
TASK QUARTERLY3 No 1 (1999), 17-37

A PARALLEL ADAPTIVE CODE FOR
COMPRESSIBLE NAVIER-STOKES SIMULATIONS

KRZYSZTOF BANAS

Section o f Applied Mathematics UCK,
Cracow University o f Technology,

Warszawska 24, 31-155 Cracow, Poland;
email: Krzysztof.Banas@pk.edu.pl

Abstract: The paper presents a finite element code for compressible flow simulations. The code has two
important features: adaptivity to increase accuracy of computations by selectively refining a finite element
mesh and efficient parallel performance due to a special implementation based on the concept of patches
of elements. The algorithm for approximating the compressible Navier-Stokes equations is a version of
the stabilized finite element method. Three time integration strategies are implemented, explicit, linear
implicit and nonlinear implicit, and the GMRES method is used to solve the systems of linear equations.
For parallel simulations the code uses a special algorithm for mesh partition. The performance of the code
is tested for two examples of supersonic flows: one inviscid and one viscous.

Keywords: numerical simulations, comnrcssible flow, Navier-Stokes solver, finite element methode,
paralel computing, adaptive meshes

1. Introduction
Parallel efficiency becomes nowadays a necessary feature of all competidve

CFD codes. Different organizations of parallel systems pose specific requirements
for a software. A distributed system with multiple processing units, each of which is
equipped with its local memory, forms a logical organization that can be realized on
different hardware platforms. The existence of popular software, like PVM and
MPI implementations, for handling data communication on distributed systems
creates a possibility for developing portable parallel computer codes.

Adaptivity is an important way for improving efficiency of numerical software
for approximating field equations of mathematical physics. Based on a posteiior-
error estimates leads to optimal meshes that allow one to solve a given problem at a
minimal computational cost. In the context of compressible flow equations, despite
the lack of proven error estimates, adaptivity brings substantial savings in memory
and CPU time usage due to the use of locally refined meshes in such regions as
shocks and boundary layers

mailto:Krzysztof.Banas@pk.edu.pl

18 K. Banas

The present article describes a parallel code designed for /?-adaptive finite
element simulations of laminar, compressible fluid flow. The paper is organized as
follows: in Section 2 an algorithm for compressible flow simulations is described.
Section 3 describes the finite element code with special stress on parallel
implementation of the GMRES method for solving systems of linear equations and
an algorithm for mesh partition. In Section 4 examples of numerical simulations are
reported, including convergence and parallel performance tests. Section 5 presents
final conclusions and the direction of further development of the code.

2. An algorithm for flow simulations
The Navier-Stokes equations, used as a mathematical model for laminar

compressible flows, can be expressed in terms of conservation variables as follows:

U{x,t)J + f E(u l = r (U , V U l (1)
where:

x — point inside a computational domain f lc c. R s, s = 1, 2 or 3,

t — time instant,

V - (p, pu., pe)T — vector of conservation variables (p — density, u. — velocity
components (j = 1,..., s) , e — total specific energy),

f f = (pu., puu. + pS , (pe + p) u y — vectors of Eulerian fluxes (p = (y - 1)
(pe - h p u .«.) — pressure, y — ratio of specific heats, 8.. - Kroneckers delta),

f f = (0, cr, cr u. - q)T — vectors of viscous and heat fluxes (stress tensor
Oj = p (u l . + uj) - 1li p8ijukk),

3

p = -1 0 — natural viscosity coefficient given by Sutherland’s law in

terms of temperature, T = p/Rp,

q = —k T. — heat flux,.1 V 7
Pr = pycv/K= 0.72 — Prandtl relation, .

t, .— time and space partial derivatives , ~y~ (summation convention is always

implied by repeated indices).
We assume that the system is accompanied by typical Dirichlet boundary

conditions met in practice, namely: all unknowns specified on supersonic inflow,
density and velocity given on subsonic inflow, pressure set on subsonic outflow, no
boundary conditions on supersonic outflow and vanishing of velocity together with
specified temperature or heat flux on a solid wall boundary [1],

A stabilized finite element method used for the space discretization of (1) reads:
Find £/®(jc) e [//1(flc)]J+2 satisfying Dirichlet boundary conditions and such that for
every est function W € [//1(QC)]1+2, vanishing wherever Dirichlet boundary
conditions are set, the following holds:

A Paralel Adaptive Code fo r Compressible Navier-Stokes Simulations 19

f W TU ° d V - f W] f iE(u@)dV +Jqc ’ Jqc ’
+ f W T(f E(ue) - / / ' (ue) n,ds + f W j K i} (ue) u @JdV = 0,

» J
(2)

where:
- n. — outward normal unit vectorl
- K - K f + K L + K AV: Scf — natural viscosity matrices (fl‘ = Kd‘(U) U),'j V u 'j ij J j x ’ j n
- K L— ' ;,iear stabilization matrice:j
- K AV— nonlinear artificial viscosity matrices.

Linear stabilization matrices, introduced to prevent oscillations that appear when
standard Galerkin procedures are applied to equations of convection dominated
flows, have the form [2]:

(A = (f.E) and h denotes a linear element size).
For simplified ID or scalar cases stabilization by matrices | :L can be shown to

be equivalent to upwind differencing of flux term [3, 4],
Nonlinear artificial viscosity matrices K AV (nonlinearity is understood with

respect to the gradient of unknowns) are based on the residual of the steady state
Euler equations (f . f - 0) [51-

Here e is some small positive constant, / denotes the identity matrix and j^L1 is
the Hessian of the entropy function r\ = -p In(pp“0 w'th respect to the conservation
variables (A A = p vu) [6].

There are three time integration strategies implemented in the code: explicit,
linear implicit and nonlinear implicit. Each strategy transforms (2) into a sequence of
one step problems that advance the solution from time level t " to t "+l. All strategies
use first the order finite difference formula

e _ u(tn+l) - u (t n) U"+' - U n
J ~ tn+' - f ’ , At

Explicit strategy corresponds to the choice

U 0 = U n,
and the lumping of the mass matrix obtained from the term

1 f W TU"+'dV.
At J ry

20 K. Banas

Both implicit strategies assume

Ue =U n+\
but the linear method additionally uses the substitutions

f , c { u °) = f i c (u ‘) , / * (» “) =
These substitutions together with standard finite element procedures of using

element shape functions transform the problem (2) into a system of linear
equations.

The fully nonlinear implicit scheme requires the solution of nonlinear equation
at each time step. This is achieved by an approximate Newton method that finds the
solution U n+I after a sequence of linear problems:

For A- = 0, L 2,..., kmax find U k+I satisfying Dirichlet conditions at specified
boundary nodes and such that for every test function W, vanishing wherever
Dirichlet boundary conditions are set:

— f lVTU k+' d V - \ W lA i(u k) u k+' d V + \ W TA i u k) u k+'ndS +
A t Jnc Jnc ■' ' v ’ J / i

+ f &*[Kii(u k) v i;'dV = — \ W TU kdV + f W T f l ‘(u k) n d S ,J nc ■' J v J At JQc Janc Jl v ' '

(3)
where I P - U", Un+l = LPmax and the number of iterations k is dictated by the
required accuracy. Each linear problem is transformed into a system of linear
equations, hence at each time step we have to solve kmax systems of linear equations.

The algorithms described are used for transient, as well as for steady state
calculations. In the latter case the time increment Dt is computed locally for each
element, based on a global value of the stability CFL number [1].

Each one step calculations in all algorithms form a separate problem that can be
solved on a different mesh, thus allowing for mesh adaptation between any two
time steps.

3. Finite element code
The standard finite element procedures for solving a given problem consist in

creation of element stiffness matrices and load vectors, assembling them into a
global stiffness matrix and a global load vector and then solving a resulting system
of linear equations. The latter task is often performed by a separate, general purpose
library procedure. The parallelization of such a solver is done independently of the
finite element mesh and the problem solved.

In the code that we describe solvers are built into the program. For both explicit
and implicit strategies they use the same particular data structure related to the
finite element mesh and do not create a global stiffness matrix and a load vector.
Instead, the computational domain is divided into small overlapping subdomains,
called patches of elements, and for each subdomain local, explicit or implicit,

A Paralel Adaptive Code fo r Compressible Navier-Stokes Simulations 21

procedures are used. Each patch corresponds to a single finite element node and
consist of all elements belonging to the support of node’s shape function (in the
case of regular meshes this means that the node is just a vertex of patch elements).
Patches are recreated only after adaptations of the mesh. At each time step (or
Newton iteration in the nonlinear algorithm) element stiffness matrices and load
vectors are computed and assembled into patch stiffness matrices and load vectors.
Patch stiffness matrices consist of non-zero entries in the rows of the global
stiffness matrix corresponding to a given node (the same concerns patch load
vectors and the global load vector). This defines a distributed storage scheme for
the global stiffness matrix and the load vector based on a mesh topology.

Explicit procedures consist in computing element stiffness matrices and load
vectors for all patch elements and advancing the solution according to the formula
(2). Since the mass matrix is constant for all one step problems, patch stiffness
matrices are computed only once, at the beginning of time integration, lumped,
inverted and stored. Then at each time step only load vectors are computed to
advance the solution.

Implicit procedures form a part of a linear equations solver. Since the linear
problems appear within time integration schemes iterative solvers are the most
appropriate, thanks to the existence of a perfect initial guess in the form of the
solution from the previous time step. There are three iterative solvers in the code:
block Jacobi, block Gauss—Seidel and generalized minimal residual (GMRES).
Since in our implementation single iterations of block solvers are also used in the
GMRES algorithm we will describe only the latter.

The GMRES algorithm [7] is one of the most successful and widely used
iterative methods for solving non symmetric systems of linear equations. The
performance of the GMRES depends on the conditioning of a system of equations
so usually it is used with left or right preconditioning. In the case of left
preconditioning instead of solving the original system of equations Ax = b (with A
the global stiffness matrix, x the vector of unknown degrees of freedom and b the
global load vector), the preconditioned system M~lAx = M~'b is solved. The
preconditioning matrix M should be easily invertible and designed in such a way
that the preconditioned system has* better convergence properties than the original
one (the condition number of the product M ~lA closer to one). The preconditioned
GMRES algorithm schematically looks as follows:

set an initial guess x()
repeat until convergence

compute the residual o f the preconditioned problem: rg = M (b - A xg)
normalize the residual: rQ = r0 /||r0||
for i - 1, 2,..., k

compute matrix-vector product: rj = AT:_X
orthonormalize r: wrt all previous rj t f= l,..., i-1 by the modified

Gram-Schmidt procedure obtaining rt
solve the GMRES minimization problem to get the approximate solution
check convergence, i f attained leave GMRES

22 K. lianas

In the restarted version, the number of Krylov space vectors is limited to some
small number (in our case k= 10) and the initial guess for restarts is taken as the
current approximate solution.

Preconditioning of the GMRES algorithm can be efficiently achieved by using
any of the basic iterative methods such as the block Jacobi or block Gauss-Seidel
methods [8], In such a case single iterations of block methods are used to perform
the most time consuming parts of the GMRES involving matrix-vector products
M~' (b - Ax0) and M~' Ar^, [9], The iterations consist of loops over all finite
element nodes (patches of elements) for which local problems, with patch stiffness
matrices and load vectors, are solved with values on the boundary of patches taken
as Dirichlet boundary conditions.

3.1 Adaptivity
Mesh adaptivity constitutes important step in achieving high efficiency of

numerical codes. Drastic reductions of the number of unknowns (finite element
nodes), as compared to the solutions of the same accuracy but on the uniform grids,
can be obtained when mesh is refined only in certain indicated regions. A crucial
ingredient is to base refinements on a reliable indicator that, in turn, should be
based on proven a-posteriori error estimates. Unfortunately there are no error
estimates for the compressible Navier-Stokes equations and one has to use
indicators based either on approximate equations or some physical considerations.

In the code, adaptations were based on an indicator [10]:

£ = h - f t ,kA0 f kk

which in turn is based on an error estimate for scalar convection-diffusion
problems [11]. Refinement-unrefinement strategy consists in dividing elements for
which e was greater than some assumed limiting value and clustering back
elements, resulting from the division of the same element, for which the sum of
all indicators is smaller than some percentage (usually 20%) of the limiting value.

The code uses .linear triangular elements. Mesh modifications are achieved by
divisions of triangles into four sub-triangles, that maintain a regular shape of
elements but requires the introduction of constrained (hanging) nodes [12], Their
existence complicates the creation of patches. Meshes with hanging nodes are
called irregular.

3.2 Parallel algorithms
Parallelization of all presented solvers (direct for explicit strategy and iterative

for implicit strategies) is based on distributing the data concerning the finite
element mesh among different processing units of a system. It is assumed that each
processing unit consists of one processor and a local memory. Each processor has
access only to its local memory and can explicitly exchange data with other
processors.

At the beginning of computations the mesh is divided into subdomains and each
subdomain is assigned to a given processor. Several subdomains can be assigned to

A Paralel Adaptive Code fo r Compressible Navier-Stokes Simulations 23

one processor but an optimal situation occurs when the correspondence between
subdomains and processors is one-to-one. In the case of different processors in
a system with different processing powers a special algorithm for load balancing,
based on differentiating the size of subdomains, is used [13).

Each processor recreates data structure concerning its subdomain and creates
patches for all owned nodes. Patch stiffness matrices and load vectors are computed
and explicit or implicit procedures of solvers performed. In all solvers after each
loop over local patches processors exchange information on nodes on
intersubdomain boundaries. For the explicit solver there is only one exchange of
data per time step, but time steps are very frequent, for block Jacobi and block
Gauss-Seidel solvers the number of exchanges is equal to the number of iterations,
for the GMRES the number of iterations is equal to the dimension of the Krylov
space, which in the inexact Newton algorithm is limited to some small number (in
our case 20). However, in each iteration of GMRES there are several other
procedures (computing vector norms and scalar products) that require
interprocessor communication. Thus all methods are sensitive to the speed of
interprocessor communication.

3.3 Mesh partiti m
The optimal domain decomposition, in the finite element context equivalent to

partitioning the mesh, should lead to the minimal execution time for the whole
problem solved by the finite element method. The partitioning process must
optimize load balance and minimize interprocessor communication. Each
subdomain should contain the number of degrees of freedom proportional to the
computational power of processors (which is usually different as long as a cluster of
workstations is considered) and a minimal number of interface nodes.

In the code an algorithm for the mesh partition based on the advancing front of
nodes is used [14] wieden. Subdomains are created sequentially, each one by
starting with a node chosen from the initial front (group) of nodes. Then all
elements sharing the node are added to the subdomain and all vertices of elements
are incorporated into the front. Further'nodes are added to the subdomain from the
front according to certain geometrical or topological criteria. Nodes and elements
are added to the subdomain until the number of nodes reaches some specified limit.
The front at the end of creation of one subdomain forms the initial front for the next
subdomain.

The algorithm is flexible allowing for creation of subdomains with either
required shapes or other geometrical features. It is also robust and works for
arbitrary domains and finite element meshes, including irregular meshes with
hanging nodes.

3.4 Implementation
The code is written in C language and uses typical for C features, such as

defined types and dynamic memory allocation. The data concerning elements and
nodes are stored in arrays of structures. During adaptations new structures are

24 K Banas

allocated for new nodes, while for nodes deleted from the mesh only data are erased
and the structure becomes available for new created nodes.

Due to the importance of patch computations in all described algorithms
patches of elements have their own data type:

ty p e d e f s t r u c t {
i n t N re le s ; i n t * E le s ;
i n t N rnoac; i n t *Noac;
i n t N rn o in ; i n t *Noin;
d o u b le **Ain;
d o u b le *R in;
} PATCHES;

where:
N r e le s , E le s — number and list of patch elements,
N rn o ac , Noac — number and list of patch internal nodes,
N rn o in , Noin — number and list of patch boundary nodes,
A in — assembled patch stiffness matrix,
R in — assembled patch load vector.

The exchange of data between subdomains is based on arrays storing, in
a suitable order, numbers of all nodes belonging to the overlap between
subdomains. Due to different handling of four groups of nodes each subdomain
creates four arrays:

n o d e x c h l — internal nodes owned by a given subdomain,
nodexch2 — internal nodes owned by other subdomains,
n o d e x c h l—• internal nodes on the boundary of other subdomains,
nodbond — boundary nodes (always owned by other subdomains).

The necessary differentiation between nodexchl and nodexch2 nodes comes
from the requirement that each node should possess only one subdomain that
“owns” it. This requirement comes in turn from the parts of algorithms where each
node must be considered only once (e.g. computing of vector norms for vector of
unknowns).

Message passing between different processing units is implemented using the
Parallel Virtual Machine (PVM) software. PVM consist of a Unix deamon
controlling the exchange of data between different operating systems of different
processors and C or Fortran routines, called from application programs, that
perform all tasks connected with message passing. Additionally, there is a user
interface, in the form of a terminal console, to create or modify a virtual machine
and start or stop PVM applications.

The practical realization of the whole computation in the program is achieved
using master-slave paradigm. There exists one master program (in PVM
nomenclature master task) that controls the solution procedure and several slave

A Paralel Adaptive Code for Compressible Navier-Stokes Simulations 25

programs (tasks) performing in parallel most calculations. The master program
reads input data, including control parameters, partitions the mesh and sends data to
slave tasks. Slave tasks perform all the steps of solver algorithms and communicate
with the master program only when dumpout of data or adaptation of the mesh is
necessary.

4. Numerical examples
We present the capabilities and performance of the code for two numerical

examples, one for inviscid and one for viscous flow calculations. Inviscid model is
obtained by neglecting viscous and heat fluxes, together with corresponding
matrices K ”, in equations (1) and algorithms (2) and (3) respectively. Boundary
conditions for solid walls are also modified and enforce vanishing of the component
of velocity normal to the wall only.

4.1 Inviscid flow around a bi-NACA0012 wing profile
The first example is the Mach 3 flow around a bi-NACA0012 wing profile [15]

agard with zero angle of attack. The geometry of flow domain and the initial finite
element mesh, with 821 nodes and 1501 elements, are depicted in Figure 1.

Figure 2 presents comparison of the convergence process for three time
integration techniques — explicit, linear implicit (TG) and nonlinear implicit
(NLE). Test runs were performed on a single MIPS R10000 (180 MHz) processor

Figure 1. Initial mesh and flow domain for bi-NACA00I2 examples.

D
IF

F/
C

FL

26 K. Banas

Figure 2. Convergence fo r flow around a bi-NACA0012 profile — initial mesh

(DIFF/CFL = maxN]N
CFL)■

Figure 3. Mach number contours fo r Mach 3 flow around bi-NACA0012 profile — initial mesh.

A Paralel Adaptive Code for Compressible Navier-Stokes Simulations 27

of Silicon Graphics Origin 200 computer (-100MFLOPS, SPECfpbase95 = 14.4).
For each algorithm different values of CFL parameter were used. For explicit and
implicit integration CFL was constant and equal to 0.4 and 1.5 respectively. These
values were the biggest for which the algorithms remained stable. For the nonlinear
(backward Euler) method adaptive strategy based on using two iterations of the
inexact Newton method per time step and keeping (by the proper choice of CFL
number) the convergence rate close to 0.5 was applied. The maximal CFL value
obtained in this example was equal to 512. For all iterations the maximum norm of
density changes at all finite element nodes was used to measure the error.

The solution obtained on the initial mesh is shown in Figure 3 in the form of
Mach number contours.

After convergence the mesh is adapted using the value of the error indicator
e equal to 10 and computations performed on adapted mesh depicted in Figure 4.
For further meshes we report results only for the most efficient nonlinear implicit
algorithm.

For parallel computations meshes are divided into a number of subdomains,
equal to the number of processors in the simulation. Different strategies of mesh
partition can be used and we show in Figure 5 four example divisions of the mesh
from Figure 4 into eight submeshes.

Figure 4. First adapted mesh fo r bi-NACAOOl 2 simulations.

28 K. Banas

a) vertical subdomains a) horizontal subdomains

a) square subdomains a) oval subdomains

Figure 5. Different mesh partitions fo r bi-NACA0012 mesh with one level o f refinement.

They correspond to strategies of creating: vertical, horizontal, square or oval
subdomains respectively. In each case it was assumed that processors are of the
same computational power so the subdomains should be of the same size (measured
by the number of nodes) for the best load balance. However, due to the existence of
the overlap between subdomains (white regions in Figure 5) different strategies
resulted in different average numbers of nodes in subdomains: vertical — 428,
horizontal — 437, square — 389, oval — 387. A smaller number of nodes indicates
shorter length of intersubdomain boundary (again measured in number of nodes)
and, in consequence, less interprocessor communication. In all simulations we used
decomposition into oval subdomains, default in the code.

A Paralel Adaptive Code for Compressible Navier-Stokes Simulations 29

The procedure of mesh adaptation can be repeated several times. For each
mesh, the computations are continued until a steady state is reached. Mesh partition
and patch creation is performed only once for each mesh. Table 4.1 and Figure 6
show parallel performance of the code for the third refined mesh with 21515 nodes
and 45814 elements.

Table 4.1 Averaged results fo r one time step parallel computations on the mesh with 21515 nodes for
an HP Exemplar SPP1600 computer.

No. processors Execution time Speed up Efficiency

1 (1 node) 112.97

2 (1 node) 57.98 1.95 97.5%

4 (1 node) 29.56 3.82 95.5%

4 (2 nodes) 30.91 3.65 91.5%

8 (2 nodes) 16.23 6.96 87%

12 (3 nodes) 10.88 10.38 86.5%

16 (4 nodes) 8.91 12.68 79%

Figure 6. Parallel speedup on the mesh with 21515 nodes fo r an HP Exemplar SPP1600 computer.

30 K. Banas

The table presents execution times, speedup and efficiency for different number
of processors used. The results correspond to one time step computations and are
obtained by averaging over the whole simulation. Speedup is defined as the ratio of
the sequential execution time to the parallel execution time and efficiency
(expressed in percentage) as the ratio of speedup to the number of processors.
We do not take into account changes in GMRES or Newton convergence resulting
from parallelization of the algorithm (negligible in all cases), so the efficiency
represents only the efficiency of numerical implementation. The reported results
were obtained on an HP Exemplar SPP1600 multiprocessor system in a dedicated
mode. HP Exemplar SPP1600 has a modular architecture and consists of a certain
number of computational nodes, each of which comprises 8 processors. When
computations are performed on one node, only the local node memory is used,
when more nodes are used the use of slower global memory is necessary. For the
purpose of comparison processors worked in a dedicated mode, however, buses
were shared with other users, which affected the overall performance and made it
random within the range of several percents. The sensitivity of the algorithm to
interprocessor communication speed can be visible for two cases with four
processors. The use of two computational nodes with slower inter-node
communication decreased the efficiency of computations by 4%.

The results for the final for this example fifth refined mesh with 102822 nodes
and 238812 elements are shown in Figure 7 and Figure 8. Figure 7 presents a detail
of the mesh near the trailing edge and Figure 8 shows the final Mach number
contours obtained in that simulation.

Figure 7. Detail o f the fifth adapted mesh fo r bi-NACAOOl 2 simulations.

A Paralel Adaptive Code for Compressible Navier-Stokes Simulations 31

MIN = .017710472 MAX = 3.48S369780 INCR. = .IOOOCOOOO

Figure 8. Mach number contours for Mach 3 flow around bi-NACAOOl 2 profile — mesh
with five levels o f refinement.

4.2 Viscous flow over a flat plate
The next example is a viscous flow with Mach number 3 and Reynolds number

1000 over a flat plate. The definition of the problem is shown in Figure 9. Figure 10
depicts the initial mesh and Figure 11 presents density contours obtained on that
mesh.

The strategy of refining the mesh and converging the solution to the steady state
is repeated three times. The convergence on four consecutive meshes for the
nonlinear algorithm is presented in Figure 12.

Figure 13 depicts the final mesh, density contours obtained on it are shown in
Figure 14.

For the last mesh with 14262 nodes and 30771 elements Table 4.2 shows the
performance for parallel execution on F1P Exemplar SPP1600 computer. The graph
of obtained speedup is shown in Figure 15.

32 K. Banas

Figure 9. Flat plate problem — geometry and definition.

Figure 10. Flat plate problem - initial mesh.

D1
FF

/C
FL

A Paralel Adaptive Code for Compressible Navier-Stokes Simulations 33

MIN = .514989934 MAX= 2.045 U 0036 INCR. = .050000000

Figure 11. Flat plate problem — Mach number contours on the initial mesh.

Figure 12. Convergence for flow over a flat plate on four consecutive adapted meshes.

Figure 13. Flat plate problem
mesh with three levels o f refinement

Figure 14. Flat plate problem Mac mmber co m rl ^ ̂ ^
o f refinement.

A Paralel Adaptive Code for Compressible Navier-Stokes Simulations 35

Table 4.2 Averaged results fo r one time step parallel computations on the mesh with 14262 nodes for
an HP Exemplar SPP1600 computer.

No. processors Execution time Speed up Efficiency

1 (1 node) 73.64

2 (1 node) 37.98 1.94 97%

4 (1 node) 19.73 3.73 93%

4 (2 nodes) 20.37 3.62 90.5%

8 (2 nodes) 10.40 7.08 88.5%

12 (3 nodes) 7.26 10.15 84.5%

16 (4 nodes) 5.53 13.31 83%

2 4 6 8 10 12 14 16
Number of processors

Figure 15. Parallel speedup on the mesh with 14262 nodes for an HP Exemplar SPPI600 computer.

5. Conclusions
The presented finite element code allows for efficient large scale parallel

simulations of compressible flows. Still there is a room for further improvement.
On the algorithmic side turbulence modeling has to be included, as well as special

36 K. Banas

error estimates for boundary layers. Finite element techniques will be extended by
including hybrid adaptive meshes, with triangular and quadrilateral elements
combined together, and anisotropic refinements, especially in boundary layers.
Further work will also include the development of iterative solvers operating on
hierarchical multi-level grids for better convergence. The described code forms a
basis for this future development, in the form of the data structure, basic finite
elements techniques including adaptivity, parallel linear equations solvers and
algorithms for approximating the compressible Navier-Stokes equations.

Acknowledgment
The support of this work by the Polish Committee for Scientific Research under

Grant 8 T11F 003 12 is gratefully acknowledged.

References
[1] Flirsch C., Numerical Computation o f Internal and External Flows, Wiley, Chichester,

1988
[2] Hansbo P., Explicit Streamline Diffusion Finite Element Methods fo r the Compressible

Euler Equations in Conservation Variables, Journal o f Computational Physics, 109,
274-288, (1993)

[3] Brooks A. N., Hughes T. J. R., Streamline upwind/Petrov-Galerkin formulations fo r
convection dominated flows wuth the particular emphasis on the incompressible
Navier-Stokes equations, Com puter Methods in Applied M echanics and Engineering,
32, 199-259, (1982)

[4] Carette J. C., Deconinck H., Paillere H., Roe P. L., M ultidimensional upwinding: its
relation to finite elements, International Journal for Numerical M ethods in
Engineering, 20, 935-955, (1995)

[5] Shakib F., Hughes T. J. R., Johan Z., A new finite element formulation fo r
computational flu id dynamics: X. The compressible Euler and Navier-Stokes
equations, Com puter M ethods in Applied Mechanics and Engineering, 89, 141-219,
(1991)

[6] Banas K., Demkowicz L., Entropy controlled adaptive finite element simulations fo r
compressible gas flow. Journal o f Computational Physics, 126, 181-201, (1996)

[7] Saad Y., Schultz M., GMRES: a generalized minimal residual algorithm fo r solving
nonsymmetric linear systems, SIAM Journal o f Scientific and Statistical Computing,
7, 856-869, (1986)

[8] LeTallec R, Domain decomposition method in computational mechanics,
Computational M echanics Advances, J.T.Oden ed., North Holland, Amsterdam, 1994

[9] Banas K., Plazek J., Dynamic load balancing fo r the preconditioned GMRES solver in
a parallel, adaptive finite element Euler code, in Proceedings o f the Third
ECCOM AS Computational Fluid Dynamics Conference, 9 -13 September 1996, Paris,
France, eds., J.-A. Desideri, C.Hirsch, P.Le Tallec, M .Pandolfi, and J.Periaux, pp.
1025-1031, Chichester, (1996), Wiley

[10] Hansbo P., Johnson C., Adaptive streamline diffusion method for compressible f o w
using conseivation variables, Com puter M ethods in Applied M echanics and
Engineering, 87, 267-280, (1991)

A Para/el Adaptive Code for Compressible Navier-Stokes Simulations 37

[11] Eriksson K., Johnson C., Adaptive streamline diffusion finite element methods fo r
stationary convection diffusion problems, M athematics o f Com putation, 60, 167-188,
(1993)

[12] Demkowicz L., Oden J. T., Rachowicz W., Hardy O., Towards a universal rm h-p
adaptive finite element strategy, Part. 1 Constrained approxim ation and data structure,
Computer M ethods in Applied M echanics and Engineering, 77, 79-112, (1989)

[13] Banas K., Plazek J., Parallel h-adaptive simulations o f inviscid flows by the finite
element method, M echanika Teoretyczna i Stosowana, 35, 249-262, (1997)

[14] Plazek J., Banas K., Kitowski J., Boryczko K., Exploiting two-level parallelism in
FEM applications, in Proceedings o f the International Conference on High
Performance Com puting and Networking, Vien, Austria, April 1997, eds.,
B. Hertzberger and P. Sloot, pp. 272-281, Springer

[15] Dervieux A., v.Leer B., Periaux J., Rizzi A. (eds.), Numerical simulation o f
compressible Euler flows, Vieweg, Braunschweig, 1989

