions can be reduced to the above set of equations locally relative to an observer 
moving with the fluid particle.

The properties of the flow patterns for the above equations could be 
investigated from the equation on the eigenvalues of this system. The eigenvalues 
are given by the solution of the equation:

A3 + PX2 + QX + T = 0,
where

P = -trace [a \ = -S tJ,

2 =-(f>2 - m « [ a ! ] ) = 1 ( p ! - s f y  -

( 1.11)

( 1.12)

(1.13)

T = -det[ A ] =  -J ( - P 3 +3PQ-trace[A2])= 

= ~ ( - P 3 +3PQ-SijSJkSkl -3RijRjkRki).

The surface given by equations:
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3 l
Q - - P 2 

9
- - ^ ( - 3 Q + P 2f - T  = 0, (1.15)

+ ^ ( - 3 Q  + P2f - - T  = 0, (1.16)

is the surface which splits solutions either to 2 complex and one real eigenvalue 
(above the surface), or to three real eigenvalues (below). This consideration has to 
be a bit improved in order to satisfy the non-slip boundary conditions for the 
separation case. The perpendicular coordinate to the wall is x3 so it is necessary to 
transform the system of equation

dt„ ■ x.dt, (1.17)

and then the non-slip boundary condition is satisfied at x3 = 0. The matrix A is no 
longer the rate of deformation tensor, but it is made up of elements of the local 
pressure gradients and gradients of vorticity. In the case of incompressible flow 
the considerations are restricted to the plane (Q-T) in which only saddle points 
(not pure nodes) are possible. In compressible flow pure node points are also 
possible.

Another approach to interpret flow patterns is the global one. In such a case the 
solutions of Navier-Stokes equations are examined but also in some vicinity of the 
critical points. The solutions of the Navier-Stokes equations

~ ~  + div(pV) = 0, 
o t

(1.18)

d  V + grad iv212)-  V x r o t \  = - — divU + f, 
d t  V '  p (1.19)

P7t ^ +v2/  2)=d i v U V + p f y ~ divq’ ( 1.20)

P  K -  1 .
— = ------1,
P «

are obtained by performing the Taylor expansions of velocity field vector.

N /V-IV-I
* = u = Z  Z  Z  u ukx 'y Jzk + °{ N +

1=0 j ~0 k =0

( 1.21)

( 1.22)

N N-\N-\

/=0 j=0 k=0
(1.23)
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(1.24)
/=0 j =0 *=0

The coefficients U..n V... and W... are unknown constants. Due to the flow 
equations and the boundary conditions some relations between those coefficients 
exist and reduce the number of coefficients that could be chosen independently. In 
the case of an N order Taylor expansion the phase portrait of the truncated system is 
studied. Due to this fact, it is necessaiy to study whether the order of expansion is 
sufficient for the considered flow topology and mainly the description of the 
degenerate critical points is necessary. For the case of the incompressible flow near 
the viscous wall the Navier-Stokes equations can be reduced to:

x = B x + 0 (2 ), (1.25)

where matrix B

( 1 \

2 P*
T,

B = — 0 1
~Py 0

P 2 °
1

\ y

(1.26)

The shear stresses in respectively x and z directions are defined by 
r  = jj. {u f | , and cr= ^  (w ) | and wall position is at y  = 0.

Above the classification of the two- and three-dimensional critical points was 
presented. The attention was restricted to the non-degenerate critical points. In the 
next section the degenerate and structurally unstable critical points will be 
presented in more details.

1.3 Bifurcations
This section will be devoted to the subject of bifurcation. The word bifurcation 

is used in the sense of the description of any qualitative change of topological 
structure with some parameter. In this section some basic deformations of the 
trajectories near isolated critical points or cycles will be considered. In the case of 
the investigation of the whole family of different objects, like pictures of 
trajectories, some general position of objects might be found. The topological 
character of the system of critical points in general position cannot be changed by 
small deformations. Such cases are generally more important to investigate in terms 
of the analysis of some physical processes. Basic information of such analysis was 
presented in the previous section. When the entire group of the family of the simple 
cases of trajectories is considered and when information about the entire possible 
changes is expected, there is a need to also investigate the specific class (i.e. for 
critical points, degenerate critical points or for cycles — degenerate cycles.)
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The subject matter of this section falls into two parts. In the first part, basic 
methods of the theory of bifurcations will be presented. The next step will be to 
show some specific cases of bifurcations. The need for this is connected with 
Chapter 3 in which such cases of changes of topological structures of turbulent flow 
past the nozzle will be presented.

Two general problems are associated with bifurcation:
— to what extent the geometrical structure of the solution is resistant to perturbation;
— to what extent expansions in a series nearby a stationary state may be used. 

These problems are connected with the structural stability
First, attention will be paid to the definition of the co-dimension and the 

k-parameter family. Both these definitions are necessary and connected somehow 
with the definition of bifurcations. These definitions could be better presented and 
understood \ 1th Figure 1.6

Figure 1.6. Schematic picture o f  the space o f the entire family ofpossible topological structures.
Planes present the critical parameters when the bifurcations occur. The bold line is an example

o f one single family.

Figure 1.6 schematically presents the space of the enf.re range of families where 
topological changes occur. The bold line is schematically one family (for instance it 
could be one critical point.) Each single object of the family can be, of course, 
moved to the general position with some change of parameter but the entire family 
cannot. The planes are the values of some parameters for which the changes of 
topological structures are present. It could be, for example, when the value of the 
non-degenerate critical point appears. For the entire range of cases in which the 
family of topological structures is considered, there always exist some critical 
values of parameters, called the bifurcation parameter, which cannot be removed. 
The small perturbation will only move the range of parameters a bit (see Figure 
1.6.) It is also shown that the space of bifurcation parameters could have 
singularities, which in Figure 1.6 are presented as a cross-section of two planes. 
Such cases can be neglected when the considerations of family changing the 
topological structures is taken into account due to the fact that a small disturbance
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of parameters will move the entire family (bold line in Figure 1.6) from this 
singular position. It is also described as a theorem that, when the k-dimensional 
family of parameters is considered, higher dimensional cases can be always reduced 
to the lower level — k. It will be possible now to understand the definition of the 
k-parameter family. This is the family of possible changes of topological structures 
in which the changes depend on the k-parameters. In Figure 1.6, the bold line is the 
one parameter family. The co-dimensicn of the singularity is the dimension of the 
k-parameter family and it is equal k. All higher parameter singularities, when 
k co-dimension is considered, can be reduced to the k- parameter case. On the other 
hand, in case of the k-parameter family, the non-removable will be singularities 
with dimension less than k.

With these definitions it is possible to concentrate on bifurcations. The 
methodology of analyzing the bifurcations of the family can be divided into two 
steps: the first one is to describe the co-dimension of the singularity and the next 
one is to show all possible bifurcations in this family.

Another problem connected with bifurcation is the question of what are the 
possible changes of specific structures. This is a question of how many points will 
split the non-degenerate critical point (or adequate cycles). This can be checked 
only by specific consideration about a chosen degenerate critical point. For 
example, the saddle-node point splits into two points: saddle and node.

x = x 2; (1-27)

y  = -y .

When the perturbation is added to the above equation

(1.28)

x -  x 2 -  s; (1.29)

y  = -y ; (1.30)

it is easy to see that there are two non-degenerate critical points: saddle and node.
The k-parameters families have some global characteristic properties. One of 

these is the dimension of the bifurcation diagram. The bifurcation diagram is the 
diagram that presents the splitting of the space of parameters in the case of 
topological changes in a dynamical system.

Here are the three basic families of bifurcation:
— one parameter family; in such a case the characteristic matrix has one zero or 

a pair of imaginary— conjugate eigenvalues; examples: saddle-node bifurcation, 
transcritical bifurcation, Pitchfork bifurcation (real eigenvalue), Hopf bifurcation 
(pure imaginary eigenvalue).

— two parameters family; an example of the bifurcation diagram is shown in Figure 
1.7.

— three parameters family.
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Figure 1.7. The bifurcation diagram for two parameter family. Cusp — triple eigenvalue, crossing 
point — two double eigenvalues, line — one double eigenvalue, whole space — non-degenerate

critical point.

Figure 1.8. Tokens-Bogdanov bifurcation s diagram.
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The following consideration can be continued for the highest dimensional 
parameter families. It will become much more complicated and in the case of 
usefulness for Chapter 3, those considerations are not necessary.

For the purpose of Chapter 3, one specific bifurcation should be presented. This 
bifurcation is called the Takens-Bogdanov bifurcation. It is a two parameter family 
bifurcation and the standard form for it is:

* = y\ (i.3i)

y  = c, + c2x ± x 2 + xy; (1-32)

where c{ and c, are parameters. In Figure 1.8 the bifurcation diagram and trajecto­
ries are presented. This specific bifurcation is mentioned, because very similar 
changes of critical points will be observed with changes in separation structures in 
Chapter Three.

1.4 Summary
— Two-dimensional structurally stable critical points are: node, saddle and focal 

point. The nodes and foci can be stable or unstable depending on the direction 
of the trajectories.

— Three-dimensional structurally stable critical points are: node, saddle and focal 
point. There are three types of focal points and two types of saddle points. 
Saddle point in three-dimensions in two cross-sections is two-dimensional saddle 
and in third direction is a two-dimensional node (stable or unstable). Due to 
this there are two types of saddle points in the three-dimensional space depending 
on the character of the two-dimensional node.

— Three-dimensional node can only exist for compressible flow.
— Some combination of critical points are not possible — like saddle saddle in 

two-dimension. The theorem regarding the index assure which combinations 
can be stable.

2. Turbulent boundary layer shock wave 
interaction — flow structure

2.1 Introduction
This chapter will be devoted to the turbulent boundary layer shock wave 

interaction. This phenomenon is very important for aviation and turbomachinery. 
First investigations of this subject were done in the 1940’s. Such studies were 
connected with the growing speed of planes. It is especially important for 
supersonic aircraft in which the turbulent boundary layer separates due to 
interactions with the shock wave resulting in larger drag. Similar phenomenon 
exists at the rotor blades of helicopters in which the flow at the blade tip is 
transonic and for planes with transonic wings where local area on the wing is 
transonic. Boundary layer shock wave interaction is also important for reentry
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vehicles where, due to the mentioned interaction, the turbulent boundary layer 
causes larger heating than a laminar boundary layer in the part of the vehicle where 
it appears. It is also significant for inner flows such as those in turbines where 
things are even more complicated by the reflection of the shock waves and there is 
a need to estimate the losses cased by the turbulent boundary layer shock wave 
interaction.

In this paper attention will be focused on transonic speed and the turbulent 
boundary layer. Separation that appeared due to this interaction is very interesting 
to study in terms of flow structures, which can be studied using methods presented 
in Chapter 1. Phenomena in such flow also have a very wide range of industrial 
applications.

The shock wave causes local discontinuity in parameters. In contact with the 
wall, the local area has to be subsonic and this jump cannot be discontinuous. Due 
to this fact, an increase of pressure has to take place along the wall in a continuous 
way. In the subsonic region the streamlines diverge due to pressure increase and 
move from the wall. The type of structure built of two shocks is called the A-foot. 
This phenomenon depends on properties of the boundary layer as well as on the 
normal shock wave far from the wall. If the pressure jump is high the boundary 
layer separates. Also for larger pressure changes, the structures like the A-foot are 
much wider and stronger. An example of the A-foot is presented in Figure 2.1.

Figure 2.1. The structure o f the shock near the viscous wall. Grey area — supersonic region.

The front oblique shock cross the normal shock dividing it to the normal shock 
and rear shock. At the triple point where this splitting occurs, the vortex layer is 
formed due to the different entropy production on a normal shock and A-foot. The 
grey region in Figure 2.1 is supersonic.
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The shock induced separation is very sensitive to the considered channel’s 
geometry. Especially in the internal flows it is highly three-dimensional. This fact 
was confirmed by both experiments and computational results. In the case of the 
channel it was shown that the width of the channel had a large influence on the flow 
structure and separation size.

Due to this fact there was a necessity to compute three dimensional cases to 
check three-dimensional effects. The three-dimensional structures of separations are 
difficult to check with experiment. The computations will be compared with the 
experimental data presented in [45] and [46].

2.2 Flow in a nozzle
In this section the turbulent transonic three-dimensional flow in the nozzle will 

be presented. The main attention will be paid to the influence of the numerical 
schemes on the structures of the separation and A-foot.

The geometry of the channel is given in Figure 2.2. For the computations the 
structural grid was generated. The number of mesh points on the highest level is 
165x65x65. The grid near the viscous wall is adequately chosen to render gradients 
within the turbulent boundary layer.

The computations were done using the Navier-Stokes solver kappa developed 
at Karlsruhe University and its open version is available at the Institute of Fluid 
Flow Machinery in Gda’nsk. More details about this solver are presented in [110].

The boundary conditions for this flow are: total pressure and temperature at the 
inlet and the static pressure at the outlet of the nozzle.

The computations were made for two different numerical schemes (slip and 
switch schemes) for turbulence model k-r Launder Sharma [110]. More details 
about numerical schemes are available in Appendix C. To accelerate convergence 
the 3-level multigrid was used.

The difference in density for both schemes is shown in Figures 2.3. It can be 
seen that the difference occurs in the vicinity of the shock and is especially big 
where separation occurs for the switch scheme.

Figure 2.2. Mesh with the density distribution on the side wall. Flow direction is from left to right.



The Analysis o f Separation amd Methods o f Three-dimensional Flow Structure... 71

I - " T T i
0.00 0.06 0.12 0.13 0.24

Figure 2.3. Density difference between the switch and the slip scheme.

Figures 2.4 and 2.5 present the Mach number isolines in the middle cross- 
section of the nozzle. The maximum Mach number in the case of the slip scheme is 
1.44 and in the case of the switch scheme is 1.39 for the same boundary conditions. 
The difference again appears near the shock wave. For the slip scheme shock is 
stronger. As it was shown from experiments for stronger shock, the A-foot is larger 
and also the separation region is longer but here there is no separation or A-shock. 
Due to this fact the slip scheme will not be used for other cases although the 
convergence for this scheme is faster.

0 00 0.15 0.31 0.46 0.62 0.77 0.92 1.03 1.23 1.39

Figure 2.4. Mach isolines fo r  the switch scheme in the middle cross-section o f the nozzle.
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Figure 2.5. Mach isolines for the slip scheme in the middle cross-section o f  the nozzle.

In Figure 2.6 the 1-foot near the bottom wall is presented. The grey region is the 
supersonic region. Mach isolines create a A-foot only for the case of the switch 
scheme. Also it can be noted that there is a supersonic region spread downstream 
indicating an existence of a rear shock. The separation bubble is quite small, but 
still exists. The situation for the slip scheme is different — no separation and no 
A-foot structure. The difference can be even easier noticed on the curved top wall of 
Figure 2.7. The A-foot is very clear and also the supersonic area creates very 
characteristic structures like in Figure 2.1. In Figure 2.7 [a], for the switch scheme, 
the separation bubble is large and easy to notice. The case of the slip scheme again 
is different with no A-foot or separation.

In Figure 2.8 the pressure distribution on the bottom wall in the middle of the 
nozzle is presented. The red curve presents pressure for the slip scheme and the 
green for the switch scheme. The difference downstream of the shock wave is 
caused by the presence of separation.

& ! 
V,<? 7

Figure 2.6 a Figure 2.6 b

Figure 2.6. Mach isolines for the switch [a] and slip [b] schemes in the middle cross-section 
o f the nozzle near the bottom wall. The grey region is the supersonic region. In case 

[a] also the separation bubble can be seen.
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[a] [b]

Figure 2.7. Mach isolines for the switch [a] and slip [h] schemes in the middle cross-section o f the 
nozzle near the top wall. The grey region is the supersonic region. In case [a] also the separation 

bubble can be seen as well the supersonic region extends far downstream from the shock.

The conclusion of this section is that, for the computations of the turbulent 
boundary layer shock wave interaction, the switch scheme gives more acceptable 
results that are closer to experiment. To explain the differences in obtained results it 
is necessary to know a basic description of the schemes. The explanation of the 
differences between schemes can be found in Appendix C. Also in Appendix C, the 
possible reason for the results is presented.

* 104

Figure 2.8. Pressure distribution on the bottom wall in the middle o f  the nozzle. Red cun’e —  slip
scheme, green curve —  switch scheme.
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Figure 2.9. Comparison between numerical calculations and experiments. Structures o f the separa­
tion on [a] the side and [b] bottom wall fo r switch scheme, [c] The oil visualization fo r  the similar 
case, the flow on the photograph is in the opposite direction to that in Figure [a] and [b]. The oil 

visualization is fo r  Mk = 1.47 and numerical calculation fo r  1.40. This explains differences in the
size o f  the region o f separation.

Figure 2.9 presents the comparison between the experimental visualization and 
the numerical computations. The experimental picture presents the oil visualization. 
The flow direction is from right to left, opposite that of computations. The velocity 
vector plot for the switch scheme presents very similar results to experiment. On 
the side wall the vortex can be seen. There is also the separation region on the 
bottom wall.

2.3 Two-dimensional flow in the curved channel
In a nozzle the shock wave spans across the whole channel and induces 

separation at all walls. Therefore such a flow case is very complex as far as 
separation structures are concerned. Due to this it was decided to investigate a 
curved passage flow. In such a case the supersonic region is adjacent to the convex 
wall and the shock wave is strong at this wall. In consequence the shock induced 
separation takes place only at the convex wall. Moreover there is sufficient 
experimental data for validation.

This section will be devoted to two-dimensional computations of transonic flow 
in a curved channel. The main aim of this section is to estimate the basic flow 
character in 2-D so that later it can be compared with similar computations for three 
dimensional flows.
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Figure 2.10. The geometry o f the curved channel.

The geometry of the channel is given in Figure 2.10. The number of points in 
the grid for this case is 257x193.

The computations were performed for two different isentropic Mach numbers 
just upstream the interaction: M = 1.35 and M.s = 1.47 on the bottom wall, where 
the isentropic Mach number is defined as follow:

The required isentropic Mach number was obtained by the change of the outlet 
boundary condition — value of the pressure ratio.

The numerical schemes used for both cases were the slip and switch scheme. Due 
to difficulties (presented in the previous section) with the slip scheme to render the 
separation in the 3-D nozzle, it was necessary to check if for a very refine grid in 2-D 
such difficulties also existed. The turbulence model was the non-linear k-r of Craft, 
Launder and Suga [22], To obtain better convergence, a 3 level multigrid was used.

x

Figure 2.11. The position o f the cut with the geometry o f  the channel fo r  an isentropic Mach number 
M j = 1.47. The line perpendicular to the channel indicates the cut line.
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In Figure 2.11 the cut position in the channel is shown. At this position the 
boundary layer profiles have been studied. The velocity profiles for Mjs= 1.47 in 
Figure 2.12 are presented. The figure shows profiles for the bottom and top wall. It 
proves that for the slip scheme the boundary layer is thicker. Table 2.1 shows the 
maximum velocities and boundary layer thickness for these cases. The boundary 
layer thickness was taken at a point where, u / ujnf~ 0.995.

x velocity

0.2 0.4 0.6 0.8
x v e lo c ity / U in fin ity

1
J

0.0 0.2 0.4 0.6 0.8 1.0
x velocity/U  in fin ity

Figure 2.12. Velocity profiles; green — switch scheme, red — slip scheme; [a] Without 
normalization on bottom wall, [b] Normalized on bottom wall, [c] Without 

normalization on top wall, [d] Normalized on top wall.

Table 2.1. Boundary layer thickness for the slip and switch schemes.

scheme max.velocity
bottom

boundary layer 
thickness — bottom

max.velocity
top

boundary layer 
thickness — top

switch 366 m/s 2.5 mm 318 m/s 4.5 mm

slip 368 m/s 3.5 mm 313 m/s 5.0 mm



The Analysis o f Separation amd Methods o f Three-dimensional Flow Structure... 77
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Figure 2.13. Comparison between two schemes. Color contour (M > 1) — switch scheme. Black —
slip scheme.

In Figure 2.13 the comparison between two schemes for M  = 1.47 is shown. It 
again can be seen that the A-foot is larger for slip scheme.

Similar to the previous section, it can be seen that slip scheme has a different 
dissipation near the shock and predicts a bit different position for the shock and its 
strength. It seems though that the behavior of the schemes is independent of the 
turbulence modeling. The tendency is the same although in the previous section 
another turbulence model was used. Tatsumi, Martinelli and Jameson [172] have 
shown that for both schemes the parameters in the boundary layer are different and 
with growing points number within the boundary layer one cannot give a clear 
answer which scheme gives the better results. For cases computed here the switch 
scheme seems to be more accurate giving better agreement with experimental data 
considering the separation structures and the A-foot size in three-dimensional 
computations.

Due to this fact, for further comparison, the switch scheme was used. In 
Figure 2.14 the Mach number isolines for isentropic Mach number M  = 1.35 and 
M.= 1.47 are presented. From this picture, changes in the position of the shock can 
be seen and also that the A-foot structure changes with Mach number. The A-foot is 
much smaller for lower Mach number.

In Figure 2.15 the pressure distribution on the bottom wall is shown. From this 
figure it can be noted again that the position of the shock and pressure drops are 
different for the two cases.

The separation bubble can be seen on the vector plot in Figure 2.16. The size of 
the separation bubble is for M. = 1.35 — 18 mm, for Mb = 1.47 — 27 mm. The 
A-foot height respectively 10 mm, 18 mm.
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The two-dimensional results presented in this section are an introduction to the 
three dimensional flow computations in the same geometry of the channel.

m m s3. i ; ____ J
0.00 0.15 0,30 0.46 0.61 0.76 0.91 1.06 1.21 1.37

[a]

0.00 0.16 0.33 0.49 0.66 0.82 0.99 1.15 1.32 1.48

[b]

Figure 2.14. Mach number isolines in cur\’ed two-dimensional channel, [a] Mjt= 1.35 [b] Ma= 1.47.

Figure 2.15. Pressure distribution on the wall. Red curve — M  = 1.35, green — Ma = 1.47.
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2.4 Three-dimensional flow in the curved channel. Effect of width 
of the channel

The geometry of the channel is the same as in Figure 2.10. The third dimension 
has been added while taking into account two different widths of the channel: 
150 mm (later it will be called the wide channel) and 50 mm (called the narrow 
channel). The number of mesh points is I29x97><65. The symmetry condition was

o.co 0.17 0.34 0.51 0.67 0.84 1.01 1.18
I ©v,il

1.35 1.52

[a]

0.00 0.17 0.33 0.50 0.67 0.84 1.00 1.17
T
1.34 1.50

[b]

Figure 2.17. Mach number isolines in curved three-dimensional channel fo r  M ^ I .4 7  [a] narrow
channel [b] wide channel.
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used, but also whole channel has been calculated for grid 129><97x97. The 
computations were done using the switch scheme which behaves more accurately in 
the separation region. The turbulence model used in the computations was the non­
linear k-r model of Craft-Launder and Suga [22],

In Figure 2.17 the Mach number isolines for M. = 1.47 in the middle cross- 
section of the channel are presented. Figure [a] shows the distribution for the 
narrow channel and [b] for the wide one. The shock wave structure in both cases is 
very different. For the wide channel the A-foot is much smaller and also the 
separation is smaller. This is in reference to the boundary layer thickness. For the 
narrow channel a second smaller shock also appears. It will be shown later that such 
structures are also present in experiment. The position of the shock is nearly the 
same, which can be also noticed from Figure 2.45 [a] and 2.47 [a].

In Figure 2.18 the Mach number isolines for M^= 1.35 in the middle cross- 
section of the channel are presented. The shock waves for lower Mach numbers are 
of course weaker and the A-foot is much smaller than for M. = 1.47 but still theis
difference between the wide and narrow channel can be seen. Again, in the narrow 
channel, the second smaller shock wave has appeared, although very weak.

0.15 0.30 0.600.45

I_1__
0.75 0.90 1.06 1.21 1 36

[a]

0.00 0.15 0,30 0.46 0.61 0.76 0.91 1.06 1.21 1.37

[b]

Figure 2.18. Mach number isolines in curved three-dimensional channel fo r  1.35
[a] narrow channel [b] wide channel.
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The next sections will provide details concerning flows in these two channels. 
There will be a study of the boundary layer influence, shock wave structures and 
also separation structures. Also the width of the channel, as well as the changes due 
to the growing Mach number will be taken into account.

2.4.1. Boundary> layer profiles

In this section the main attention will be paid to describing basic parameters of 
the boundary layer for all computed cases. The boundary layer parameters influence 
the A-foot structure and also the separation further downstream from the shock. The 
investigation of the boundary layer will be done upstream of the shock to check 
what is the influence of the boundary layer for the wide and narrow channel.

In Figure 2.19 the location of the cut for the isentropic Mach number M. = 1.47 
where the boundary layer has been checked is shown.

Figure 2.20 shows the location for Mjs= 1.35. The cut is made in the grid points 
so that locally near the wall it is perpendicular to the wall. Due to this fact, the 
velocity is parallel to the wall (in the boundary layer without separation) so changes 
in velocity occur mainly in the y-direction. Changes in the perpendicular velocity 
are much smaller at around 1/100 of x-velocity. This confirms the assumption used 
below that profiles of the boundary layer are studied based on the x-velocity 
distribution, although there is some curvature of the channel.

X
Figure 2.19. The location o f cut with the geometry o f the channel fo r  isentropic 

'Mach number M = 1.47.
IS

X

Figure 2.20. The location o f cut with the geometiy o f the channel fo r  isentropic 
Mach number M = 1.35.
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In Figure 2.21 the velocity profiles within the boundary layer for M  =1.47 
are presented.

Figure 2.22 presents the velocity profiles for Mjs= 1.35. The velocity profiles 
are obtained for cuts presented in Figure 2.19 and 2.20.

Figures 2.21 and 2.22 present velocities for the bottom, side and top wall. The 
green line corresponds to velocity in the wide channel while respectively the red 
line corresponds to the narrow channel. The velocity is normalized to velocity in 
infinity and the y-coordinate to the boundary layer thickness (see Table 2.2). The 
boundary layer thickness is different for Mis= 1.47 for different widths of the 
channel although the character remains the same.

In Table 2.2 the maximum velocities and boundary layer thickness for both 
widths of the channel are presented. The maximum velocities are about the same on 
the side and bottom wall. The biggest difference is present on the top wall for high 
Mach number. Also for high Mach number the difference in the boundary layer 
thickness for a side wall is large. For all cases, two different Mach numbers and two 
different widths of the channel, the condition on the isentropic Mach number in the 
middle of the channel on the bottom wall was the basic requirement. Due to this the 
outlet conditions were different. This can explain why there are differences on the 
side wall boundary layer and the maximum velocity.

Table 2.2. Maximal velocity and boundary layer thickness fo r  wide and narrow channel fo r  
M. = 1.47 and M =  1.35.U 13

bottom 
M. =1.47IS

side
M. =1.47is

top
M=1.47IS

bottom 
M  =1.35IS

side
M. =1.35IS

top
M. =1.35IS |

maximal velocity 
wide channel 451 nVs 400 try's 320 rrVs 3% rtVs 367 try's 336 rrVs

maximal velocity 
narrow channel 448 nVs 399 nVs 360 nVs 401 try's 372 try's 332 nVs

boundary layer 
thickness 

wide channel
3.1 mm 11 mm 6.9 mm 4.2 mm 7 mm 7.5 mm

boundary layer 
tluckness 

narrow channel
4.5 mm 7.5 mm 7.1 mm 4.2 mm 6.5 mm 7.5 mm
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Considering Figures 2.17 and 2.18 and Table 2.2 the dependence between the 
boundary layer thickness and the height of the A-foot can be noticed. This will be 
investigated further in the next subsection.

100 200 300

x ve loc ity
400

Figure 2.21. Velocity profiles for M  =  1.47; green -wide channel, red - narrow channel [a] Without
normalization on bottom wall, [b] Normalized on bottom wall, [c] Without normalization on side

wall, [d] Normalized on side wall, [e] Without normalization on top wall, [fj Normalized on top wall.
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Figure 2.22. Velocity profiles for M.s = 1.35; green — wide channel, red— narrow channel [a] Without 
normalization on bottom wall, [b] Normalized on bottom wall, [c] Without normalization on side wall, 

[d] Normalized on side wall, [e] Without normalization on top wall, [f] Normalized on top wall.



_________The Analysis o f  Separation amd Methods o f  Three-dimensional Flow Structure... 85

2.4.2 The shock wave characteristic

Figures 2.23-2.28 show the flow region near the shock wave for both channels 
with Mu= 1.47. The grey area is the supersonic region (M > 1). Cuts are done in the 
grid points and the numbers associated with them represent the node numbers that 
correspond to the distance from the side wall. Table 2.3 shows the position of these 
nodes in the wide and narrow channel.

Table 2.3. Node positions for the wide and narrow channels. The table presents the node numbers 
and corresponding positions from the side wall.

node wide channel [mm] narrow channel [mm]

38 2.9519 0.9643

40 3.8105 1.2452

42 4.9156 1.6069

44 6.3369 2.0725

46 8.1637 2.6715

48 10.5091 3.4415

50 13.5167 4.4393

52 17.3670 5.6985

54 22.2856 7.3226

56 28.5521 9.3979

58 36.5086 12.0430

60 46.5667 15.4031

62 59.2119 19.6531

64 75.0000 25.0000

Figures 2.23-2.28 allow the study of both the changes in the separation region 
size and the A-foot structure. The A-foot is smaller for the wide channel. For the 
narrow channel, a smaller second shock can be seen. The flow is supersonic in the 
entire region upstream the shock. From Table 2.3 and the following Figures, it can 
also be concluded that the shock penetrates the boundary layer near the side wall. 
Another result from analysis of the figures is that for the narrow channel, the 
position of the shock changes more with the cut position than for the wide channel.

Figures 2.29-34 show the same cuts but for M. = 1.35. It can be seen here that 
the A-foot is similar for the two channel types. In addition, the supersonic region is 
smaller than for higher Mach number, and for the narrow channel, the second 
smaller shock exists. In the case of a small isentropic Mach number, the supersonic 
region for the narrow channel only exists near the shock.
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Figure 2.23 a Figure 2.23 b

Figure 2.23 e Figure 2.23 f

Figure 2.23. Mach isolines fo r  M^ = 1.47 fo r  the wide channel [a] 38, [b] 40, [c] 42,
[d] 44, [e] 46, [ff 48.
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Figure 2.24 a Figure 2.24 b

Figure 2.24 d

Figure 2.24 e
Figure 2.24 f

Figure 2.24. Mach isolines fo r  M  =  1.47 fo r  the wide channel [a] 50, [b] 52, [c] 54
[d] 56, [e] 58, [f] 60.
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In Figures 2.35-2.40 the Mach isolines for the spanwise-streamwise cuts are 
shown. The numbers refer to the /-node number (j = 1 at the bottom convex wall 
and j  = 97 at the top concave wall). Due to the fact that the channel is curved, these 
cuts are also made by curved surfaces projected onto a plain surface. Noting this 
fact, it follows that the position of the cut gives only a general orientation about 
plane location. Grid point 48 is in the middle of the channel. It can be seen that the 
shock at this position is weaker than the one closer to the bottom wall. It can also be 
noted that the curvature of the shock near the side wall is caused by the side wall 
boundary layer shock wave interaction. In addition, the side wall structures of the 
separation can be seen. The Mach isolines have a bit different behavior for wide 
and narrow channel, although cuts are done in the same positions for both channels. 
For the narrow channel, the second small shock can be seen again. The supersonic 
regions for narrow and wide channel are different. For the narrow channel some 
supersonic flow downstream to the main shock also exists.

Figure 2.26. Mach isolines for M. = 1.47 fo r  the narrow channel [a] 62, [b] 64.
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Figure 2.27 a

Figure 2.27 c
Figure 2.27 d

Figure 2.27 b

Figure 2.27 e Figure 2.27f

Figure 2.27. Mach isolines fo r  Mb = 1.47 fo r  the narrow channel [a] 38, [b] 40, [c] 42,
fd j 44, [e] 46, [f] 48.
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Figure 2.28 e Figure 2.28 f

figure  2.28. Mach isolines fo r  Mu = 1.47 fo r  the narrow channel [a] 50, [b] 52, [c] 54,
[d] 56, [e] 58, [f] 60.
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Figure 2.29 a Figure 2.29 b

Figure 2.29 c Figure 2.29 d

Figure 2.29 e Figure 2.29 f

Figure 2.29. Mach isolines fo r  Ma =  1.35 fo r  the wide channel [a] 38, [b] 40, [c] 42,
[d] 44, [e] 46, j f j  48.
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Figure 2.30 a

’*"**?*>

Figure 2.30 b

Figure 2.30 c Figure 2.30 d

Figure 2.30 e Figure 2.30 f

Figure 2.30. Mach isolines fo r  Ma -  1.35 fo r  the wide channel [a] 50, [b] 52, [c] 54,
[d] 56, [e] 58, [f] 60.
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Figure 2.31 a Figure 2.31 b

Figure 2.31. Mach isolines fo r  M  = 1.35 fo r  the wide channel [a] 62, [b] 64.

Figure 2.32 a Figure 2.32 b

Figure 2.32. Mach isolines fo r  M. = 1.35 fo r  the narrow channel [a] 62, [b] 64.
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Figure 2.33. Mach isolines fo r  Mb= 1.35 for the narrow channel [a] 38, [b] 40, [c] 42,
[d] 44, [e] 46, [f] 48.
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Figure 2.34 a Figure 2.34 b

Figure 2.34 c Figure 2.34 d

Figure 2.34 e
Figure 2.34 f

Figure 2.34. Mach isolines fo r  M.= 1.35 fo r  the narrow channel [a] 50 [bl 52 Tel 54
[d] 56, [e] 58. [f] 60.
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Figure 2.35 c Figure 2.35 d

Figure 2.35. Mach isolines o] the spanwise-streamwise cut in the wide channel [a] 24. [b] 32,
[c] 40. [d] 48 for M.= 1.47.

Figure 2.36 c Figure 2.36 d

Figure 2.36. Mach isolines o f the spanwise-streamwise cut in the narrow channel [a] 24. [b] 32.
[c] 40, [d] 48 for Ma= 1.47.

Figures 2.39 and 2.40 show the Mach isolines for M.s = 1.47 and the supersonic 
region (M > 1). For both channels, the 1-foot near the side wall can be seen. The 
A-foot on the side wall is bigger for the wide channel at which point the boundaiy 
layer thickness is also greater.

Figure 2.41 shows the sonic contour (M > 1) for the wide channel while Figure 
2.42 shows the sonic contour (M > 1) for the narrow channel. Both presented cases 
are forM  = 1.47.

IS

Figure 2.43 shows the sonic contour (M > 1) for the wide channel while Figure 
2.44 shows the sonic contour (M > 1) for the narrow channel. Both presented cases 
are for Af.= 1.35. In both, the supersonic region grows for a corresponding growth
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[ C ] [d]

Figure 2.37. Mach isolines o f the spanwise-streamwise cut in the wide channel [a] 24, [h] 32,
[c] 40, [d] 48 for  M  = 1.35.
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[c] [d]
Figure 2.38. Mach isolines o f the spanwise-streamwise cut in the narrow channel [a] 24. [hi 32,

[c] 40, [d] 48 M. = 1.35.

in Mach number but the region’s change in shape is more pronounced for the 
narrow channel.

This review of results will be closed with a presentation and comparison of the 
shock behavior for both channels. Figure 2.45 presents the Mach isolines (M > 1) 
for both channels. Figure [a] presents the case for Mjs = 1.47 while Figure [b] shows 
the case for M  = 1.35. All cases are studied in the middle cross-section of the

IS

channel. The figures show the large height of the A-foot — for the narrow channel. 
The position of the shock is much different for higher Mach number but the angle 
of interaction (the angle where the flow separates from the wall) is the same for 
both channels.
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Figure 2.39 a Figure 2.39 b

Figure 2.39 c Figure 2.39 d

Figure 2.39. Mach isolines in a spanwise-streamwise cut o f the wide channel [a] 23, [b] 25, [c] 38,
[d] 48 M  = 1.47.

i ' *■ ’
Figure 2.40 a Figure 2.40 b

Figure 2.40 c Figure 2.40 d

Figure 2.40 e Figure 2.40 f

Figure 2.40. Mach isolines in a spanwise-streamwise cut o f the narrow channel [a] 24, [b] 25, 
[c] 26, [d] 38, [e] 45, [f] 48 M  = 1.47.
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Figure 2.41. The sonic contour for the wide channel with M  = 1.47.

Figure 2.43. The sonic contour for the wide channel with M .= 1.35.

Figure 2.44. The sonic contour for the narrow channel with M  = 1.35.
J  IS
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Figure 2.45. Mach isolines (Ma>l) for both channels. Black — wide channel, color — narrow 
channel; [a] M.s = 1.47, [b] M j = 1.35.

Figure 2.46. Mach isolines (Ma > 1). Black — M.=1.35 color — Mis = l.47; [a] wide channel;
[b] narrow channel*

Figure 2.46 presents Mach isolines. Figure [a] is for the wide channel with both 
Mach numbers and Figure [b] is for the narrow channel with both Mach numbers. 
Most notable from these figures is the difference in the shock position evident due 
to a growing Mach number.

Finally, to specify the position of the shock on the bottom wall the pressure 
distribution in the middle of the channels is shown in Figure 2.47. Table 2.4 
presents the values of the height of the A-foot.

Table 2.4. Normalized height o f X-foot and Reynolds number based on the boundary layer thickness 
fo r the narrow and wide channel.

Re (M.=1.47) h/8 (M.=1.47) Re (M.=1.35) II-s:

wide channel 71600 5.86 93090 2.11

narrow channel 105000 5.77 93090 2.35
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Figure 2.47. The normalized pressure distribution on the bottom wall in the 2D channel (red); 
and in the middle o f the bottom wall in 3D: narrow channel (black), wide (green). It can be seen 

the changes in position o f the shock and differences in pressure distribution downstream.
[a] M  = 1.47; [b] M  = 1.35.

2.4.3 Shock structure — comparison with experiment

In this section, a comparison with experimental data will be presented. 
Attention will be paid to the basic shock parameters including the height of the 
A-foot structure and its connection with the boundary layer thickness.

In the Karslruhe experiments of Doerffer [45] the narrow channel was investi­
gated. The wide channel was studied in experiments carried out in Warsaw [46], 

Boundary layer thicknesses for both cases, as well as for computations, are 
presented in Table 2.5.

Table 2.5 Boundary layer thickness for experiments and numerical calculations.

M. =1.47
IS

M  =1.35
IS

boundary layer thickness 
wide channel experiment [mm]

2.36 2.31

boundary layer thickness 

wide channel calculations [mm]
3.1 4.2

boundary layer thickness 
narrow channel experiment [mm]

3.16 3.21

boundary layer thickness 
narrow channel calculations [mm]

4.5 4.2
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The thickness of the boundary layer in experiments is different for narrow and 
wide channels. The same tendency in numerical calculations can also be seen but 
the numerical boundary layer is thicker than experimental one. There are several 
causes for this difference. One can be connected with the numerical boundaiy 
conditions. The inlet boundary layer, which has its origin in the pressure conditions, 
is different than the experimental one. Downstream, the boundary layer can be 
modified by the flow but it cannot be efficient enough. The best way to assure that 
the inlet boundary layer has no influence would be to give the same boundary layer 
profile at the inlet as in experiment. Such data was not available. Another reason for 
the difference in the boundary layer profiles can be connected with the thickness of 
the boundary layer at the side walls. The measurements of such quantities were not 
done. Both the cases for the narrow and wide channels show that the side wall 
boundary layer has a large influence on both the shock structure and separation 
region. Due to this, information about the side wall boundary layer would be 
helpful in the comparison of numerics to experiment.

Table 2.6 presents the A-foot height normalized by the boundary layer thickness. 
The tendency that the A-foot grows for larger Mach numbers is the same for both 
experiments and calculations.

Table 2.6 Normalized height o f /-foot fo r experiments and numerical calculations fo r  narrow and 
wide channel.

h/S (M ^ l.4 7 ) h/S (M.=1.35)

wide channel experiments 4.98 1.8

wide channel calculations 5.86 2.11

narrow channel experiments 6.87 2.97

narrow channel calculations 5.77 2.35

Figure 2.48 presents another way of comparison. The function of Mach number 
and Reynolds number is considered. The function is given by the relation [45, 46]:

f ( M , R e )

M 2
K-l (2.2)

The normalized A-foot height is plotted as a function of Mach and Reynolds 
number. The solid line presents experiments for the narrow channel, triangles are 
points from experiments in the wide channel and circles present numerical 
calculations. The results are in quite good agreement. It can be seen that the points 
from calculations are a bit higher then experiments. The reason for this can be the 
difference of the boundary layer on the side walls. Also, information about
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turbulence in the experiment are missing and thus could be helpful for choosing the 
proper turbulence model or setting boundary conditions for turbulence level or 
length scale.

o.o —‘—1—J—L ------' 1 1—-—1—'—■——•1—■—•—-  ■*—
0.000 0.010 0.020 0.030 0.040 0.050

f(M.Re)

Figure 2.48. Comparison between experimental data and computations; triangles — experiments in 
wide channel; solid line — experiments in narrow channel; circles — numerical results.

Figure 2.49. Comparison between experimental data and computations — pressure distribution on 
the bottom wall in the middle cross-section.
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Figure 2.49 shows the pressure distribution in the middle of the channel for the 
wide and narrow channels. The considered isentropic Mach number is Mjs= 1.47. 
The differences in distribution after the shock are caused by the separation. The 
turbulence modeling still could not precisely predict the behavior of the separation 
region although the tendency (angle of the curve) is similar for experiment and 
calculations.

The last comparison of this section will be the presentation of the shock wave 
structure obtained by Schlieren photography. Figure 2.50 shows pictures for the 
narrow [a] and wide [b] channels with an isentropic Mach number Mu= 1.47. This 
Figure can be compared with the Mach isolines of Figure 2.17.

Two differences between the narrow and wide channels can be noticed:
— The A-foot in the middle of the wide channel is smaller than in the narrow one
— In the narrow channel, a second shock (connected with after expansion) is 

observed while only a single one is observed in the wide channel
Both above observations were true for experiment and numerical calculations.

Figure 2.50. Schlieren visualization; [a] wide; [b] narrow channel.

2.4.4. Influence o f the symmetric boundary condition on the structure o f the shock 
wave

In the previous section, computations used the symmetry condition. The 
structure analysis, which will be presented in Chapter 3, shows that this condition 
has an influence on the structures of the flow. Due to this, calculations were done 
without an assumption of symmetry. The numeric simulation used a grid of size of 
129x97x97.

Because of this it was necessary to show, the influence of that condition on the 
global flow parameters.

In Figure 2.51 Mach, isolines for isentropic Mach number Mfe= 1.47 in the 
middle cross-section of the curved channels are presented. Again in the narrow 
channel, the A-foot is larger and the second smaller shock exists.
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□
0.00 0.16 0.33 0.49 0.66 0.82 0.98 1.15 1.31 1.48

Figure 2.51. Mach number isolines in the curved three-dimensional channel fo r  Mu= 1.47 and the 
middle cross-section. Calculations were done without the condition o f symmetry, [a] narrow channel

[b] wide channel.

Figure 2.52 show the pressure distribution on the bottom of the channel in the 
middle cross-section for the wide and narrow channels. The red lines represent 
pressure resulting from the calculation in the middle of the channel with the 
assumption of symmetry while the black lines show results of the computation with 
no assumption of symmetry, he difference between the two can only be seen in the 
region of separation.

In Chapter 3 the structures of the separation will be studied for both boundary 
conditions. A significant difference in separation for each of the two computations 
will be shown. The current section shows that there is no difference in the shock 
and flow structures for the two cases, as was expected.
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[a] [b]

Figure 2.52. Pressure distribution in the middle o f the curved three-dimensional channel fo r  
= 1.47 on the bottom wall. The red curve corresponds to the computations with the symmetry 

condition while the black corresponds to the computations done on the whole channel.
[a] narrow channel [b] wide channel.

2.5 Summary
— The A-foot height depends on the boundary layer. With a thicker boundary layer, 

the A-foot is larger. This tendency is similar for both experiment and numerical 
calculations.

— The A-foot height depends on the Mach number. Larger Mach numbers result 
in a growth of the A-foot. This is observed in both calculation and experiment.

— The width of the curved channel has a large influence on the A-foot structure. In 
the narrow channel, the A-foot is larger due to the thicker boundary layer and 
there is also a second smaller shock due to the stronger interaction of the side 
walls boundary layers. Calculations agree with the experimental data.

— The symmetry condition in the middle of the channel has no influence on the 
shock and flow structure.

— The numerical scheme used can cause large differences in the shock structure. 
The switch scheme gives better agreement to experimental data than the slip 
scheme.

— Two-dimensional calculations are more similar to the calculations in the wide 
channel (pressure distribution). Three-dimensional effects cannot be properly 
rendered by two-dimensional calculations.
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3. Shock induced separation

3.1 Introduction
In this Chapter the flow structures induced by the normal shock boundary layer 

separation will be studied. Consideration will be restricted to the three-dimensional 
curved channel computations presented in Chapter 2. The separation region for that 
type of channel occurs only at the bottom wall and some small structures can be 
seen near the bottom on the side walls.

The aim will be to study the two-dimensional structures on the walls and the 
three-dimensional structures of the separation. The structures obtained by 
computations will be compared with experimental photographs of oil visualization. 
The influence of the isentropic Mach number, width of the curved channel and the 
symmetry conditions on the separation structures will be studied.

3.2. Computations using the symmetry condition
In this section the separation structures for M.s = 1.35 and M  = 1.47 will be 

presented. Attention will be focused on computations carried out on a grid of size 
(129x97x65) with the use of the symmetry condition in the middle of the channel, 
For all Figures in this section the flow direction is from left to righ;.

3.2.1 Separation structures fo r M.s = 1.35

Figure 3.1 presents flew for Mu = 1.35 in the wide channel. The side wall and 
bottom wall are shown. Observation of the side wall shows a saddle point and 
bifurcation line. These are the first structures which occur and are connected with 
shock induced separation. Such structures extent normal to a wall are 
characteristically small with comparison to the geometry of the channel. Shock 
wave causes a sudden inclination of lines towards the bottom wall (Figure 3.1 [a]).

All these lines run into a bifurcation line above the bottom wall.The bifurcation 
line is connected with the comer vortex which appears due to the shock’s 
interaction with the boundary layer.The comer vortex wnl continue to exist for 
a higher Mach number and its presence will be shown in further Figures. Figure 3.1 
[b] shows the structures occurring on the bottom wall. Here, the beginning of 
separation, occurs near the side wall.In Figure 3.1 [b] upper limit is a center line and 
the lower one is the side wall.

In Figure 3.2 the structures for the narrow channel with = 1.35 are plotted. 
The bottom wall structures look quite sirm-ar to those for the wide channel. The 
only difference is that near the saddle point the origin of the focal point can be seen. 
Similar to the wide channel, separation on the bottom wall occurs near the side 
wall. The influence of the side wall is bigger for the narrow channel.

Both Figures 3.1 and 3.2 illustrate that for M.s = 1.35 the separations induced by 
the shock wave boundary nteraction starts to appear, but it is restricted to the 
vicinity of the bottom-side wall comer.
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[b]

saddle point
bifurcation line

Figure 3.1. Structures o f the separation for the wide channel fo r Mu= 1.35 [a] side wall
[b] bottom wall.

3.2.2 Separation structures fo r M' = 1.47

For Mach number Mjs = 1.47 the shock induced separation is much larger. In 
Figure 3.3 [a] the side wall for the wide channel is shown. This picture looks very 
similar to figure 3.1 [a] except that the angle of the lines is more steep. The 
topological structures on the side wall for M. = 1.35 and M. = 1.47 are the same. 
Figure 3.3 [b] presents the middle cross-section of the channel (where the symmetry 
boundary condition was assumed). Here the vortex can be seen which is present in
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[b]

•addle point
bifurcation lino

Figure 3.2. Structures o f the separation for the narrow channel fo r  M. = 1.35 [a] side wall
[h] bottom wall.

the middle of the channel. Figure 3.4 [a] presents the bottom of the channel. The 
separation for this case of Mach number is present even in the middle of the 
channel. Structures at the side wall (bottom line on the Figure) are similar to those 
seen for 'M. = 1.35. In the middle of the channel there are two points: node and 
saddle. They correspond to two saddle points in figure 3.3 [b]. As it was shown in 
Chapter 1, the three-dimensional saddle point is represented as a saddle point in two 
planes and in one plane as a node. Due to this the saddle point from the middle of 
the channel in Figure 3.4 [a] in the third cross-section, perpendicular to the middle 
line is a node. Other points will be similar. There is one more interesting 
observation. Due to the symmetry condition the flow upstream and within 
separation is slightly directed to the center of the channel. Figure 3.4 [b] shows the 
three-dimensional structures and includes a vortex in the middle of the channel. The
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Figure 3.3. Structures o f the separation for the wide channel fo r M^= 1.47 [a] side wall 
[h] middle cross-section wall.

view is from the outlet end of the channel. This vortex is not seen in Figure 3.4 [a], 
but the reverse flow flow in the separated area is caused by its presence. It can be 
observed that the flow from the side wall moves in the direction of the bottom wall 
where it causes the vortex. Also from this Figure it can be noted that the side 
boundary layer has a large influence on the global behavior of the flow. Again it can 
be observed that the separation structures are very flat compared to their width.

Figure 3.5 presents the side wall and middle cross-section for the narrow 
channel. The side wall structures are different than those for either M. = 1.35 or the

IS

wide channel. On the side wall the vortex can be seen. The middle cross-section is 
similar to the wide channel. In Figure 3.6 the bottom wall structures are presented. 
The structure seen there is much different than for the wide channel. Near the side 
wall (bottom line in Figure) two focal points and one saddle point appear. The



The Analysis o f Separation amd Methods o f  Three-dimensional Flow Structure... I l l

[b]

Figure 3.4. Structures o f the separation for the wide channel fo r M  = 1.47 [a] bottom wall 
[b] three-dimensional structures.

center line structures are the same as for the wide channel. The flow direction 
before the separation is again forced by the symmetry condition so that the flow is 
directed towards the node. Due to the presence of the focal points, to fulfill all 
conditions, the saddle point appears. Figure 3.7 shows the three-dimensional 
structures in two views.The lines are obtained by integration forward and backward 
starting from points near the bottom wall. It can be seen that part of the flow near 
the bottom wall has its origin at the side boundary layer. Similar influence of the 
side wall was observed for the wide channel. Due to the vortices on the bottom 
wall, the three-dimensional structures of the narrow channel are again different than 
those for the wide channel.



112 J. Czerwihska

[a]

[b] bifu rcation  lln*

Figure 3.5. Structures o f the separation fo r  the narrow channel fo r M^= 1.47 [a] side wall
[b] middle cross-section wall.

n o d a l  p o in t s a d d l e  p o in t

f o c a l  p o in t b i f u r c a t i o n  l i ne

Figure 3.6. Structures o f the separation for the narrow channel fo r M  =1.47 on the bottom wall.

In Figure 3.8 the structures for isentropic Mach number Mjs= 1.47 for a course 
grid (eight times less points) are presented. For the narrow channel the grid renders 
the general character of the separation region while, for the wide channel, the 
separations is not present in the middle of the channel.
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Figure 3.7 a

Figure 3 .7 b

Figure 3.7. Three-dimensional structures o f the separation for the narrow channel fo r  Mb = 1.4’’ 
[a] view from the top; [b] view from the side wall.

Figure 3.8 a

Figure 3.8 b

Figure 3.8. Coarse grid influence on the separation structures for Mb= 1.47 [a] wide channel
[b] narrow channel.
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3.3 The computations of the entire curved channel
This section will show the differences in the structures which occur due to the 

assumption of the symmetry condition for the flow. The grid for computing the 
entire channel was 129x97x97. Only the case for the developed separation at Mach 
number M  = 1.47 will be considered.

is

In Figures 3.9, 3.10 and 3.11 the structures for the wide channel for = 1.47 
are shown. Figure 3.9 [a] presents the middle cross-section, 3.9 [b] presents the 
bottom wall, 3.10 presorts the cut across the channel and 3.11 presents the two side

[>■ la in *

Figure 3.9 b

Figure 3.9. Structures oj the separation fo r  the wide channel fo r  S ts= 1.47 [a] middle cross-section
[b] bottom wall.
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walls. Figure 3.11 [a] presents the side wall which is a line on top of figures 3.9 [b]. 
The side wall from Figure 3.11 [b] is indicated by the bottom line in Figure 3.9 [b]. 
The middle cross-section (see Figure 3.9 [a]) is similar to the case computed with 
the symmetry condition (Figure 3.3 [b]). The bottom wall structure is completely 
different from Figure 3.4 [a]. The entire separation region is not symmetric. In the 
middle of the channel a separation saddle appears instead of a separation node (see 
Figure 3.4 [a]). It was stated in Chapter 1 that connection of saddle points is 
structurally unstable. In Figure 3.9 [b] the saddles are not connected and, due to

[a]

s a d d l e  point
b i f u r c a t i o n  l ine

Figure 3.10 a

Figure 3.10 b
Figure 3.10. Structures o f the separation for the wide channel fo r  M. = 1.47 [a] downstream the

separation region [b] vortex in the bottom corner.
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this, they are slightly non symmetric. In computations for the wide channel with the 
symmetry conditions the direct connection between separation and reattachement 
critical points is imposed. Therefore a node-saddle combination is forced by 
symmetry. Flow near the middle of the channel upstream of the separation region 
for the entire channel is directed away from the center. A change of the character of 
a point in one cross-section causes a change of the character of a point in another 
cross-section. This means that the general three-dimensional character of the 
structure is also changed and it follows that focal points appeared for computations 
of the entire curved channel.

Figure 3.11 a

Figure 3.11. Structures o f  the separation on the side walls fo r  the wide channel fo r  Mii = 1.47
[a] wall on top in Figure 3.9 [b] down wall in Figure 3.9.
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In Figure 3.10 the cut across the channel is presented. Figure 3.10 [a] shows the 
separation size compared to the width of the channel while Figure 3.10 [b] shows 
the comer vortex. Figure 3.11 presents the side walls. The structures are 
topologically similar to the computations for the wide channel with the symmetry 
condition.

Figures 3.12, 3.13 and 3.14 present the structures for the narrow channel. In F 
igure 3.12 [a] the middle cross-section is shown. The topological structures are the 
same as for the narrow channel with the symmetry condition. The bottom wall 
structures are different than those of Figure 3.6. The direction of the upstream 
separation region is connected with the saddle point in the center and it is different 
than for calculations with the symmetry condition. The entire structure is slightly 
non-symmetric. This Figure also shows the sizes of the separation region. There are 
lines which indicate the size of separation region in the center for the wide channel 
(59 mm). The size of the wide channel separation is 70 mm. The separation region 
for the narrow channel is larger.

[b]
focal point bifurcation lino

fo ca l point b ifu rca tio n  lino

separation size for the wide channel

Figure 3.12. Structures o f  the separation fo r  the narrow channel fo r  Mjj= 1.47
[a] middle cross-section [b] bottom wall.
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Compared to the width of the channel, the area occupied by separation for the 
narrow channel is much larger than for the wide channel. This is connected with the 
fact that the boundary layer on the side wall has a large influence on the separation 
region. It can also be noted that the separation appears further upstream for the wide 
channel. In Figure 3.13 the cut across the channel is presented. Downstream 
towards the separation region the node can be seen (Figure 3.13 [a]) while Figure 
3.13 [b] again shows a comer vortex. Figure 3.14 [a] presents the side wall for the 
wall indicated as a top line in Figure 3.12 [b] and Figure 3.14 [b] with the side wall 
which is the bottom line of Figure 3.12 [b]. Both structures are topologically the 
same and agree with the structure for the narrow channel computed with the 
symmetry condition (see Figure 3.5 [a]).

[a]

n o d a l  p o i n t

Figure J. 13 a

rarer wrier
Figure 3.13 b

Figure 3.13. Structures o f  the separation fo r  the narrow channel fo r  M  = 1.47 
[a] downstream o f the separation region [b] vortex in the bottom corner.
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Figures 3.15 and 3.16 present the three-dimensional structures. In Figure 3.15 
the three dimensional structures for the narrow channel are shown. The vortex has 
an origin on the bottom wall and the core of the vortex is directed towards the 
center. At the bottom wall it spirals in and in the middle of the channel it spirals 
out. Due to this, it must go through the critical point which is shown in Figure 3.15 
[b]. This critical point is the vortex of type [g] or [e] from Figure 1.5 in Chapter 1 
while the vortices on the bottom wall and middle cross-section are of type [f] in 
Figure 1.5. In the wide channel it is similar except that the change of the character 
of the vortex appears closer to the center. This causes larger non-symmetry for the 
wide channel (See Figure 3.16).

[a]

F igure 3.14. Structures o f  the separation on the side walls fo r  the narrow channel fo r  Mu = 1.47 
[a] wall on top in Figure 3.12 [b] down wall in Figure 3.12.
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Figure 3.15 a

Figure 3.15 b

Figure 3.15. Three-dimensional structures o f  the separation for the narrow channel fo r  Mu= 1.47
[a] center vortex [b] flow patterns.

A better understanding of the changes of the structures which occur due to the 
changes of the width of the channel or to the influence of the symmetry condition is 
aided by the diagram of the Takens-Bogdanov bifurcation. This shows the possible 
changes of the critical points including the appearance of the node, node saddle 
points or saddle focal points. This diagram is presented in Chapter 1 in Figure 1.8. 
It can explain, for instance from a topological point of view, the appearance of the 
vortex on the side wall for the narrow channel. It shows that on the bifurcation 
between one single saddle point, one saddle and one focal point that a saddle node 
connection can appear. This could be checked by making the computations for the 
channel with a width between the two considered cases.



The Analysis o f  Separation amd Methods o f  Three-dimensional Flow Structure... 121

' ' 4
X \

**

F igure 3.16. Three-dimensional structures o f  the separation fo r  the wide channel fo r  M  = 1.47.

3.4 Comparison with experiment

In Figure 3.17 oil visualization pictures for an isentropic Mach number 
Mjs= 1.35 are shown. For the wide channel, no structures can be recognized. For 
the narrow channel, some vortices are present but similar to the wide channel there 
is no separation in the middle of the channel. It can be observed that the behavior is 
similar for computations. The first separation occurs on the side wall. For the 
narrow channel in computations there are no vortices but the tendency for flow 
patters to create vortices can be noted (see Figure 3.2).

Figure 3.18 presents the flow for the isentropic Mach number A/ = 1.47. 
Considering the computations of the entire channel, the structures for the wide 
channel are the same as in the experiment. There are differences in the 
computations for the narrow channel. It can be noticed that the vortex occurred on 
the side wall in both computations and experiment. Such a vortex is not present for 
the wide channel. The tendency for the size of the separation region (larger for the 
narrow channel) can also be seen. The difference is that the structure for 
computations is closer to the wall and also less detailed. This is not connected with 
grid size because for the narrow channel the same grid was sufficient to render flow 
structure similar to the experiment. The same is true with the turbulence model. It 
gave results with good agreement for the wide channel. Due to this it seems that the 
reason for this fact could be the differences in the boundary layer on the side wall 
for experiments and numerics. The information about the boundary layer for the
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experiment is not available. The computations and also experiments proved that 
shock induced separation in the curved channel is sensitive to the side wall 
boundary layer. It follows that this parameter is necessary for a correct comparison 
between numerics and experiment.

Figure 3.17. Oil visualization fo r  =  1.35 [a] wide channel; flow  direction is from right to left;
[b] narrow channel.

[a] [b]

Figure 3.18. Oil visualization fo r  M  =  1.47 [a] wide channel; flow  direction is from right to left;
[b] narrow channel.

3.5 Summary
— The structures of separation depend on the Mach number for both experiment 

and computation. The separation is larger for AT = 1.47. With an increasing 
Mach number, separation appears first on the side walls- bottom wall comer.

—  The structures of separation depend on the width of the channel.
— The separation region is longer for a narrow channel for both experiment and 

computation. The size of the separation region relating to the width of the channel 
is also larger for the narrow channel than for the wide channel.



The Analysis o f  Separation amd Methods o f  Three-dimensional Flow Structure... 123

— The computed structures for the wide channel are similar to experiment. The 
direction of the non-symmetry of the computations can be caused by small 
numerical disturbance and for instance for a bit different grid it can changed for 
opposite.
The computed structures of the narrow channel are a bit different than those 
obtained experimentally. This is probably caused by the differences in the side 
boundary layer between numerics and experiment. Information about the 
experimental boundary layer thicknesses are not available. It was shown that 
the side boundary layer has an influence on the structures of separation near the 
side and bottom walls. Due to this, information about the side boundary layer is 
very important for comparison.

— There is a very large influence of the symmetry condition on the structures of 
separation. The symmetric flow due to the separation became non-symmetric. 
The global separation structures are non-symmetric because of topological rules.

— It seems that the resolution of the grid was enough to render structures similar 
to experiment

— The used numerical scheme and turbulence model proved to be sufficiently 
efficient for an analysis of such highly complicated three-dimensional separation 
structures.

4. Conclusion
The boundary layer shock wave interaction is a complex phenomenon to study. 

The experimental and numerical investigations help in better understanding of this 
interaction. Due to the existence of three-dimensional effects the numerical study 
demands the application of as advanced numerical methods as it is possible. Any 
kind of restriction, like for instance the symmetry condition with the symmetric 
geometry, has a large influence on the computation results as it was shown in the 
presented thesis. The tree-dimensional effects especially for the shock and 
separation structures are so strong that widely used assumption about two- 
-dimensionality for nominally two-dimensional geometry, cannot provide correct 
understanding of the boundary' layer shock wave interaction.

It was shown that recent numerical methods are capable to predict the flow 
structure and shock induced separation structure with quite a good agreement with 
experiments. For the considered cases a large influence of the numerical scheme on 
the A-foot structure and separation was obtained. Analysis carried out allowed to 
indicate which one is adequate for the investigated flow.

The topological methods help to analyse the complex structures of the flow. In 
some cases, like for the computations with the symmetry condition, they give the 
answer why such condition cannot be realized in real flow. The non-symmetry of 
the flow is forced by the nature of shock induced separation structures.

The future work could concentrate on the better understanding of influence of 
the parameters of the boundary layer or turbulence on the shock induced separation 
structures.
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Appendix A

Classification o f critical points

In this appendix the basic mathematical calculations for obtaining the linear 
classification of critical points are presented. First, the two-dimensional case will be 
considered. The equations are given as follows:

x = ax + by; (A.l)

y  = cx + dy. (A.2)

The characteristic matrix looks like:

a -  A b 
c d -  A ' (A.3)

The solution of the system of ordinary differential equations is:

x  = x0 + Kxexp(Xxt) + K2exp(f2i)\ (A.4)

y = y0 + K2exp{Xxt) + KAexp(l2t)\ (A.5)

where x0 and y 0 are the coordinates of the critical point. T he classification of the 
critical point is based on the values of the eigenvalues A, and A2:

1. A, < 0 and A2 < 0 and A, * 0 stable node
2. Aj = A2 = A and A < 0 and the array of coefficients is proportional to the identity 

matrix — star stable node. Any small perturbation can cause a change in the 
stable node or focus

3. A, = A2 = A and A < 0 and the matrix of coefficient is not proportional to the 
identity matrix — degenerate stable node. Any small perturbation can cause 
a change to the stable node or focus

4. Aj > 0 and A2 > 0 and A, * A2 unstable node A, = A2 = A and A < 0
5. A, = A2 = A and A > 0 and the matrix of coefficients is proportional to the identity 

matrix — unstable star node. It is not structurally stable and any small
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perturbation causes a change in the unstable node or focus
6. A, = A2 = A and A > 0 and the matrix of coefficients is not proportional to the 

identity matrix — degenerated unstable node. It is not structurally stable and 
any small perturbation causes a change in the unstable node or focus

7. A, > 0 and A2 < 0 or A, < 0 and A2 > 0 saddle
8. X = a ± i)3 and a < 0 — stable focus
9. Aia = a ±  ip and a > 0 — unstable focus

10. Xl2= ± ifi  and a = 0 — center. It not structurally stable and any small 
perturbation causes a change in the stable and unstable focus

11. A, = 0 and A2 < 0 The trajectories in phase space are parallel straight lines. It is 
not structurally stable and any small perturbations causes a change in the stable 
node or saddle

12. A, = 0 and A2 > 0 The trajectories in the phase plane are the parallel straight 
lines. It is not structurally stable and any small perturbation causes changes in 
the unstable node or saddle

13. A, = 0 and A2 = 0 and the matrix of coefficients is equal to zero — all points are 
points of equilibrium. It is not structurally stable and any small perturbation 
changes the system to the system with one point of equilibrium — star node

14. Aj = 0 and A2 = 0 and the matrix of coefficient is different from zero — the 
system is not structurally stable and any small perturbation changes the system 
to the system with one critical point — degenerated stable or unstable node

All the above cases were presented in Chapter 1. The next part of the appendix 
will consider three-dimensional critical point classification also regarding linear 
ordinary differential equations theory. The equations are given as follows:

x = axx + a2y  + a3z\ 

y  = btx + b2y  + b3z;

(A.6)

x = c,x + c2y  + c3z.

(A.7)

(A.8)

The characteristic matrix looks like:

ci j A a2
6| b2 A b3 
q  c2 c3 A

(A.9)

The solutions of the system of ordinary differential equations are:

x  = x0 + K\exp(Xf}+ K2exp(X2t}+ K3exp{X3ty, 

y  = y 0 + K^exp{Xf^+Ksexp{X2t)+ K bexp{X3ty, 

z - z 0 + K1exp(Xlt')+ K%exp(X2t)+ K9exp{X3t)\ (A. 12)

(A. 10)

(A .ll)
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The classification of critical point is based on the values of the eigenvalues A, 
and X2 and A3:

1. A,, A2, A3 > 0 unstable node
2. Aj, A2, A3 < 0
3. A , A2 > 0 and A3 < 0 saddle type one
4. Aj, A2 < 0 and A3 > 0 saddle type two
5. A, = A2 = A3 = A and A > 0 and the coefficient matrix is different than the identity 

matrix - unstable degenerate node. It is not structurally stable and any small 
perturbation causes a change in the unstable node or focal point

6. A, = A2 = A3 = A and A < 0 and the coefficient matrix is different than the identity 
matrix — stable degenerate node. It is not structurally stable and any small 
perturbation causes a change in the stable node or focal point

7. Aj = A2 = A3 = A and A > 0 and the coefficient matrix is equal to identity 
matrix — unstable star node. It is not structurally stable and any small 
perturbation causes a change in the unstable node or focal point

8. A = A2 = A3 = A and A < 0 and the coefficient matrix is different than the identity 
matrix — stable star node. It is not structurally stable and any small perturbation 
causes a change in the stable node or focal point

9. 0 < A, < a  A23 = a ± i(5 unstable focal point type one
10. a  < A, < 0 and A23 = a  ± //3 stable focal point type one
11. A, < 0 and a > 0 and A23 = a ± if3 unstable on the plane, but stable in 

three-dimensional space focal point type two
12. A, > 0 and a < 0 and A2 3 = a ± ifi  stable on the plane, but unstable in the three 

dimensional plane focal point type two
13. 0 < a  < A, and A23 = a  ± i/3 unstable focal point type three
14. A, < a < 0 and A23-  a  ± i/3 stable focal point type three
15. A, > 0 A23 = ± ip unstable center
16. A, < 0 and A23 = ± ifi stable center
17. A, = 0 and A , A3 > 0 and a, = 0 unstable node two dimensional
18. Aj = 0 and A2, A3 < 0 and ax = 0 stable node two dimensional
19. Aj = 0 and A2 > 0 and A3 < 0 and ax = 0 or• Aj = 0 and A2 < 0 and A3 > 0 and a{ = 0 

saddle two dimensional
20. A, = 0 a < 0 and A23 = a  ± i/3 and a, = 0 stable focal point two dimensional
21. A, = 0 a  > 0 and A2 = a ±i{3 and a, = 0 unstable focal point two dimensional
22. A, = 0 and A23 = ± ip and n, = 0 center two dimensional
23. A, = 0 and A2, A3 > 0 and matrix of coefficients different than identity matrix -  

-  unstable degenerate node
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24. A, = 0 and A2, A3 < 0 and matrix of coefficients different than the identity 
matrix — stable degenerate node

25. Aj = 0 and A2 > 0 and A3 < 0 or A, = 0 and A2 < 0 and A3 > 0 and matrix of 
coefficients different than the identity matrix — degenerate saddle

26. A, = 0 a < 0 and A23 = a  ± i/3 and matrix of coefficients different than the 
identity matrix stable degenerate focal point

27. A, = 0 a>  0 and A23 = a ±ij3 and matrix of coefficients different than the 
identity matrix unstable degenerate focal point

28. A, = 0 and A23= ± and matrix of coefficients different than the identity 
matrix — degenerate center

29. A, = A2 = 0 and A3 > 0 trajectories are parallel straight lines. The system is not 
structurally stable and any small perturbation causes a change in the unstable 
node or saddle

30. A, = A2 = 0 and A3 < 0 trajectories are parallel straight lines. The system is not 
structurally stable and any small perturbation causes a change in the stable 
node or saddle

31. A, = A2 = A3 = 0 and the matrix of coefficients is different from zero. The system 
is not structurally stable and any small perturbation causes changes to the 
degenerate node (stable or unstable)

Most of the considered cases are presented in Figures 1.2 and 1.5 in Chapter 1.

Appendix B
Dynamical systems on the manifold

This chapter will be devoted to the presentation of basic definitions and 
theorems connected with the dynamical systems on the manifold. This will 
complete considerations presented in Chapter 1 where the knowledge of all the 
definitions was assumed. The present chapter helps to understand better the 
considerations of Chapter 1.

First, the attention will be paid to the definition of the compact manifold. 

Definition of the manifold:
The differer"’able n-dimensional manifold is an arbitrary set M, whose elements 

are called points, together with the structure on it. The set M is the union of a finite 
or countable by infinite collection of subset with properties.

1. Each system has a defined local coordinate systems, which is identifiable with 
the Euclidean coordinate systems in Euclidean space.

2. Each non empty intersection of a pair of subsystems of the manifold has defined 
on it at least two coordinate systems, the restriction of first and second one. It is 
necessary that each of the coordinate system’s intersections are identifiable 
with Euclidean n-space and each of these coordinate systems can be expressed 
:n terms of the other in a one-to-one differentiable manner.
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Definition of the compact manifold:
The topological space X is compact if every countable collection of open sets 

covering X contains sub-collections already covering X.
The next part will contain the definition of the dynarr i :al system and some 

aspects of the critical point theory.

Definition of the dynamical system:
A dynamical system on a manifold is the smooth vector field on iff.

Definition of the critical (singular) point:
The xQ is called a critical (singular point) of the field y  =y(x) , f y(x0) = 0. 

Definition of the isolated critical (singular) point:
The singular point is an isolated singular point, if for all other points of some 

small neighborhood of it, y(x) does not vanish

Definition of the non-degenerate critical (singular) point:
The critical (singular) pr-mt is non-degenerate if

f f / ) * 0 (B.l)

The non-degenerate singular point of the vector field i s necessarily isolated.

Definition of the index of the singular point:
The index of the critical (singular) point is

r
sgn det

\

8 £ _
d x p

\

|*=*o
y

= sgn{ll,...,X„) (B.2)

Appendix C
Numerical schemes: switch and slip

In this section the follow ing equation will be considered:

d t d x (C.l)

It can be approximated at the g'";d node i in conservation form by the scheme

a dv; Ax-— ‘- + 
dt

( \

h , - h  ,/+- l--
V  2 2 J

= o. (C.2)

hi+± is the numerical flux between cell i and i+1 and Ax is the mesh interval.
l 2

The first order scheme, which satisfies the local extremum diminishing principle
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(the local maxima do not increase and local min'ma do not decrease,) is obtained by 
approximating the flux a :̂

(C.3)

where dj+± = y A v,.+4 = a ,+ ,(v(1 + 1 v,) is the first order diffusive flux computed

at the cell interface j+1. Wave speed is a(v) = d f /d v .
Higher order non-osciliatory schemes are derived by introducing anti diffusive 

terms in a controlled manner, mtroducing approximate switch or by using limiters.

C.l High-Resolution switched schemes
As was mentioned before, hi<vh-resolution switch schemes require that an anti 

diffusive term be introduced. By subtracting neighboring differences, the third order 
diffusive flux can be obtained as follows:

r
d  , -  a  ,Av , -/+- /+- /+-

2 2 2

\
Av 3 + Av ,

/+— i—
V 2 2 j

(C.4)

This scheme produces substantial oscillation in the vicinity of shock waves, 
which can be eliminated by sv 'tching locally to the first order scheme. The switch 
scheme given above can be improved as follows:

r
d , = Av , -  s' , 

/+— /+— /+— 1+ —
2 2 2 2

.(4)

where

Av 3 -2A v ( +Av j
/+— /+— i—

V 2 2 2 y

e(2, = min(o.u a 2S\f+—
2

1i+—
2

( 4 )\ = max
i+-

2
0,0, *. i/+—

2
i + -

2J

(C.5)

(C.6)

(C.7)

S is the maximum of Q in the chosen neighborhood where Q is as follows:

Qt

Av , -  Av ,
/+ - i—

2__________ 2

/ q + (l e)P, + s P2 (C.8)

Py = Av , + Av ,
i+—2 i— 2

(C.9)
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P2 = |A v,+i | +  2 |A v, | +  |A v, 4  (C.10)

The value of epsilon is usually taken as Zi, P0 is a threshold to assure that the 
denominator cannot be zero, a, = Yt, /3, = % is chosen to scale diffusion to the level 
corresponding to up-winding. a2, fi2 are chosen to switch the diffusion term from 
third to first order fast enough near the shock waves.

C.2 Symmetric limited positive scheme
Another method for obtaining a high order non-oscillatory scheme is to 

introduce flux'limiters. In this scheme, third order diffusion defined by equation 
(D.2) is modified by introducing a limiter which produces an equivalent three point 
scheme with positive a coefficient. The limiter L(u, v) must have following 
properties:

1. L(u, v) = L(v, u);
2. L(a u, a v )  = a L (u, v ) ;
3. L(u, u) = u;
4. L(u, v) = 0 if u and v have opposite signs.

The diffusive flux for a scalar conservation law is

(C.ll)

The main restriction for this case is that the limiter must be zero when the A,-+i 

and A ^  have opposite signs. This means that there is a local extremum at i or i+1.

If they have the same sign and A/+I has the opposite, the damping is similar to the 

central difference formula. In the case of a shock when the upstream flow is 

constant, then A(._̂  = 0 and Aj+± prevent canceling any part of A.+1, because it is

limited by A_x .
1 2

A  limiting function can be used such as:

L(u,v) -  S(u,v)min(^u + v| / 2,a|«|,a|v|), (C.12)

where

= ^sign(u) + sign(v). (C. 13)

Comparison of both schemes shows that the slip scheme has different 
dissipation near the shock waves than the switched scheme. It can also be noted that 
the vicinity of the A-foot structure and separation region is characterized by a few
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local extrema. Due to this fact, the grid in this area should have much higher 
density otherwise slip scheme limitation causes damping that is too large (extrema 
cannot be caught so easily) and no separation occurs. Because of this, the number 
of grid points near the shock wave and boundary layer interaction for the slip 
scheme should be very high. This is not so easy to obtain for three-dimensional 
calculations due to computer memory limitation. The switch scheme seems more 
advisable, because it gives more accurate results, for the considered grid resolution 
for the flows with shock waves and separations.
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