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Abstract: The paper presents a finite element code for compressible flow simulations. The code has two 
important features: adaptivity to increase accuracy of computations by selectively refining a finite element 
mesh and efficient parallel performance due to a special implementation based on the concept of patches 
of elements. The algorithm for approximating the compressible Navier-Stokes equations is a version of 
the stabilized finite element method. Three time integration strategies are implemented, explicit, linear 
implicit and nonlinear implicit, and the GMRES method is used to solve the systems of linear equations. 
For parallel simulations the code uses a special algorithm for mesh partition. The performance of the code 
is tested for two examples of supersonic flows: one inviscid and one viscous.
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1. Introduction
Parallel efficiency becomes nowadays a necessary feature of all competidve 

CFD codes. Different organizations of parallel systems pose specific requirements 
for a software. A distributed system with multiple processing units, each of which is 
equipped with its local memory, forms a logical organization that can be realized on 
different hardware platforms. The existence of popular software, like PVM and 
MPI implementations, for handling data communication on distributed systems 
creates a possibility for developing portable parallel computer codes.

Adaptivity is an important way for improving efficiency of numerical software 
for approximating field equations of mathematical physics. Based on a posteiior- 
error estimates leads to optimal meshes that allow one to solve a given problem at a 
minimal computational cost. In the context of compressible flow equations, despite 
the lack of proven error estimates, adaptivity brings substantial savings in memory 
and CPU time usage due to the use of locally refined meshes in such regions as 
shocks and boundary layers
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The present article describes a parallel code designed for /?-adaptive finite 
element simulations of laminar, compressible fluid flow. The paper is organized as 
follows: in Section 2 an algorithm for compressible flow simulations is described. 
Section 3 describes the finite element code with special stress on parallel 
implementation of the GMRES method for solving systems of linear equations and 
an algorithm for mesh partition. In Section 4 examples of numerical simulations are 
reported, including convergence and parallel performance tests. Section 5 presents 
final conclusions and the direction of further development of the code.

2. An algorithm for flow simulations
The Navier-Stokes equations, used as a mathematical model for laminar 

compressible flows, can be expressed in terms of conservation variables as follows:

U{x,t)J + f E( u l  = r ( U , V U l  (1)
where:

x — point inside a computational domain f lc c. R s, s = 1, 2 or 3,

t — time instant,

V -  (p, pu., pe)T — vector of conservation variables (p — density, u. — velocity 
components (j = 1,..., s ) , e — total specific energy),

f f  = (pu., puu. + pS , (pe + p) u y  — vectors of Eulerian fluxes (p = (y -  1) 
(pe - h p u .«.) — pressure, y — ratio of specific heats, 8.. -  Kroneckers delta),

f f  = (0, cr, cr u. -  q )T — vectors of viscous and heat fluxes (stress tensor 
Oj = p ( u l . + uj) - 1li p8ijukk),

3

p  = -1 0  — natural viscosity coefficient given by Sutherland’s law in

terms of temperature, T = p/Rp,

q = —k T. — heat flux,.1 V 7
Pr = pycv/K= 0.72 — Prandtl relation, .

t, .— time and space partial derivatives , ~y~ (summation convention is always 

implied by repeated indices).
We assume that the system is accompanied by typical Dirichlet boundary 

conditions met in practice, namely: all unknowns specified on supersonic inflow, 
density and velocity given on subsonic inflow, pressure set on subsonic outflow, no 
boundary conditions on supersonic outflow and vanishing of velocity together with 
specified temperature or heat flux on a solid wall boundary [1],

A stabilized finite element method used for the space discretization of (1) reads: 
Find £/®(jc) e [//1(flc)]J+2 satisfying Dirichlet boundary conditions and such that for 
every est function W  € [//1(QC)]1+2, vanishing wherever Dirichlet boundary 
conditions are set, the following holds:
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f  W TU ° d V - f  W ] f iE(u@)dV +Jqc ’ Jqc ’
+ f  W T( f E(ue ) -  / / ' (ue ) n,ds + f  W j K i} (ue ) u @JdV = 0,

» J
(2)

where:
-  n. — outward normal unit vectorl
-  K -  K f  + K L + K AV: Scf — natural viscosity matrices (fl‘ = Kd‘(U) U ),'j V u 'j ij J j x ’ j n
-  K L— ' ;,iear stabilization matrice:j
-  K AV— nonlinear artificial viscosity matrices.

Linear stabilization matrices, introduced to prevent oscillations that appear when 
standard Galerkin procedures are applied to equations of convection dominated 
flows, have the form [2]:

(A = ( f.E) and h denotes a linear element size).
For simplified ID or scalar cases stabilization by matrices |  :L can be shown to 

be equivalent to upwind differencing of flux term [3, 4],
Nonlinear artificial viscosity matrices K AV (nonlinearity is understood with 

respect to the gradient of unknowns) are based on the residual of the steady state 
Euler equations ( f . f  -  0) [51-

Here e is some small positive constant, /  denotes the identity matrix and j^L1 is 
the Hessian of the entropy function r\ = -p In(pp“0 w'th respect to the conservation 
variables ( A A = p vu) [6].

There are three time integration strategies implemented in the code: explicit, 
linear implicit and nonlinear implicit. Each strategy transforms (2) into a sequence of 
one step problems that advance the solution from time level t " to t "+l. All strategies 
use first the order finite difference formula

e  _ u(tn+l) - u ( t n) U"+' - U n 
J ~ tn+' - f ’ , At

Explicit strategy corresponds to the choice

U 0 = U n,
and the lumping of the mass matrix obtained from the term

1 f  W TU"+'dV.
At J ry
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Both implicit strategies assume

Ue =U n+\
but the linear method additionally uses the substitutions

f , c { u ° ) = f i c ( u ‘ ) ,  / * ( » “ ) =
These substitutions together with standard finite element procedures of using 

element shape functions transform the problem (2) into a system of linear 
equations.

The fully nonlinear implicit scheme requires the solution of nonlinear equation 
at each time step. This is achieved by an approximate Newton method that finds the 
solution U n+I after a sequence of linear problems:

For A- = 0, L 2,..., kmax find U k+I satisfying Dirichlet conditions at specified 
boundary nodes and such that for every test function W, vanishing wherever 
Dirichlet boundary conditions are set:

—  f lVTU k+' d V - \  W lA i( u k) u k+' d V + \  W TA i u k) u k+'ndS  +
A t  Jnc Jnc ■' ' v ’  J /  i

+  f &*[Kii(u k) v i;'dV = —  \ W TU kdV  +  f W T f l ‘( u k) n d S ,J nc ■' J v J At JQc Janc Jl v '  '

( 3)
where I P -  U", Un+l = LPmax and the number of iterations k is dictated by the 
required accuracy. Each linear problem is transformed into a system of linear 
equations, hence at each time step we have to solve kmax systems of linear equations.

The algorithms described are used for transient, as well as for steady state 
calculations. In the latter case the time increment Dt is computed locally for each 
element, based on a global value of the stability CFL number [1].

Each one step calculations in all algorithms form a separate problem that can be 
solved on a different mesh, thus allowing for mesh adaptation between any two 
time steps.

3. Finite element code
The standard finite element procedures for solving a given problem consist in 

creation of element stiffness matrices and load vectors, assembling them into a 
global stiffness matrix and a global load vector and then solving a resulting system 
of linear equations. The latter task is often performed by a separate, general purpose 
library procedure. The parallelization of such a solver is done independently of the 
finite element mesh and the problem solved.

In the code that we describe solvers are built into the program. For both explicit 
and implicit strategies they use the same particular data structure related to the 
finite element mesh and do not create a global stiffness matrix and a load vector. 
Instead, the computational domain is divided into small overlapping subdomains, 
called patches of elements, and for each subdomain local, explicit or implicit,



A Paralel Adaptive Code fo r  Compressible Navier-Stokes Simulations 21

procedures are used. Each patch corresponds to a single finite element node and 
consist of all elements belonging to the support of node’s shape function (in the 
case of regular meshes this means that the node is just a vertex of patch elements). 
Patches are recreated only after adaptations of the mesh. At each time step (or 
Newton iteration in the nonlinear algorithm) element stiffness matrices and load 
vectors are computed and assembled into patch stiffness matrices and load vectors. 
Patch stiffness matrices consist of non-zero entries in the rows of the global 
stiffness matrix corresponding to a given node (the same concerns patch load 
vectors and the global load vector). This defines a distributed storage scheme for 
the global stiffness matrix and the load vector based on a mesh topology.

Explicit procedures consist in computing element stiffness matrices and load 
vectors for all patch elements and advancing the solution according to the formula 
(2). Since the mass matrix is constant for all one step problems, patch stiffness 
matrices are computed only once, at the beginning of time integration, lumped, 
inverted and stored. Then at each time step only load vectors are computed to 
advance the solution.

Implicit procedures form a part of a linear equations solver. Since the linear 
problems appear within time integration schemes iterative solvers are the most 
appropriate, thanks to the existence of a perfect initial guess in the form of the 
solution from the previous time step. There are three iterative solvers in the code: 
block Jacobi, block Gauss—Seidel and generalized minimal residual (GMRES). 
Since in our implementation single iterations of block solvers are also used in the 
GMRES algorithm we will describe only the latter.

The GMRES algorithm [7] is one of the most successful and widely used 
iterative methods for solving non symmetric systems of linear equations. The 
performance of the GMRES depends on the conditioning of a system of equations 
so usually it is used with left or right preconditioning. In the case of left 
preconditioning instead of solving the original system of equations Ax = b (with A 
the global stiffness matrix, x  the vector of unknown degrees of freedom and b the 
global load vector), the preconditioned system M~lAx = M~'b is solved. The 
preconditioning matrix M  should be easily invertible and designed in such a way 
that the preconditioned system has* better convergence properties than the original 
one (the condition number of the product M ~lA closer to one). The preconditioned 
GMRES algorithm schematically looks as follows: 

set an initial guess x() 
repeat until convergence

compute the residual o f the preconditioned problem: rg = M (b -  A xg) 
normalize the residual: rQ = r0 /||r0|| 
for i -  1, 2,..., k

compute matrix-vector product: rj = AT:_X 
orthonormalize r: wrt all previous rj t f= l,..., i-1 by the modified 

Gram-Schmidt procedure obtaining rt 
solve the GMRES minimization problem to get the approximate solution 
check convergence, i f  attained leave GMRES
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In the restarted version, the number of Krylov space vectors is limited to some 
small number (in our case k=  10) and the initial guess for restarts is taken as the 
current approximate solution.

Preconditioning of the GMRES algorithm can be efficiently achieved by using 
any of the basic iterative methods such as the block Jacobi or block Gauss-Seidel 
methods [8], In such a case single iterations of block methods are used to perform 
the most time consuming parts of the GMRES involving matrix-vector products
M~' (b -  Ax0) and M~' Ar^, [9], The iterations consist of loops over all finite 
element nodes (patches of elements) for which local problems, with patch stiffness 
matrices and load vectors, are solved with values on the boundary of patches taken 
as Dirichlet boundary conditions.

3.1 Adaptivity
Mesh adaptivity constitutes important step in achieving high efficiency of 

numerical codes. Drastic reductions of the number of unknowns (finite element 
nodes), as compared to the solutions of the same accuracy but on the uniform grids, 
can be obtained when mesh is refined only in certain indicated regions. A crucial 
ingredient is to base refinements on a reliable indicator that, in turn, should be 
based on proven a-posteriori error estimates. Unfortunately there are no error 
estimates for the compressible Navier-Stokes equations and one has to use 
indicators based either on approximate equations or some physical considerations.

In the code, adaptations were based on an indicator [10]:

£ = h  - f t ,kA0 f kk

which in turn is based on an error estimate for scalar convection-diffusion 
problems [11]. Refinement-unrefinement strategy consists in dividing elements for 
which e was greater than some assumed limiting value and clustering back 
elements, resulting from the division of the same element, for which the sum of 
all indicators is smaller than some percentage (usually 20%) of the limiting value.

The code uses .linear triangular elements. Mesh modifications are achieved by 
divisions of triangles into four sub-triangles, that maintain a regular shape of 
elements but requires the introduction of constrained (hanging) nodes [12], Their 
existence complicates the creation of patches. Meshes with hanging nodes are 
called irregular.

3.2 Parallel algorithms
Parallelization of all presented solvers (direct for explicit strategy and iterative 

for implicit strategies) is based on distributing the data concerning the finite 
element mesh among different processing units of a system. It is assumed that each 
processing unit consists of one processor and a local memory. Each processor has 
access only to its local memory and can explicitly exchange data with other 
processors.

At the beginning of computations the mesh is divided into subdomains and each 
subdomain is assigned to a given processor. Several subdomains can be assigned to
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one processor but an optimal situation occurs when the correspondence between 
subdomains and processors is one-to-one. In the case of different processors in 
a system with different processing powers a special algorithm for load balancing, 
based on differentiating the size of subdomains, is used [13).

Each processor recreates data structure concerning its subdomain and creates 
patches for all owned nodes. Patch stiffness matrices and load vectors are computed 
and explicit or implicit procedures of solvers performed. In all solvers after each 
loop over local patches processors exchange information on nodes on 
intersubdomain boundaries. For the explicit solver there is only one exchange of 
data per time step, but time steps are very frequent, for block Jacobi and block 
Gauss-Seidel solvers the number of exchanges is equal to the number of iterations, 
for the GMRES the number of iterations is equal to the dimension of the Krylov 
space, which in the inexact Newton algorithm is limited to some small number (in 
our case 20). However, in each iteration of GMRES there are several other 
procedures (computing vector norms and scalar products) that require 
interprocessor communication. Thus all methods are sensitive to the speed of 
interprocessor communication.

3.3 Mesh partiti m
The optimal domain decomposition, in the finite element context equivalent to 

partitioning the mesh, should lead to the minimal execution time for the whole 
problem solved by the finite element method. The partitioning process must 
optimize load balance and minimize interprocessor communication. Each 
subdomain should contain the number of degrees of freedom proportional to the 
computational power of processors (which is usually different as long as a cluster of 
workstations is considered) and a minimal number of interface nodes.

In the code an algorithm for the mesh partition based on the advancing front of 
nodes is used [14] wieden. Subdomains are created sequentially, each one by 
starting with a node chosen from the initial front (group) of nodes. Then all 
elements sharing the node are added to the subdomain and all vertices of elements 
are incorporated into the front. Further'nodes are added to the subdomain from the 
front according to certain geometrical or topological criteria. Nodes and elements 
are added to the subdomain until the number of nodes reaches some specified limit. 
The front at the end of creation of one subdomain forms the initial front for the next 
subdomain.

The algorithm is flexible allowing for creation of subdomains with either 
required shapes or other geometrical features. It is also robust and works for 
arbitrary domains and finite element meshes, including irregular meshes with 
hanging nodes.

3.4 Implementation
The code is written in C language and uses typical for C features, such as 

defined types and dynamic memory allocation. The data concerning elements and 
nodes are stored in arrays of structures. During adaptations new structures are
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allocated for new nodes, while for nodes deleted from the mesh only data are erased 
and the structure becomes available for new created nodes.

Due to the importance of patch computations in all described algorithms 
patches of elements have their own data type:

ty p e d e f  s t r u c t  { 
i n t  N re le s ;  i n t  * E le s ; 
i n t  N rnoac; i n t  *Noac; 
i n t  N rn o in ; i n t  *Noin; 
d o u b le  **Ain; 
d o u b le  *R in;
} PATCHES;

where:
N r e le s , E le s  — number and list of patch elements,
N rn o ac , Noac — number and list of patch internal nodes,
N rn o in , Noin — number and list of patch boundary nodes,
A in — assembled patch stiffness matrix,
R in — assembled patch load vector.

The exchange of data between subdomains is based on arrays storing, in 
a suitable order, numbers of all nodes belonging to the overlap between 
subdomains. Due to different handling of four groups of nodes each subdomain 
creates four arrays:

n o d e x c h l — internal nodes owned by a given subdomain, 
nodexch2  — internal nodes owned by other subdomains, 
n o d e x c h l—• internal nodes on the boundary of other subdomains, 
nodbond  — boundary nodes (always owned by other subdomains).

The necessary differentiation between nodexchl and nodexch2 nodes comes 
from the requirement that each node should possess only one subdomain that 
“owns” it. This requirement comes in turn from the parts of algorithms where each 
node must be considered only once (e.g. computing of vector norms for vector of 
unknowns).

Message passing between different processing units is implemented using the 
Parallel Virtual Machine (PVM) software. PVM consist of a Unix deamon 
controlling the exchange of data between different operating systems of different 
processors and C or Fortran routines, called from application programs, that 
perform all tasks connected with message passing. Additionally, there is a user 
interface, in the form of a terminal console, to create or modify a virtual machine 
and start or stop PVM applications.

The practical realization of the whole computation in the program is achieved 
using master-slave paradigm. There exists one master program (in PVM 
nomenclature master task) that controls the solution procedure and several slave
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programs (tasks) performing in parallel most calculations. The master program 
reads input data, including control parameters, partitions the mesh and sends data to 
slave tasks. Slave tasks perform all the steps of solver algorithms and communicate 
with the master program only when dumpout of data or adaptation of the mesh is 
necessary.

4. Numerical examples
We present the capabilities and performance of the code for two numerical 

examples, one for inviscid and one for viscous flow calculations. Inviscid model is 
obtained by neglecting viscous and heat fluxes, together with corresponding 
matrices K ”, in equations (1) and algorithms (2) and (3) respectively. Boundary 
conditions for solid walls are also modified and enforce vanishing of the component 
of velocity normal to the wall only.

4.1 Inviscid flow around a bi-NACA0012 wing profile
The first example is the Mach 3 flow around a bi-NACA0012 wing profile [15] 

agard with zero angle of attack. The geometry of flow domain and the initial finite 
element mesh, with 821 nodes and 1501 elements, are depicted in Figure 1.

Figure 2 presents comparison of the convergence process for three time 
integration techniques — explicit, linear implicit (TG) and nonlinear implicit 
(NLE). Test runs were performed on a single MIPS R10000 (180 MHz) processor

Figure 1. Initial mesh and flow domain for bi-NACA00I2 examples.
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Figure 2. Convergence fo r  flow around a bi-NACA0012 profile — initial mesh

(DIFF/CFL = maxN]N
CFL )■

Figure 3. Mach number contours fo r  Mach 3 flow around bi-NACA0012 profile —  initial mesh.
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of Silicon Graphics Origin 200 computer (-100MFLOPS, SPECfpbase95 = 14.4). 
For each algorithm different values of CFL parameter were used. For explicit and 
implicit integration CFL was constant and equal to 0.4 and 1.5 respectively. These 
values were the biggest for which the algorithms remained stable. For the nonlinear 
(backward Euler) method adaptive strategy based on using two iterations of the 
inexact Newton method per time step and keeping (by the proper choice of CFL 
number) the convergence rate close to 0.5 was applied. The maximal CFL value 
obtained in this example was equal to 512. For all iterations the maximum norm of 
density changes at all finite element nodes was used to measure the error.

The solution obtained on the initial mesh is shown in Figure 3 in the form of 
Mach number contours.

After convergence the mesh is adapted using the value of the error indicator 
e equal to 10 and computations performed on adapted mesh depicted in Figure 4. 
For further meshes we report results only for the most efficient nonlinear implicit 
algorithm.

For parallel computations meshes are divided into a number of subdomains, 
equal to the number of processors in the simulation. Different strategies of mesh 
partition can be used and we show in Figure 5 four example divisions of the mesh 
from Figure 4 into eight submeshes.

Figure 4. First adapted mesh fo r  bi-NACAOOl 2 simulations.
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a) vertical subdomains a) horizontal subdomains

a) square subdomains a) oval subdomains

Figure 5. Different mesh partitions fo r  bi-NACA0012 mesh with one level o f refinement.

They correspond to strategies of creating: vertical, horizontal, square or oval 
subdomains respectively. In each case it was assumed that processors are of the 
same computational power so the subdomains should be of the same size (measured 
by the number of nodes) for the best load balance. However, due to the existence of 
the overlap between subdomains (white regions in Figure 5) different strategies 
resulted in different average numbers of nodes in subdomains: vertical — 428, 
horizontal — 437, square — 389, oval — 387. A smaller number of nodes indicates 
shorter length of intersubdomain boundary (again measured in number of nodes) 
and, in consequence, less interprocessor communication. In all simulations we used 
decomposition into oval subdomains, default in the code.
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The procedure of mesh adaptation can be repeated several times. For each 
mesh, the computations are continued until a steady state is reached. Mesh partition 
and patch creation is performed only once for each mesh. Table 4.1 and Figure 6 
show parallel performance of the code for the third refined mesh with 21515 nodes 
and 45814 elements.

Table 4.1 Averaged results fo r  one time step parallel computations on the mesh with 21515 nodes for  
an HP Exemplar SPP1600 computer.

No. processors Execution time Speed up Efficiency

1 (1 node) 112.97

2 (1 node) 57.98 1.95 97.5%

4 (1 node) 29.56 3.82 95.5%

4 (2 nodes) 30.91 3.65 91.5%

8 (2 nodes) 16.23 6.96 87%

12 (3 nodes) 10.88 10.38 86.5%

16 (4 nodes) 8.91 12.68 79%

Figure 6. Parallel speedup on the mesh with 21515 nodes fo r  an HP Exemplar SPP1600 computer.
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The table presents execution times, speedup and efficiency for different number 
of processors used. The results correspond to one time step computations and are 
obtained by averaging over the whole simulation. Speedup is defined as the ratio of 
the sequential execution time to the parallel execution time and efficiency 
(expressed in percentage) as the ratio of speedup to the number of processors. 
We do not take into account changes in GMRES or Newton convergence resulting 
from parallelization of the algorithm (negligible in all cases), so the efficiency 
represents only the efficiency of numerical implementation. The reported results 
were obtained on an HP Exemplar SPP1600 multiprocessor system in a dedicated 
mode. HP Exemplar SPP1600 has a modular architecture and consists of a certain 
number of computational nodes, each of which comprises 8 processors. When 
computations are performed on one node, only the local node memory is used, 
when more nodes are used the use of slower global memory is necessary. For the 
purpose of comparison processors worked in a dedicated mode, however, buses 
were shared with other users, which affected the overall performance and made it 
random within the range of several percents. The sensitivity of the algorithm to 
interprocessor communication speed can be visible for two cases with four 
processors. The use of two computational nodes with slower inter-node 
communication decreased the efficiency of computations by 4%.

The results for the final for this example fifth refined mesh with 102822 nodes 
and 238812 elements are shown in Figure 7 and Figure 8. Figure 7 presents a detail 
of the mesh near the trailing edge and Figure 8 shows the final Mach number 
contours obtained in that simulation.

Figure 7. Detail o f  the fifth adapted mesh fo r  bi-NACAOOl 2 simulations.
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MIN = .017710472 MAX = 3.48S369780 INCR. = .IOOOCOOOO

Figure 8. Mach number contours for Mach 3 flow  around bi-NACAOOl 2 profile — mesh 
with five levels o f  refinement.

4.2 Viscous flow over a flat plate
The next example is a viscous flow with Mach number 3 and Reynolds number 

1000 over a flat plate. The definition of the problem is shown in Figure 9. Figure 10 
depicts the initial mesh and Figure 11 presents density contours obtained on that 
mesh.

The strategy of refining the mesh and converging the solution to the steady state 
is repeated three times. The convergence on four consecutive meshes for the 
nonlinear algorithm is presented in Figure 12.

Figure 13 depicts the final mesh, density contours obtained on it are shown in 
Figure 14.

For the last mesh with 14262 nodes and 30771 elements Table 4.2 shows the 
performance for parallel execution on F1P Exemplar SPP1600 computer. The graph 
of obtained speedup is shown in Figure 15.
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Figure 9. Flat plate problem — geometry and definition.

Figure 10. Flat plate problem - initial mesh.
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MIN = .514989934 MAX= 2.045 U 0036 INCR. = .050000000

Figure 11. Flat plate problem — Mach number contours on the initial mesh.

Figure 12. Convergence for flow over a flat plate on four consecutive adapted meshes.



Figure 13. Flat plate problem
mesh with three levels o f refinement

Figure 14. Flat plate problem Mac mmber co m rl ^  ̂  ^
o f refinement.
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Table 4.2 Averaged results fo r  one time step parallel computations on the mesh with 14262 nodes for  
an HP Exemplar SPP1600 computer.

No. processors Execution time Speed up Efficiency

1 (1 node) 73.64

2 (1 node) 37.98 1.94 97%

4 (1 node) 19.73 3.73 93%

4 (2 nodes) 20.37 3.62 90.5%

8 (2 nodes) 10.40 7.08 88.5%

12 (3 nodes) 7.26 10.15 84.5%

16 (4 nodes) 5.53 13.31 83%

2 4 6 8 10 12 14 16
Number of processors

Figure 15. Parallel speedup on the mesh with 14262 nodes for an HP Exemplar SPPI600 computer.

5. Conclusions
The presented finite element code allows for efficient large scale parallel 

simulations of compressible flows. Still there is a room for further improvement. 
On the algorithmic side turbulence modeling has to be included, as well as special
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error estimates for boundary layers. Finite element techniques will be extended by 
including hybrid adaptive meshes, with triangular and quadrilateral elements 
combined together, and anisotropic refinements, especially in boundary layers. 
Further work will also include the development of iterative solvers operating on 
hierarchical multi-level grids for better convergence. The described code forms a 
basis for this future development, in the form of the data structure, basic finite 
elements techniques including adaptivity, parallel linear equations solvers and 
algorithms for approximating the compressible Navier-Stokes equations.
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