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Abstract: This study presents numerical methods of solving operator eigenproblems, focusing on their 
applications in electromagnetics. The discussion concentrates on the analysis of new iterative algorithms 
or modifications of the existing ones, which are capable of finding a few eigenvalues from the point 
spectrum of a non-symmetric operator. The salient feature of the considered methods is a low 
computational cost and memory complexity as compared to alternative solutions. This paper also presents 
implementations of the investigated algorithms in parallel distributed memory systems, based on the 
message-passing parallel programming model and providing portable parallel eigensolvers. The 
discussion of the applied designs of the parallel algorithms is supported by the presentation of the results 
of performance tests in selected distributed memory environments, including scalable parallel 
supercomputer systems and networks of workstations. The results of these tests confirm high efficiency 
of the eigensolvers in the considered parallel environments. In this study attention is also drawn to the 
question of the applicability of the eigensolvers to problems of modelling of electromagnetic fields in 
dielectric waveguides. The results of numerical tests validating the methods in these applications 
determine the scope of problems which may be most effectively solved using the specific eigensolvers.
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1. Introduction

1.1 Motivation and background
The rapid development of the methods of functional analysis has brought about 

important changes in the mathematical treatment of a huge number of both 
theoretical and engineering problems from various disciplines of science. With 
revolutionary changes occurring in physics, related in general to the success of 
wave mechanics and the theory of quanta, the operator formalism has gained very 
special importance. Solving operator eigenproblems, i.e. finding eigenvalues and 
eigenfunctions of given operators and investigating spectral properties of entire 
classes of operators have become a central issue addressed by the mathematical 
physics. The classical eigenproblems formulated in physics, such as the famous 1

1 This paper is entirely based on the author’s M. Sc. Thesis
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Schrodinger equation, have served to solve numerous problems including e.g. finding 
eigenfrequencies of the electron waves in an atom or determining energy 
eigenstates in various quantum systems. The extremely dynamic progress in the 
mathematical methods of theoretical physics has resulted in adopting the operator 
formalism to many scientific fields beyond quantum physics, including classical 
optics, solid state physics and the theory of electromagnetic field. Throughout the 
years the mathematical formulations involving integral or differential operator 
equations and eigenproblems have become dominant in such disciplines as the 
theory of optical resonators and lasers or the theory of guided electromagnetic 
waves ([1], [2]) and have served to solve such problems as investigating 
fluctuations of amplitude of laser oscillations or describing modes of 
electromagnetic field in dielectric waveguides.

Application of the operator formalism in a broad spectrum of research areas of 
science and engineering has generated the necessity of further intensive 
developments in the methods of solving operator eigenproblems. It has turned out 
that the analytical methods of operator calculus, which were initially most widely 
used, are capable of dealing only with the simplest systems and operators. 
Consequently the growing need for solving more complex problems formulated in 
terms of operator equations has resulted in the development of approximate, 
numerical methods of functional analysis.

Several classical techniques, including variational calculus [3] or basic iterative 
methods, have been investigated and successfully applied to various operator 
problems. Soon, a clear division in the development of approximate methods of 
functional analysis has emerged, related to investigation of either methods valid for 
general linear operators or methods which could only be applied to finite- 
dimensional linear operators, namely the numerical methods of linear algebra.

The latter research area has gained a very special importance with the advent of 
computers, which enabled one to model physical systems of an unprecedented scale 
of complexity. A very large number of novel numerical algorithms of solving 
eigenproblems for finite-dimensional linear operators (matrix operators) have been 
developed. At the same time many classical approaches toward solving 
eigenproblems for matrix operators had to be rejected or at least revised due to the 
problems with their application in computer-based calculations, related e.g. to the 
numerical instability of the algorithms which was causing unacceptable 
accumulation of errors while using floating-point arithmetics. Still, by the mid
eighties, the developments in scientific computing enabled one to solve routinely 
matrix operator eigenproblems of order a hundred or, at most, a few hundreds using 
available algorithms and hardware platforms. At the same time the efforts to 
standardize the linear algebra computer algorithms were undertaken and resulted in 
the development of portable libraries of subroutines, such as E1SPACK (the 
package of Fortran77 routines for solving symmetric and non-symmetric matrix 
operator eigenproblems), BLAS (Basic Linear Algebra Subprograms) or LAPACK 
(Linear Algebra Package), providing very efficient implementations of various
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algorithms from numerical linear algebra. This successful standardization has 
greatly contributed to broadening application of the numerical methods of linear 
algebra in scientific modelling and popularization of computer modelling in 
general.

The success of the numerical methods of linear algebra applied to solving 
eigenproblems of finite-dimensional linear operators has caused a rapid 
development of strategies or techr iques of discretization (finite-dimensional 
mapping) of infinite-dimensional linear operators. In this way the methods of 
numerical linear algebra could have been applied to solving eigenproblems for 
a much broader class of operators, including e.g. all integral and differential 
operators playing a crucial role in many scientific and engineering applications. 
While investigating the finite-dimensional mapping methods several problems had 
to be taken into account, including quality of the approximation of a given infinite- 
-dimensional linear operator by a finite matrix operator and the cost of the applied 
finite representation. The issues directly related to the cost of this representation 
are: 1) the size of the problem for the emerging finite-dimensional operator and 2) 
the characteristics of the representation which often determines a method to be 
applied to solve the discrete problem. The problem of finding efficient, cost 
reducing fir .te-dimensional mapping strategies for certain operators or classes of 
operators is continually one of the most up-to-date problems in modern scientific 
computing and has a colossal impact on the scope of possible applications of the 
specific numerical algorithms to solving operator eigenproblems.

The introduction of parallel, multiprocessor computer architectures in the recent 
years has caused another revolution in scientific computing, affecting also the 
approach towards numerical solving of operator and matrix eigenproblems. The 
computational power of multiprocessor systems, especially scalable parallel 
distributed memory systems, offering now the peak performance of order of 
gigaflops or even terafiops could have been efficiently exploited only if the 
algorithms had made use of the characteristics of these systems and had taken into 
account various additional design problems. These additional problems which have 
been found to have a substantial impact on the efficiency of an algorithm executed 
in a parallel environment refer mainly to balancing the workload and minimizing 
data interchange across a large number of processors. In order to deal with these 
issues many existing sequential algorithms have had to be redesigned and many 
new, inherently parallel methods have had to be introduced. In this way designing 
parallel algorithms which could be efficiently unplemented in scalable parallel 
systems has become one of extremely important and challenging issues, making 
numerical methods once again a field of intensive research.

In the mainstream of the current research efforts aiming at designing more 
efficient (parallel) numerical algorithms one may encounter the dynamically 
developing field of computational electromagnetics which deals with numerical 
techniques suitable for electromagnetic applications. This research field has 
emerged as a response to growing computational needs generated by the
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electromagnetic community and related to modelling more complex 
electromagnetic systems. Moreover computational electromagnetics has started to 
address issues in numerical modelling requiring application of non-standard 
numerical tools and methods which resulted in developing specialized versions 
of general algorithms e.g. for solving operator eigenproblems. An overview of 
currently investigated methods of computational electromagnetics applied to 
problems of modelling electromagnetic fields in waveguiding structures may 
be found in [4], Different approaches towards computational problems of 
electromagnetics aiming at decreasing the numerical cost and memory complexity 
of the algorithms are presented in the quoted paper and include e.g. finding more 
efficient, cost reducing finite-dimensional mapping strategies for the investigated 
systems and operators or developing parallel solvers for the considered 
electromagnetic problems.

1.2 Scope and goal o f this work
This study tries to join the mainstream of current investigations in the fields of 

computational electromagnetics and numerical methods. The approach towards 
designing numerical algorithms presented in this work concentrates on choosing 
cost-efficient solutions which offer low computational cost and storage 
requirements as compared to orthodox algorithms. Consequently, the priority is 
given to iterative methods and finite-dimensional mapping techniques which 
provide most efficient schemes of solving operator eigenproblems. Although the 
reduction in computational cost is often achieved at a price of lipiting generality of 
the proposed algorithms, the designs presented in this study try to remain suitable 
for solving relatively broad classes of computational problems. An important 
approach towards reducing computation time, also widely discussed in this study, -s 
the strategy of parallelization, which aims at obtaining scalable algorithms, In this 
context another main point addressed within this study clearly emerges, i.e. 
designing algorithms suitable for solving large-scale operator eigenproblems.

Having briefly presented basic ideas and approaches applied in this study let us 
now outline its scope. This work focuses on a class of ; erative algorithms capable 
of finding one or several eigenvalues from the point spectrum of a non-symmetric 
linear operator. The iterative algorithms have been selected so that they can be 
applied to large-scale problems, with matrices cf the order of thousands or more, as 
opposed to the methods based solely on matrix transformations (direct methods) 
whose applicability is limited to relatively small problems. Moreover, in most of the 
scientific or engineering problems it is necessary to find only one or a few 
eigenvalues e.g. those with the largest real part or the largest modulus, rather than 
the entire point spectrum of the operator. In this context the iterative methods seem 
to be the only suitable tool

Another aspect of sob ;ng operator eigenproblems lying within the scope of this 
work is the question of finite-dimensional mapping o r infinite-d'mensional operators. 
Although the solutions presented in this work are general and may be applied to 
operators with different domains, special attention is dedicated to problems involving
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two-dimensional fields. The main reason for this choice is that these functions have 
an application in the modelling of electromagnetic waveguiding structures, being of 
the author’s particular interest. Moreover, the non-symmetric operators and 
eigenproblems appearing in the theory of electromagnetic fields and waveguides 
have served as main examples used to validate the presented algorithms.

Last but not least, the implementor’s point of view has also been thoroughly 
discussed in tl :s work with the central question of the design of parallel algorithms, 
considered jointly with selected programming paradigms and system architectures. 
The work has focused on distributed memory parallel systems which, due to the 
scalability of the architecture, seem to be best suited for “grand challenge” 
computational problems requiring the largest available memory and processing 
resources. Although the major attention is dedicated to massively parallel 
processing with parallel supercomputers, some consideration is also given to “poor 
man’s’ supercomputers” , namely the networks of workstations in order to discuss 
the portability of both designs and implementations of the parallel solvers. 
Referring to programming paradigms, this study concentrates on the most popular 
one — the message-passing programming model, offering both greatest versatility 
in parallel design as well as high performance.

With the scope of interest presented above the following main goals of this 
work clearly emerge:

— Present iterative methods which can be used to solve eigenproblems for a general 
class of non-symmetric linear operators and discuss the role of some original 
modifications of these methods.

— Propose discretization schemes for infinite-dimensional operators, with a special 
attention paid to differential operators arising in electromagnetics.

— Present some new methods of solving operator eigenproblems based on the 
discussed iterative processes and d' cretization strategies and highlight their 
advantages and limitations.

— Desci ioe the parallel designs of the presented methods and discuss their 
applica'oi’’ty in distributed memory parallel systems.

— Investigate the aspects of numerical complexity of the algorithms and their 
efficiency in given parallel environments.

— Validate the algorithms by showing their application to solving boundary value 
problems arsing in the theory of electromagnet c waves and assess the scope 
of problems which may be most effectively solved using the specific 
eigensolvers.

1,3 Section outline
This work starts with an introduction (in Section 2) of some basic concepts 

concerning operator eigenproblems and presentation of operators arising in selected 
electromagnetic applications, followed by the description of the two iterative
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algorithms of solving operator eigenproblems. The description of the algorithms is 
based on the papers by Sorensen [11], Jabtohski [16], [17] and Mrozowski [181 
The author’s extensions to the presented algoiithms involve describing deflation 
procedures in the Iterative Eigenfunction Expansion Method and discussing matrix 
formulation for this method (Appendix A). Section 3 presents methods of 
discretization of infinite-dimensional linear operators, based on the Finite 
Difference technique and the Method of Moments representation. The discussed 
design of the fast method of calculating inner product for the operators and 
functions applying the Method of Moments representation has been first proposed 
by Mrozowski [18]. This section also presents the two-dimensional analogues of 
theorems published in a book by Briggs and Henson [33] and concerning estimation 
of numerical errors in calculation of Fourier coefficients using the Discrete Fourier 
Transform. Section 4 presents a general discussion of issues concerning 
programming aspects in distributed memory systems, bused on the material from 
a book by Foster [29], Section 5 concentrates on describing original parallel designs 
and / or implementations of the algorithms of solving operator eigenproblems. Also 
a complete description of a new eigensolver (based on the IRAM algorithm and 
implicit representation of the input operator) is given. Section 6 discusses 
application of the previously described eigensolvers to the problems of modelling 
dielectric waveguides with arbitrary permittivity profiles and shows the results of 
tests validating the algorithms. It also presents an original modification of the 
eigensolver using implicit representation of the input operator, which extends its 
applicability to modelling dielectric waveguides with discontinuous, rectangular 
permittivity profiles. Section 7 presents a collection of the results of performance 
tests in selected parallel distributed memory systems which concludes the analysis 
of the proposed parallel eigensolvers, confirming their high efficiency and 
scalability in these environments,

2. Algorithms of solving matrix and operator eigenproblems
This begins with presenting some concepts related to operator eigenproblems 

and describing briefly eigenvalue problems arising in electromagnetics. Later on 
selected methods of solving operator eigenproblems are discussed. The 
considerations concentrate on the mein points of the algorithms putting aside to the 
following sections the questions referring to specific features of the operators and 
their domains, be they finite- or infinite-dimen; ioflal.

2.1 Operator cii'enproblems —  basic concepts
Given a normed complete linear space (Banach space) X  with complex scalars 

and a bounded linear operator A e B(X, X) the eigenproblem (eigenvalue or spectral 
problem) of this operator is defined by the equation:

Av = Av (1)

where A e C is in eigenvalue and 0 * v € X  is a corresponding eigenfunction 
(right eigenfunction) of the operator A. If A is a finite-dimensional space, the
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linear operator A may be represented in the form of a matrix. In this case its 
eigenfunctions are most frequently called eigenvectors.

If a scalar product ((•, •): X  x X C )  is defined in the space X, then A becomes 
a Hilbert space and an adjo it operator A* may be associated with the initial 
operator A. By definition the operator A* satisfies the following condition:

V.VEA'V>e*'jtA-V,>’) = ( ^ A*v) (2)

If A = A* then the operator A is called self-adjoint (symmetric). It may easily 
be found that if the operator A is symmetric (self-adjoint) then all its eigenvalues 
are real. Correspondingly, if the operator is non-symmetric (non-self adjoint) its 
point spectrum ap (the set of its eigenvalues) may contain complex values.

The following eigenproblem may be associated with the operator A*:

A*v = Av (3)

The functions v are called left eigenfunctions of the operator A, as opposed to 
its right eigenfunctions, defined in equation (1). An important relation joins the 
point ap of the operators A and A*:

(a )=  {il*: A e o> ( a )} (4)

Moreover the left and right eigenfunctions satisfy the following orthogonality 
relation:

(A ,.-A /)(v,.,vy) = °  (5)

As it is seen, unless A( = X* , the left and right eigenfunctions of an operator are 

orthogonal.

2.2 Operator eigenproblems in electromagnetics
Having described some basic issues concerning operator eigenproblems let us 

now turn to a brief presentation of the operators arising in electromagnetics. These 
operators will also be discussed in Section 6 which concentrates on validation of 
the proposed algorithms of solving operator fgenproblems in electromagnetic- 
applications.

Operator eigenproblems are found in various research areas of computational 
electromagnetics, including the theory of electromagnetic waveguides being of the 
author’s particular interest. Let us consider a dielectric waveguide, shown in 
Figure 1 which is homogeneous in the z direction and has an arbitrary electrical 
permittivity profile Figure 1 which is homogeneous in the z direction and has an 
arbitrary electrical permittivity profile s(x ,y )  in its cross-section ( x - y  plane). The 
transverse magnetic field in this structure may be modelled by the following 
equation derived from the Maxwell’s equations:

V 2t H t + kle (x ,y )m t + - J —e[v,e(ac,^)x(v, x //,)]=  p 2H, 
e(x ,y) (6)
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Figure 1. Schematic o f a dielectric waveguide, homogeneous in the :  direction and having 
an arbitrary' permittivity profile £ (x, y) in the x - y  plane.

k0 is the wavenumber in the free space, s(x, v) is the permittivity profile in the 
x - y  plane and /3 is a propagation constant.

The computational problem which arises at this point is finding the propagation 
constant and the form of the transverse magnetic field. In mathematical terms this 
problem may be viewed as an eigenproblem of the linear operator T:

with the transverse magnetic field Ht as an eigenfunction and / l 2 as an 
eigenvalue to be found. It may be noticed that the operator T is a non-symmetric 
vector operator. If the term involving partial derivatives of the permittivity profile

is leaved out one obtains the following scalar non-symmetric operator T :

The eigenproblem of the above operator provides a simplified model of the 
waveguiding structure presented in Figure 1.

As it may be seen from the above description, the right eigenfunctions of the

considered operator T (or T ) have got a well-defined physical meaning as they 
describe the transverse magnetic field in a dielectric waveguide. The question is

whether the left eigenfunctions of the operator T ( T ) may also be described in 
some physical terms. The main problem which has to be solved at this point is

deriving an adjoint operator T* (T  *) and an associated eigenproblem. This issue is 
broadly discussed in a report by Przybyszewski et al. [5], The results show that the

left eigenfunctions of the operator T ( T ) are given by the formula:

i, x E, = (- Ey,E X), where E , = (e  y , E x ,o )  is the transverse electric field and f

where V2(-) = — ,—
,w  [dx 8y

j{ \H ,= (H x( x ,y \H y{x ,y^ is the transverse magnetic field,

(7)

( 8)
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is a unit vector in the z direction. The most important consequence of the fact that 
the left eigenfunction of the operator T is described by the electric field in 
a waveguide is that this left eigenfunction may be derived directly from the right 
eigenfunction without the necessity of solving an adjoint operator eigenproblem. 
This may be achieved by using the following formulas derived from the Maxwell’s 
equations:

where p0 is the permeability of the free space, £0 is the permittivity of the free 
space and other symbol have the same meaning as above.The fact that the left 
eigenfunctions may be so easily derived from right eigenfunctions for the 
considered operator T will be applied in the algorithm described in Section 5.5, 
which uses both eigenfunctions during its iterative process.

2.3 Overview o f the algorithms o f solving operator eigenproblems
Having presented basic concepts concerning eigenproblems and their 

applications in electromagnetics, ir this section we shall b^'efly outline different 
approaches towards numerical solving of operator eigenproblems before discussing 
in detail two algorithms being the main object of this study.

We shall start this overview with iterative methods of solving operator 
eigenproblems which currently prov’de the only efficient strategy for finding 
eigenvalues in large-scale eigenproblems. The first method to be mentioned is 
a very well known Power Method (the simple iterate n method) [6] which is not 
only the simplest but also the most important iterative algorithm for solving 
operator eigenproblems due to its numerous implications for modem iterative 
eigensolvers. The numerical methods being the main subject this study originate 
precisely in the Power Method which serves as a basis for the iterative processes. 
Given the operator A the steps of the basic version of the Power Method are given 
as follows:

ALGORITHM 1: The Power Method.

STEP 0: Choose an initial function v( such that ||vj| = 1, assume k = 1.
STEP 1: Iterate:

STEP l.l: Calculate w< = Av,.k+1 k
STEP 1.2: Normalize: vkH = wkJ\\w kf \ .
STEP 1.3: k : = k+  1.

The main feature of the above method is that t converges to the eigenfunction 
corresponding to the dominant eigenvalue (the eigenvalue with the largest modulus) 
of the operator A. In the case of a symmetr y operator A with its eigenfunctions

(9)

(10)
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forming an orthonormal basis in the operator’s domain it is easy to show (cf. [7]) that

II A* v, |
lim n . ■ j, =  lim||A va_, || =  |/ lmax | n n
k A v, * v 7

where A.max is the dominant eigenvalue of the operator A. The other important 
feature of the above algorithm is that the information on the operator A is passed 
to the iterative process only via the Avt operation which allows one to apply any 
kind of implicit representation of the input operator. The main drawback of the 
above simple method is that it is able to find only a single, dominant eigenvalue 
and eigenfunction of the operator. Still, the functionality of this algorithm may be 
extended if deflation and shifting techniques are applied within the iterative 
process [6] allowing one to find other eigenvalues of the input operator.

Another important aspect of the Power Method is that during the iterative 
process a Krylov subspace Km is being constructed:

K m =Span {vl,Av1,.. . ,A ffl- |v1} (12)

At this point it should be noted that the Power Method exploits only the last two 
functions from the basis of the Krylov subspace K  shown above. This fact 
provided a basis for the development of the iterative subspace methods which 
exploit the whole Krylov subspace in order to ach'eve quicker convergence than in 
the Power Method. These algorithms, which may be used to solve eigenproblems 
both for infinite-dimensional linear operators and finite-dimensional matrix 
operators, are currently the most dynamically developing field of research in 
numerical analysis. The most representative examples of modem iterative subspace 
methods are the Lanczos method (for symmetric operators), the Amoldi method 
(non-symmetric case) or the Davidson algorithm ([8]) (originally designed for 
symmetric matrices). In these highly effective methods the problem, defined usually 
for a sparse or structured matrix operator of very large dimension, is reduced to 
a much smaller dense matrix operator problem. This smaller problem may then be 
solved by any of the standard techniques used for dense matrix operators. Due to 
the structure of the three mentioned algorithms they are normally used to find 
several eigenvalues from a spectrum of a given operator. Another numerical method 
which to a certain extent contains the Power Method is the Iterative Eigenfunction 
Expansion Method (IEEM) (described in detail in one of the following sections) 
which may be used to solve non-symmetric operator and matrix eigenproblems.

Apart from the algorithms which are capable of solving eigenproblems for 
general symmetr : or non-symmetric iinear operators, a huge number of algorithms 
designed to deal with matrix operators have been developed, contributing to a rapid 
progress in the numerical linear algebra. Historically the development of the 
methods of solving matrix eigenproblems starts with symmetric eigenproblems. 
One of the first algorithms dealing with symmetric matrices was the Jacobi method 
that used orthogonal matrix transformations to find eigenvalues and eigenvectors.
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This classical algorithm was gradually replaced in applications by other techniques 
e.g. Householder reduction and, above all, by the QR method [6], The above 
methods are still common in many applications as they are able to find all the 
eigenvalues of a given matrix. Nevertheless, the relatively high numerical cost 
which reaches roughly 0{nl) computations significantly reduces the size of the 
problem which may be solved by these algorithms using available computer 
systems. The quest for finding mere efficient algorithms solving matrix eigenvalue 
problems caused the development of more specialized methods aimed at solving 
problems for either dense or sparse, symmetric or non-symmetric matrices as well 
as banded and highly regular matrix operators. Broad presentations of the 
algorithms used to solve matrix eigenproblems may be found in the book by Saad 
9] (especially sparse matrices) or the book by Golub and van Loan [6],

2.4 The Arnoldi method

This section presents the Arnoldi method which belongs to a class of iterative 
subspace algorithms capable of approximating a few eigenvalues and the 
corresponding eigenvectors of a general square matrix. In a classical approach 
([10]) the applicability of this technique was strongly limited due to a potentially 
unbounded growth in storage as well as the lack of numerical stability of the 
iterative process resulting e.g. in a loss of orthogonality of the eigenvectors. These 
problems have been successfully solved by Sorensen [11] who proposed 
a modification of the initial Arnoldi algorithm called the Implicitly Restarted 
Arnoldi Method (IRAM). Exploiting the analogy between the Arnoldi process and 
the QR iteration the IRAM provides an iterative scheme which has a fixed memory 
complexity if the number of eigenvalues to be sought is pre-specified. The other 
advantage of the method is that it preserves the orthogonality of the Arnoldi basis in 
the Krylov subspace (compare the previous section) if the number of the 
eigenvalues to be found is not too large.

The Implicitly Restarted Arnoldi Method was found to be a highly efficient tool 
for solving eigenproblems, capable of reducing both storage requirements and the 
computation time for a very wide class of large structured non-symmetric matrices . 
in different fields of applications, (cf. [12], [13]) The problem which was found to 
occur with the IRAM (presented later on in the work) is the significant increment in 
the number of update iterations with the increasing size of the input matrix.

2.4.1 The Arnoldi factorization

In the approach proposed by Sorensen ([11]) the Arnoldi factorization may be

treated as a truncated reduction of a given square matrix A to a form of an upper
Hessenberg matrix. This operation is performed in an iterative process and the Ar-th 
step of the factorization may be described by the following formula (cf. [6]):

A V k = V k Vk + f k ekT ( 13)
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where

A is the input n x n matrix,

Hk is a k x k upper Hessenberg matrix (k < n),

Vk is an n x k matrix whose columns are Amoldi vectors,

fk_ is a residual vector of size n, satisfying the relation _ fk_= 0.

The idea of Amoldi factorization is illustrated in Figure 2. From equation (13) it 
may been noticed that the process is a truncation of the complete reduction to the
Hessenberg form and if the vector h_ becomes zero the eigenvalues of the 

Hessenberg matrix will equal the eigenvalues of the given matrix A . The columns

of the matrix Vk = [v,,v2,...,vA] constructed in the Amoldi process form an 

orthonormal basis in the Krylov subspace Kk:

K k = Span jv, A_y, A 2 y ,. . . ,  A k-1 v j

where v e R" (v e C"). The basis {v.} k is formed in k iterations of the basic 
Amoldi algorithm, which may be implemented in a few ways, including the most 
common, known as the Amoldi Modified Gram Schmidt algorithm. The steps of 
this algorithm are given as follows (cf. [9]):

— +

A v k Vk H k f k ek
Figure 2. The schematic o f the Arnoldi factorization

ALGORITHM 2: Arnoldi-MGS.

. STEP 0: Choose an initial vector vx such that ||v | | ' = 1 
STEP 1: Iterate: For j  = 1,2, k do:

STEP 1.1: w := Avj

STEP 1.2: For i = 1,2, . . . , j  do:
STEP 1,2A: h.. = (vv, v),
STEP 1,2B: w = w -  h.. y.

STEP 1.3: hjA J = I|vv||2 
STEP 1.4: v. = w / h. , .-j+i — j*\.j

where h.. are the elements of the upper Hessenberg matrix / /  .
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It has to be noted that d u f 'g  the factorization process the information on the 

input matrix (A )  is passed to the algorithm only via the matrx-vector product

A v j . This is an extremely important feature since A does not have to be known 
explicitly.

2.4.2 Polynomial filters in the Arnoldi method

In the basic Arnoldi algorithm presented in the previous section two main 
problems appear. The first is an undefined number of iterations k necessary to 
obtain a desired accuracy of the eigenvalues (estimated by calculating the residual 
norm) which leads to unbounded memory complexity. This problem may be solved 
by restarting the iterative process after a given, fixed number of iterations with 
a suitably updated initial vector v [9], The other problem is forcing the algorithm to 
converge to the eigenvalue from the desired part of the matrix spectrum. This may 
be achieved by “filtering-ouf’ the “unwanted” eigenvalues at each restart of the 
algorithm using e.g. polynomial filtering, as proposed by Sorensen [14], In this 
technique, after initial k steps of the basic Arnold' algorithm, additional p  iterations 
are performed. Next, k + p eigenvalues are found as the eigenvalues of the upper

Hessenberg matrix (the Ritz values) and p  “unwanted” eigenvalues are then

being filtered out using the implicit shift algorithm with an appropriate filtering 
polynomial. The algorithm is then restarted with an updated initial vector v» and the 
subsequent p  basic Arnoldi iterations are being performed.

2.4.3 Numerical and memory> complexity o f the algorithm

As it has already been told in the previous sections, the Implicitly Restarted 
Amoldi Method (IRAM) demonstrates a fixed memory complexity. If the number 
of the eigenvalues to be found equals k, the number of additional eigenvalues to be 
computed is p  and the input matrix size is n then, denoting l = k+ p , the algorithm 
requires n ■ 0(l) + 0(F) storage. Lehoucq et al. suggest ([15]) that p  should equal 
k in order to obtain an efficient algorithm with good convergence rate. Then the 
memory complexity equals n ■ C(k) + 0(k2). If one keeps in mind that k is much 
smaller than n, it results that the IRAM itself requires very little storage. (Obviously

some extra storage may be required to perform the matrix-vector product A-v  
operation, but it should not exceed n2.)*

The numerical complexity may only be assessed for a single update ;n a p-step 
IRAM algorithm. If the cost of the matrix-vector product (step 1.1 of the 
factorization) is excluded then the complexity equals 0(p2n). If one assumes that

* Other authors [13] indicate that the choice p = k may not be the optimal one and propose 
a choice of the value of p as a function of the problem dimension n in order to obtain 
quicker convergence. In this case the theoretical complexity becomes a function of n, still 
in the applications presented in [13] it does not result in high memory requirements.
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p  = k(p  = 0(k)) then the numerical cost becomes of 0(k2ri). Once again, as the 
number of eigenvalues k to be found is normally much smaller than the problem 
size n, a linear complexity is obtained. Obviously the cost of the operation of 
matrix-vector product may be significantly higher, reaching 0(n2) in the worst case 
and result in a quadratic overall complexity. Still, as shown later in this work, this 
cost may be reduced if the matrix is sparse or does not have to be represented 
explicitly by all its elements.

2.5 The Iterative Eigenfunction Expansion Method
The Iterative Eigenfunction Expansion Method (IEEM) was first proposed in 

1986 by Jablonski [16], [17] and later improved by Mrozowski [18]. Originally it 
was presented and investigated as a method of solving eigenproblems for a certain 
class of differential operators being of special interest in the theory of 
electromagnetic waveguides. This section starts with the topic of the decomposition 
of a given input operator which is a main point of the IEEM. Later on, the original 
operator formulation is discussed and deflation techniques extending the 
functionality of the method are presented. The formulation of the method for finite- 
dimensional linear matrix operators whTh shows the relations between IEEM and 
the simple iteration method (the Power Method) is described in Appendix A.

2.5.1 Decomposition o f the operator

Given an operator T, defined over a certain Hilbert space X, it may be 
represented in a follow u g  form:

T =  L — F (14)

where the operator L is a symmetric (self-adjoint) operator with a discrete 
spectrum and its eigenvalues form an orthogonal basis in the given operator’s 
domain X. The above decomposition is known from the perturbation theory [19], 
with the operator F bung a “small” (in a sense of operator norm) perturbation of 
the operator L. However, in the itera.ive eigenfunction expansion method, the 
perturbation operator F does not have to be “small" but only relatively compact 
(in an appropriate domain) with respect to L. This relaxed assumption constitutes 
a significant generalization as compared to the classical perturbation technique, 
although, as proved by Jablonski irt [16], it is sufficient to construct an iterative 
process which converges to an eigenvalue of the operator T. Below the original 
operator formulation of the simple iterative process capable of finding a single 
eigenvalue of the input operator is described.

2.5.2 Operator formulation o f the iterative process

We start the description of IEEM with the formulation suitable for solving 
eigenproblems for general linear operators. In this original formulation which has 
been successfully applied to problems of electromagnetics (cf. [16], [17] and [18]) 
the concept of “eigenfunction expansion” clearly emerges.

Let us assume that the input operator T is decomposed as described in the
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previous section (cf. equation (14)). Given the sets of known eigenvalues of the 
operator L, denoted as {A.} and the corresponding eigenfunctions {h.} forming an 
orthonormal basis in the Hilbert space X, any function u from X may be expanded in 
terms of these functions:

U (15)
i

where f.  are the coefficients (Fourier coefficients) of the linear combination of 
{h.}. Denoting as A a certain eigenvalue of the operator T the following formula 
for the coefficients f.  may easily be derived:

(Fu.h,)
< ‘ 6)

where h. is an eigenfunction of the operator L corresponding to the eigenvalue A. 
and (•,•) denotes an inner product defined in the Hilbert space X. The above 
formula is a basis for the iterative process which may be defined as follows:

ALGORITHM 3: IEEM.

STEP 0: Choose an arbitrary initial function «(0) such that ||u(0)|| = 1, k = 0 
STEP 1: Compute A(0) from the Rayleigh quotient:

A(0) = (TW(0)y 0))
V ° v o))

STEP 2: Iterate:

STEP 2.1: y V ^ V i k
4 "  A; -A (*-‘)

STEP 2.2:
u{k) iil| |

STEP 2.3: Assuming u^  compute the Rayleigh quotient as:
j /

i i

STEP 2.4: k\= k+  1.

As already explained in the previous section, if the operator F is relatively 
compact with respect to L then the iterative process presented above converges to 
an eigenvalue of the operator T. main advantage of the above method is a very fast 
convergence rate. In electromagnetic applications it has been found [18] that IEEM 
provides a basis for an extremely efficient eigensolver, offering very fast
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convergence for an entire general class of differential operators investigated in this 
research area. Still, the main drawback of the original algorithm is that it may be 
used to find only one eigenvalue from the operator’s point spectrum. Moreover, this 
eigenvalue has not been identified within the spectrum of the input operator. In 
other words it is not known which eigenvalue is being found in the method. 
Nevertheless, although no rigorous proof exists for this fact, it was found that IEEM 
applied to eigenproblems arising in dielectric waveguide modelling converges to 
the fundamental mode in a waveguide, which is of particular interest in this 
application area (cf. [18]).

2.5.3 Deflation techniques

As already mentioned the original algorithm described in the previous section 
may be used to find a single eigenvalue of the input operator. In order to be able to 
find more than one eigenvalue of the operator certain modifications have to be 
introduced to the basic Iterative Eigenfunction Expansion Method. These include 
the deflation techniques, i.e. the methods of modifying the operator’s spectrum, so 
that the iterative process may converge to a different eigenvalue and the 
orthogonalization procedures assuring that the orthogonality is sustained between 
the appropriate left and light eigenfunctions (cf. equation (5)).

IVieland’s deflation. The most widely known techniques of modifying the 
spectrum are based on the Wieland’s deflation. Let {A.} = it (T) be the point 
spectrum of the operator T. Let A, and iq be an eigenpair of the operator T found 
by a certain iterative process. The deflation procedure can be used to modify the 
spectrum of the operator by replacing A, with another eigenvalue, e.g. A -  a, 
where a e C. This is done by modifying the operator itself:

where v is an arbitrary function such that (iq, v) = 1. The spectrum of the operator T is:

where A,, A2, A , ... are the eigenvalues of the operator T. Moreover, the 
eigenfunction iq and all the left eigenfunctions {wq}. of the operator T are

preserved as corresponding right and left eigenfunctions of the operator T . There 
are many possible choices for the function v, still the most popular ones are: 
1) v — tq. In this case the right eigenfunctions of the operator other than iq are not 
preserved; 2) v = uq. In this case the right eigenfunctions are preserved. Still, the 
disadvantage of this choice is that it is necessary to know the left eigenvector wq 
corresponding to the eigenvalue A ’ of the adjoint operator T*. The left 
eigenfunction may be found by either explicit solution of an adjoint eigenproblem 
or, at a lower cost, by exploring the foim of the operator and deriving left 
eigenfunctions directly from right eigenfunctions which is possible in some of the 
applications (compare Section 2.2).

Below we present the modified version of IEEM iteration assuming that

T(') = T(-)-m q(,v) (17)
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v = w..The algorithm is restarted after the subsequent eigenvalues are being found. 
If also assumed that 5 -  1 eigenvalues Ap A (with the corresponding right and 
left eigenfunctions {vp } and {wp ws_,}) have already been found the
k - th  step of the iteration may be described by the following steps:

ALGORITHM 4: IEEM-deflation.

STEP 1: Compute the eigenfunction approximation

"  --------------------------------------------T T F * -------------------------------

STEP 2: Normalize:

k

.(*) ;= u(*)

STEP 3: Compute eigenvalue approximation:

i i r=l

where n ̂  ^  fj-k 'lhi and ur = ^  /  r/z, for / = 1, (5 -  1).
i i

The main problem occurring within the procedure presented above is that at 
each restart of the algorithm the deflation term introduced to modify the operator’s 
spectrum contains a numerical error. This error is related to the approximation of 
the eigenvalue, and, more importantly, to the approximation of the right and left 
eigenfunctions. After the subsequent restarts the errors from all previous 
computations will accumulate in the modified operator and this can be disastrous if 
the currently computed eigenvalue is poorly conditioned. Another problem which 
may immediately be seen ,s the numerical cost and storage requirements growing 
after each restart of the algorithm. These two drawbacks limit the applications of 
this technique and make it a tool capable of finding only a few eigenvalues and 
eigenfunctions from the operator’s spectrum.

Orthogonal projections. In the previous section it has been noted that one of the 
key factors which limit the deflation technique is the error introduced by the 
approximations of right and left eigenfunctions (eigenvectors). This error 
demonstrates itself in the loss of orthogonality between right and left 
eigenfunctions. More precisely the right eigenfunction u ceases to be orthogonal 
to the left eigenfunctions tv,, ..., w

This fact suggests that introducing a re-orthogonalization phase to the iterative 
algorithm may result in a reduction of the numerical error and improvement in the 
stability of the iterative process. The orthogonalization may be performed using the
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modified Gram-Schmidt (MGS) algorithm [6] while calculating the subsequent 
approximation of the eigenfunction u[k). It should be noted that the 
orthogonalization may be performed every few iterations or even should not be 
performed at each iteration in order to allow the convergence of the method. At the 
same time it has to be stressed that the re-crthogonalization should be used jointly 
with the deflat;nn procedures. Otherv se the iterative process will not converge at 
all or will converge to the eigenvalue which has been found as a first one.

2.5.4 Numerical ami memory’ complexity o f the algorithm

If an input matrix operator of size n s considered, then the numerical cost of 
a single iteration of the IEEM consists of the following items: 1) The cost of 
calculating the approximation of the eigenvector — This cost equals O(n) if we

assume that the values of scalar products ( F irk l ,h l ) are known from the previous

iteration. 2) The cost of normalization — 0(/i) and 3) The cost of calculating the 
subsequent approximation of the eigenvalue — This cost is dominated by the

complexity of calculating the matrix-vector product F it, which may reach 0(rr) in
the worst case but may be significantly reduced (to 0(n log(n)) or 0(n)) for certain 
types of matrices (sparse or structured matrices) or if an implicit representation of 
the matrix is used.

As it is seen the computational complexity of a single iteration of the IEEM 
largely depends on the numerical cost of calculating the matrix-vector product for 
a given matrix operator and may range from O(n) to 0(n2).

The storage requirements of the Iterative Eigenfunction Expansion Method may 
be extremely low, although once again they depend primarily on the form of matrix, 
e.g. for sparse diagonal or banded matrices and/or highly regular matrices the 
storage cost of the matrix may be reduced from 0(n2) to O(n). The same can be 
achieved if an implicit matrix representation is applied. The other memory 
requirements include the space needed to store eigenvalues of the operator L 
(n memory locations) and the subsequent approximations of the eigenfunctions of 
the operator T (O(n) memory locations).

If the deflation procedure is applied the memory cost increases significantly and 
depends on the number of the eigenvalues to be found. If assumed that 
s eigenvalues are to be found and the deflation involves both right and left 
eigenvectors then the method will require: 1) In the worst case additional tr 
memory locations to store an operator adjoint, to T which may be necessary to solve 
the adjoint eigenproblem; 2) Addi onal 2(s -  1 )n memory locations used to store 
formerly found left and right eigenvectors. The storage described in point 1) may be 
reduced to zero if the left eigenvectors may be derived directly from right 
eigenvectors avoiding the necessity of solving an adjoint eigenproblem.

The computational complexity of the IEEM iteration with an additional 
deflation procedure applied increases w th the number of eigenvalues which have 
already been found. If assumed that 5 is the number of eigenvalues previously
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found, the additional cost due to the appliiation of deflation equals roughly 2sn 
operations. In this assessment the cost of calculating the left eigenvectors has not 
been taken into account, but it has to be kept in mind that it may even double the 
algorithm’s execution time. Another item which ncreases the numerical cost of the 
algorithm is the re-orthogonalization phase whose complexity (for the MGS 
procedure) is of order O(sn).

Summing up, both the memory complexity and the computational cost of the 
Iterative Eigenfunction Expansion Method depend considerably on the 
representation of the matrix operator and the cost of computing of the matrix-vector 
product. (An analogous situation occurs in the case of the Amoldi (IRAM) method) 
Consequently, i f the input matrix yields any kind of special structure, including 
a regular pattern of distribution of its non-zero elements, sparsity or specific 
representation these costs may be very significantly reduced. Nevertheless, the 
application of deflation procedures will inevitably increase both the storage 
requirements (even by a few times) and the numerical cost, not to mention the 
increment in the number of iterations required to obtain convergence for each next 
eigenvalue being sought,

2.6 Other methods o f solving operator and matrix eigenproblems
Having presented the two algorithms of solving operator and matrix 

eigenproblems pla  ̂ ing a central role in this study let us only mention some recent 
developments in this research area. The most important include modifications in the 
Davidson method leading to algorithms suitable for non-symmetric matrices, 
including the Jacobi-Davidson algorithm or the introduction of look-ahead strategy 
to two-sided Lanczos algorithms. The investigations also include the designs of 
algorithms which inherently assume parallel computations. An example for such 
method is the divide and conquer algorithm ([20]) with extensions exploiting the 
relationship between a certain matrix algebra and complex polynomials ([21]).

The detailed description of the methods outlined above is clearly far beyond the 
scope of this limited study and may be found in many excellent books, including 
classical book by Wilkinson and Reinsch [22], the monograph by Golub and van 
Loan [6] which broadly covers the questions of non-symmetric eigenproblems, the 
book by Saad [9] or the paper by van der Vorst and Golub [7] which presents 
a review of recent developments.

3. Cost reducing discretization of infinite-dimensional operators
The previous section described selected iterative methods of solving operator 

eigenproblems putting aside the Questions of the form of the linear operator or its 
domain. In the case of a finite dimensional domain and a general linear operator 
represented in the matrix form both the Amoldi method and Iterative Eigenfunction 
Expansion Method give recipes ready for use in order to calculate numerically 
eigenvalues and eigenvectors of a given matrix. However, in1 the discussion of the 
computational complexity of both methods it was found that this complexity is 
determined primarily by the cost of calculating the matrix-vector product. This cost,
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in turn, depends on representation (implicit or explicit) of the matrix and the form 
of the operator (sparse or dense matrix with regular or irregular distribution pattern 
of non-zero elements). Clearly little can be done to reduce the cost of the matrix- 
vector product if the given input finite-dimensional linear operator is already 
represented e.g. by a dense matrix. This S iuation is very different if initially one 
has an infinite-dimens, rnal operator which is inherently unsuitable for any 
numerical treatment. The problem which appears is finding the discretization or 
finite-dimensional mapping of the operator so that it may be approximated in 
a finite space by a different linear operator. As various discretization methods exist, 
it means that one may control the form and representation of the emerging finite- 
dimensional operator and consequently influence (reduce) the numerical cost of 
performing the Av operation, where A should be understood as a finite 
approximation of the initial operator and v should as perceived as a corresponding 
representation of the function from the operator’s domain.

The problem of defining a finite-dimensional mapping refers not only to 
operators but also to the funct'ons belonging to the operator’s domain. There is 
a great variety of finite representations of functions, with an emphatic majority 
based on expansions in terms of a chosen set of basis functions. Obviously, even 
a short description of the most popular functional bases lies far beyond the scope of 
this work. Nevertheless, some general classes of representations may be 
distinguished, starting from simple representations based on regular or irregular 
sampling of a function in its domain to the entire domain expansions, entire- 
subdomain expansions or domain subdivision expansions in which accuracy of the 
representation depends correspondingly on the number of expansion terms or (in 
the third case) the number of subdomains or sampling points within the domain. 
(The Finite Difference (FD) discretization method presented later on in this section 
belongs clearly to the domain subdivision methods, while the Method of Moments 
or Discrete Fourier Transform (DFT) based representa ion (also discussed later in 
this section) are entire dom..,n expan! i an methods.) Apart from different finite 
mappings of functions also various operator representations may be chosen which 
gives rise to a number of numerical procedures. If, for instance, the operator 
projection is achieved by calculating scalar products, as in the Method of Moments 
(the Galerkm Method) then for different representations of functions various 
methods are obtained e.g. the Finite Element Method (FEM) with a resulting sparse 
operator matrix having usually an irregular distribution of non-zero elements or the 
collocation (or point matching) technique with a resulting sparse or dense matrix. 
The discussion of functional expansion and discretization techniques may be found 
in a number of books — cf. [23], [24], [25], [1], [26].

The rest of this secfion concentrates on two finite-dimensional mapp.' tg 
methods in which very different and to a certain extent opposing approaches 
towards approximating both functions and operators are applied. Although these 
discretization methods produce approximate finite-dhnensional operators with 
entirely different properties, the specifics of both representations enable one to 1)
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reduce the cost of performing the Av operation,, which has a substantial impact on 
the efficiency of numerical solving of given eigenvalue problems; 2) efficiently 
implement operations involving the discref :ed operators in parallel distributed 
memory em ironments.

Before describing in detail the two selected discretization methods we shall 
discuss some aspects of finite-dimensional mapping which play an important role if 
the algorithms invob mg discretized operators and functions are to be implemented 
in scalable parallel systems. The general conclusions drawn from this discussion 
substantiate to a certain extent the choice of the operator discretization methods 
applied in the parallel eigensolvers presented in Section 5 which implement 
selected iterative algorithms of solving non-symmetric operator eigenproblems in 
distributed memory environments.

3.1 Discussion o f discretization aspects in scalable parallel systems
Before presenting some finite-dimensional mapping strategies let us make a few 

remarks on the mutual relations between the efficiency of parallel matrix 
computations and the choice of a finue-dimensional mapping technique for a given 
operator. The uiscussion will concentrate on the general issues concerning data 
locality and closely related computation locality postponing the detailed description 
of the specific parallel designs and implementations in selected parallel systems to 
the following sections.

Designs of the numerical methods performing various matrix calculations, such 
as computing the matrix-vector product, matrix-matrx product or deriving matrix 
transposition, are determined primarily by the form of the input matrix operator. 
Application of these algorithms in the environment with multiple processing 
elements (PEs) requires developing suitable mapping techniques of both data and 
computations to the processors in order to achieve the main goal of parallel 
processing, i.e. minimization of the total execution (wall-clock) time. Although 
these mapping techniques certainly depend on the representation of the input matrix 
operators and the specifics of the matrix computations to be parallelized, the basic 
two strategies will certainly be applied: 1) Place the computational tasks on 
different processing elements in order to enhance concurrency, 2) Place the 
computational tasks which make use of the same data on the same processor to 
increase the locality.

These strategies may sometimes turn out very conflicting which would require 
trade-offs ;n design of the mapping techmques. At the same 'me an inadequate 
exploitation of any of these strategies will usually reduce or even eliminate the gain 
in performance of the numerical algorithms implemented in a parallel environment. 
This fact is particularly true for scalable parallel systems where often a large 
number of processing elements is involved in the computations.

Let us consider the simplest, still up to now the most important parallel 
mapping technique, i.e. the static domain decomposition technique. In this mapping 
method all the data (e.g. matrix or vector elements or a grid in the spatial domain) 
as well as computational tasks are distributed among the processing elements in an
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fixed manner. In the method the properties of the domain being decomposed 
determine whether a computational task may be efficiently mapped to the available 
processing elements. Concentrating on the techniques of distributing matrix 
operators let us discuss the specifics of parallel decomposition for some classes of 
matrices:

1. Matrices with a block structure. In this case an ideal locality of data and 
computations (within a single PE or a group of PEs) may be achieved if all the 
elements of a given block in the matrix are local to a single processor or a group 
of processors. The most favorable case occurs if the number of PEs equals or 
divides the number of blocks of the matrix and all the blocks have equal sizes. 
Then all data (e.g. necessary to perform the matrix transposition) may be stored 
locally and the amount of computations may be perfectly balanced across the 
processors. The problems with balancing the computations will occur if the sizes 
of the blocks are not equal and/or the number of processors does not correspond 
directly to the number of the matrix blocks. In this case the assignment of matrix 
blocks to PEs has to take into account the numerical complexity of the operations 
performed on each block in order to obtain balancing of the workload. (Still, 
the workload balancing may cause an imbalance in the local storage 
requirements.) The question that emerges is: Which operators may be discretized 
to produce an operator matrix with a block structure? The first group of such 
operators are scalar operators acting on multidimensional vector fields. 
Separating the field components in a finite-dimensional representation may give 
a block structure of the resulting matrix. The other group of operators may be 
defined as operators modelling short-range, local interactions in a number of 
disjoint subsystems. Applying e.g. the Finite Difference (FD) discretization may 
then result in a block-structured matrix or a banded matrix.

2. Banded matrices also have a very favorable structure while investigating their 
parallel distribution using domain decomposition method. In most cases the 
amount of non-local data which is used by the processing elements is of order 
0{bT) or O(b) (depending on the mapping and computational task), where b is 
the matrix bandwidth. If the bandwidth is small relatively to the matrix size then 
the emphatic majority of necessary data is stored locally by each PE and most 
of the computations involve only local data. Banded matrices are frequently 
obtained by using the Finite Difference (FD) discretization scheme. The FD 
technique has also the advantage of producing a highly regular matrix with an 
even distribution of its non-zero elements This has a very positive impact on 
workload balancing which may be easily achieved by applying regular domain 
decomposition. 3

3. Sparse, non-banded matrices are the class of matrices which may be encountered 
if the Finite Element Method (FEM) is used to discretize the operator’s domain. 
Although the matrices are usually sparse, the irregular distribution of their non
zero elements may result in problems while seeking for an efficient parallel
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mapping using static domain decomposition. The first problem is that potentially 
large amount of non-local data has to be used by each processing element in order 
to perform parallel matrix operations. One of the solutions to this situation is 
designing spec:Tc procedures of accessing or communicating non-local data in 
order to avoid bottlenecks and reduce the number of non-local data accesses. 
The other problem is the irregular non-zero element distribudon which may 
cause an imbalance in the workload across the PEs. Summing up, in the case of 
sparse, non-banded matrices the static parallel domain decomposition schemes 
may turn out unsuitable if high performance in a scalable parallel execution 
environment is to be achieved.

4. Dense matrices appear when entire domain or entire subdomain expansion 
discretization techniques are used. (The example of such technique - the Method 
of Moments representation will be described in one of the following 
subsections.) The parallel decomposition of dense matrices may potentially 
result in very large amount of non-local data which has to be accessed by the 
processing elements while performing such operations as e.g. matrix 
transposition. There is usually little that can be done to avoid a great deal of 
computations involving non-local data. Si 11, in order to maintain high level of 
parallel performance one may increase the computation time involving solely 
local data as compared to the time spent on accessing or using non-local data 
by applying appropriate scaling of the problem size. Unfortunately this cannot 
be done if the complexity of operations involving non-local data is higher than 
the numerical cost of the local computations. The positive feature while dealing 
with dense matm es is that the workload balance may be achieved by applying 
a simple regular domain mapping scheme.

Summing up, the characteristics of different types of matrices obtained in 
various methods of finite-dimensional mapping of li ear operators may affect 
positively or negatively the performance of parallel algorithms involving operating 
on distributed matrices. With'” the limits of the static domain decomposition 
parallel mapping techniques the positive features of matrices to be distributed 
nclude block structure, sparsity of the matrix, relatively narrow matrix bandwidth, 

while the negative ones include irregular non-zero element distribution in sparse 
matrices or dense non-zero element packing. Some of these negative factors may 
even exclude the static domain decomposition technique if an efficient 
parallelization of a given computational problem is to be achieved.

In this case different parallel mapping techi. ques have to be applied. At this 
point the following mapping schemes may be ment oned:

— load balancing algorithms which include:probabilistic load balancing or cyclic 
mapping — the static methods which exploit structure of the computations and 
data to di stribute the dom n of computations and may be used e.g. to problems 
involving matrices with an irregular distribution of non-zero elements or 
irregular distribution of computations; dynamic load balancing in which the
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parallel mappings change during execut, on of the algorithm — this method may 
be applied e.g. in the multigrid algorithms (cf. [27], [28]).

— task scheduling algorithms which explore the potential for functional parallel 
decomposition of the computational tasks and may be applied to obtain parallel 
mapping of problems with FEM-based discretization, mult’grid approach, etc.

A much broader discussion of parallel mapping strategies with various case 
study presentations may be found in a book by Foster [29] or the teaching materials 
from the Edinburgh Parallel Computing Centre [30] (in which mainly static domain 
decomposition techniques are described).

This section presented general issues concerning parallel mapping techniques of 
discrete matrix operators and related computational tasks. In the above description 
some potential problems occurring during parallel mapping of different classes of 
matrices obtained during discretization of linear operators were discussed. In the 
above approach we tried to answer whether a suitable parallel mapping may be 
found for a given type of matr' (. Still, these general guidelines may be applied in 
a somewhat inverse approach. This second approach consists of exploring the 
possible parallel mapping techniques for a given parallel system architecture before 
choosing discretization and fin;te representation scheme for a given input linear 
operator. In this way the fip'te-dimensional representations of operators which will 
not fit any efficient parallel mapping technique may be immediately excluded.

As already mentioned the following sections discuss two different finite
dimensional mapping techniques in which very different and to a certain extent 
opposing approaches towards approximating both functions and operators are 
applied. Although these discretization methods produce approximate finite- 
dimensional operators with entirely different properties, the specifics of both 
representations enable one to reduce the cost of calculations involving these 
discrete operators.

3.2 The Finite Difference discretization

The Finite Difference (FD) method is one of the simplest and very commonly 
used algorithms of operator discretization. In this method the functions from the 
domain of the given operator are represented either as simple sets of values sampled 
over a certain region or as expansions with simple (usually piecewise linear) 
expansion functions defined over rectangular subdomains. As already mentioned 
this method belongs to a class of domain subdivision expansions which become 
more accurate with a growing number of subdomains or sampling points.

The FD method is most frequently used to discretize various differential 
operators, e.g. those involving Laplace operator, and consists in substituting the 
differentials by the finite-dimensional difference operators. The finite difference 
operators may yield various fonns, starting from simple 2-point stencils valid for 
approximating the first order derivatives in one dimension to complex multipoint 
stencils used to obtain higher accuracy or deal with higher order derivatives.
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Figure 3. Distribution o f non-zero elements in operator matrix obtained using the FD discretization. 

directional derivatives and so forth.
The FD procedure applied to linear differential operators inevitably results in 

a finite-dimensional operator represented by explicitly computed elements of its 
matrix. This is an important feature of this approach affecting both memory and 
computational complexity of the eigensolvers based on the FD technique. The 
common feature of all the matrices generated by the finite difference scheme is 
a highly sparse structure and a usually very regular pattern of distribution of non- 
-zero elements. Moreover, these matrices usually yield very large dimensions in 
modem applications that equal the number of sampling points (which is of order 
102-  103 or more in every spatial dimension).

An example of a structure of the operator matrix obtained using the FD 
discretization has been shown in Figure 3. The Figure presents the distribution of 
non-zero elements in the matrix approximafng the following second order non- 
-symmetric differential operator (introduced in Section 2.2)

Av = V,2v + - A - t [V(e(x,y)x (V, x v)]

where V;(-) = A  J L  

3 / 5 ,
;),e(x,y) is a fixed, arbitrary function defined over two-

dimensional space and v is an appropf ate two-dimensional vector field defined 
over a 2D spatial domain

This matrix shown in Figure 3 has a dimension of approximately 40000, which
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corresponds to a discretization of a 2D vector field v = (vx,vv) over a 200 * 100

regular spatial grid and the number of the non-zero matrix elements equals 
approximately 200000. Although the matrix is non-symmetric it has a highly 
regular structure with 95% of its elements located on 5 diagonals: 0 (main 
diagonal),+2,-2,+199,-199. These five diagonals reflect the 5-point finite 
difference stencils replacing the appropriate derivatives. At this pc int it should be 
noted that the bandwidth of the discussed matrix depends substantially on the 
ordering of the elements of vector functions, obtained from discretizing the vector

field v = (vt ,vv). With an inappropriate ordering of elements one may obtain

a matrix with a substantially increased bandwidth (or even a non-banded matrix). 
In cur example the bandwidth equals approximately 400 and is minimal for the 
applied ordering, wFch puts first all the elements of the v field component before 
all the elements of the v field component. Still, the bandwidth could easily be 
increased if the elements of the vx and v field components are mixed.

In any case the resulting matrix is sparse. Consequently, it may be noted that, 
although the dimension of the matrix n is large, the memory requirements are not of 
order 0{n2) but of order O(n) and the matrix may be stored in one of the sparse 
matrix storage formats, e.g. Compressed Sparse Row (CSR) or Compressed Sparse 
Column (CSC) which save memory and enable efficient handling of sparse matrices 
using specifically designed numerical procedures (cf. the description of the 
SPARSK.IT numerical library — [31]). In the above example the storage 
requirements may be further reduced ;f the five diagonals are stored separately and 
solely the irregularly located elements are stored using e.g. the CSR format 
Another optimization may be achieved if the equal values of matrix elements 
associated with five-point finite difference operators are excluded from the stored 
elements and included imp"’v ;tly only while calculating e.g. a matrix-vector 
product. If regularities of the matrix are exploited a more efficient algorithm for 
calculating the matrix-vector product may be designed, with the numerical 
complexity approaching the cost of performing 5n multiplications and additions.

The above example shows the possible optimizations due to specific form of the 
matrix obtained in the Finite Difference discretization. — It is found that although 
the size of matrix is inevitably large both the memory and numerical complexities 
may be kept linear. The following section piesents an opporte approach in which 
a dense operator matrix is obtained and consequently a different technique has to be 
applied to lower the cost of both the matrix storage and the computation of the 
matrix-vector or matrix-matrix product.

3.3 Method of Moments formulation
The method of finite-d'mensional mapping described in this section is based on 

the representation of an operator by ts products with chosen basis functions 
spanning a given functional space. This approach is known from the Method of 
Moments or its most important version — the Galerkin method.



Let us start the description of this discretization method with discussing the 
finite representation of functions. Let the domain A" of a given operator T be

a functional Hilbert space with a properly defined scalar product and be
a complete orthonormal set of functions in the space X. According to the definition 
of completeness every function u e X  is convergent to its Fourier series, being the 
expansion of u in terms of the basis functions:
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« - 2 M ' - W l = 0  (18)
j=i

Consequently any function from the space X is represented by a sequence of 

the Fourier coefficients {/■}” ,=  ■)}” ,. Truncating this sequence to a finite
number of terms gives a wanted finite mapping of the function u:

lim
n

IL = (u,h2), ..., (u, hn)]T (19)

The method of discretization of the operator T immediately follows from the 
above representation of the functions. Defining the elements of the n x n matrix

I  = W j -, as:

Cj = a h p A. ) (20)

we obtain a finite-dimensional linear operator being a mapping of the operator T 
which has the following property:

Tu = Tu = [(Tu,hi),(Tu,h2\...,(T u ,h n)]T (21)

As already mentioned, the representation of the operator involving the matrix of 
scalar products given by the equation (20) is used by the method of moments in 
which this matrix is constructed explicitly. Unfortunately this may bring about 
a series of negative effects. Firstly, the matrix (20) may be dense and its explicit

storage may require n2 memory locations. Secondly, the matrix-vector product Tu
can involve 0(n2) operations which may cause the computation time in the methods 
which are based on this representation to blow up for the increasing problem size n. 
(This effect is widely known e.g. from the Galerkin method.)

The question which emerges is whether it is possible to find an orthonormal 
basis (a complete set of functions) in the Hilbert space X  such that either the storage 
cost of the discretized operator or the cost of calculating the discussed matrix-

vector product may be significantly reduced even if the matrix T_ (cf. equation (21))
is dense. The answer is positive for a certain class of functional Hilbert spaces 
chosen for the operator’s domain. This wide class, being the most important one in 
a variety of application fields, may be defined as the space of square integrable



638 M. Rewiensk'

functions defined over a bounded region Q, namely the L2(Q) space, with the scalar 
product defined as follows:

(«,v)= J hvVQ (22)

If, without significant loss of generality, we shall limit our discussion to the 
case of the L, space defined over a two-dimensional bounded rectangular region 
Q = ([0, b\ x [0, a]) c  R2 then the orthonormal bases which have the desired feature 
are the trigonometric complete sets of functions:

or

hy =  A j  sin
 ̂inx ^

V b J
cosf jn y ' (23)

H  =  B y  COS
^ inx ^sin (24)

where A.. and B are properly defined normalization constants. If we consider e.g. 
a two-dimensional vector field u = (ux, uy), where ux, uy e Z, ([0, b] x [0, a]), then 
u may be represented e.g. by the following series:

ij

If the above series are truncated then the emerging finite approximation of the 
function u is a vector of the Fourier coefficients:

■x r * r y r y r y' H ) L | 2 , . . . , C m n , C n , C | 2 , . .  - ,L-m n }
(25)

The most significant observation about the above vector is that it is simply 
a vector of samples of the two-dimensional Fourier transform of the function 
u = (if*, uy). Consequently, keeping in mind that the inner products are given by the 
integrals (22), the approximat 'ons of the vector elements may be numerically found 
using the two-dimensional Discrete Fourier Transforms (DFTs). In turn, the two- 
dimensional DFTs may be very efficiently computed by applying the Fast Fourier 
Transform (FFT) algorithm, proposed first by Cooley and Tukey (cf. [32]). The 
following section shows how this observation may be used to reduce both cost of

calculating the Tu product as well as cost of storing the operator matrix by 
apply i lg the implicit, instead of explicit, matrix representation.



3.3.1 Calculation o f the scalar products

According to the previous section computing of the Tu product may be viewed
as calculating the inner products (in the finite space) of (Tu, h f)  and (Tu, h f)  with 
the given vector of Fourier coefficients (25). This kind of approach enables one to

develop a procedure of computing the Tu product which does not require the

explicit storage of the dense matrix T . Thanks to this both memory and
computational cost may be reduced. The discussed operation may be performed in 
the following steps:

1. Using the given Fourier coefficients (refeqfour) calculate the values of the function 
u for a discrete set of points from the Q spatial domain by computing a two- 
dimensional backward FFT.

2. Calculate the values of the 'Yu function at the gridpoints of the domain f2 using 
the previously calculated values of u.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 639

Fourier coefficients Space domain
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Figure 4. Calculation o f the matrix-vector product fo r the DFT domain operator formulation.

3. Compute the inner products (the Fourier coefficients) (Tu, h f)  and (Tu, h f)  by 
performing a two-dimensional forward FFT.

The above scheme has been illustrated in Figure 4 if the function u = H  is a two- 
dimensional vector field. In the Figure, the function H = (Hx, Hy) is represented in 
the DFT domain by 200 Fourier coefficients, which corresponds to 10 expansion 
functions in every spatial direction for both Hx and Hy. (Referring to equations (23)
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and (24) the indices run as follows: i = 1, 2, 10 and j  = 0, 1, Then the
discrete values of the function H  are computed using two 2D backward FFTs. In the 
example we obtain two 256 * 256 arrays of samples of the function H  in the 2D 
spatial domain. Then the operation T on H  gives a matrix of samples of the TH 
function which is subsequently transformed using forward 2D FFTs to obtain the 
desired Fourier coefficients. One should note at this point an important relation 
which joins the discussed discretization (based on finite expansion series) and the 
Finite Difference (FD) method. In Step 2 of the above scheme one calculates the 
values of the Tu function at the discrete gridpoints in entirely the same way as in the 
FD method. The additional Steps (1 and 3) are required to move back and forth 
between the spatial domain and the DFT domain

Another aspect of this computation shown in Figure 4 is the difference in the 
dimensions of the matrices of Fourier coefficients (10 x 10) and the matrices in the 
spatial domain (256 x 256). In the presented scheme the function is oversampled in 
the spatial domain, which means that a reduced number of Fourier coefficients is 
calculated using more samples than necessary. This allows one to compute the first 
e.g. 100 Fourier coefficients with greater accuracy, while omitting all the other, 
containing larger (and often very serious) numerical error. The issue of estimating 
the numerical error of the Fourier coefficients is discussed in the following section

The other question is: What is the numerical complexity of the algorithm? If K 
and Ky denote the lengths of the Fast Fourier Transforms, i.e. the number of sample 
points in the spatial domain in the x and y  directions, respectively and the numbers 
of expansion functions used to represent the functions in the DFT domain equal N 
and N  in the respectful directions then the cost of performing the steps 1 and 3 in 
the calculation of the matrix-vector product equals (9(4 N K  log Ky + 4K Kx log AT). 
(The cost of performing a one-dimensional FFT of the length N  is 0(N  log N) — cf. 
[33]). Denoting K = Kx Ky and Aj=yV - N  , this cost may be estimated at a level 
0(K  log K) since the length of the FFTs (the number of sampling points in the 
spatial domain) should be proportional to the number of expansion functions. The

next issue is estimating the cost of the Tu product, where the function u is
represented by N  samples in the spatial domain. It is hard to evaluate this cost in the 
case of a general linear operator, still if only differential operators are considered 
(just as in the previous section) then the cost is given by 0(N). It is now seen that 
the overall cost of calculating the matrix-vector product in this representation 
equals 0(K  log K).

One may ask what are the advantages of this representation as compared to the 
FD finite-dimensional mapping in which the matrix-vector product could be 
calculated within the linear time cost. Clearly, in the DFT representation only the 
step 2 involves a similar number of computations as the entire matrix-vector 
product in the FD discretization. The advantage of the DFT representation may be 
seen if one compares the dimensions of the resulting operators. The size of the 
vectors in the DFT domain equals K  which, due to the oversampling, is usually 
considerably smaller than the vector size resulting from the FD mapping, (e.g. For
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the FFT length which equals 256, the number of applied expansion functions 
usually equals 20,40 or at most 60. Consequently in two dimensions the problem 
size equals e.g. 3600 in the DFT space as compared to approximately 66000 in the 
spatial domain.) So, the DFT representation usually reduces the problem size which 
has a very significant impact on the execution time the program solving the 
eigenvalue problem. Summing up, if the DFT representation is applied, the extra 
time spent on calculating in matrix-vector products is then regained by spending 
less time on solving the eigenproblem.

Reffering to the memory complexity, this method needs relatively little space to 
be able to calculate the matrix-vector product. The memory requirements include 
the space necessary to store the samples of the function u = (if, u f  in the spatial 
domain whose size equals 2N N  -  IN  and the space needed to perform Fourier 
transforms. In the Winograd version of the FFT algorithm (cf. [34] or [35]) the 
extra workspace needed to perform the one-dimensional transform will equal 
approximately 3Nx (3N ). If the space needed to store the input/output vectors of 
Fourier coefficients is taken into account then the overall memory complexity

equals: o ifK  + 2N + 6s[n ) (assuming that Nx~0(N jl). In this estimation the cost

of storing the operator matrix T is not taken into account as the implicit storage is
assumed. Clearly, if this matrix is stored explicitly, the memory requirements may 
increase dramatically.

3.3.2 Estimation o f the numerical error in DFT integration

One of the difficult questions while dealing with the Discrete Fourier Transform 
is estimating the numerical errors introduced to the Fourier coefficients obtained in 
the computations and the quality of approximation of the input function by a finite 
Fourier series. The detailed discussion of various aspects of DFT error estimation 
may be found in the book by Briggs and Henson [33]. This section extends the 
discussion of Briggs and Henson to the case of functions defined over a two- 
dimensional rectangular region applying some of the results presented in the quoted

Figure 5. The illustration o f the spatial 2D domain and the DFT domain 
with the corresponding reciprocity relations.
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reference. The following discussion focuses on compactly supported functions, that 
is, the functions which vanish except a compact (bounded) region in the 2D space.

For such functions the numerical error i '. calculation of the Fourier coefficients 
while using DFT may easily be found if the relation between the DFT and the 
Fourier transform are explored. The following Fourier transform is associated with 
a given function / /  e L2([-AI2, At2] x \-B/2, 5/2]):

H x(co,a)=  [ f H x exp(-2i7zcox-2inoy)dxdy (26)
J —ooJ-oo

(In order to simplify the derivations the complex, exponential version of the 
transform has been applied in this section). If the function f i  has a compact 
support, (e.g. it vanishes outside the rectangular region [-A/2, AH] x [-5/2, 5/2]) 
a simple relation joins the Fourier transfonn and the coefficients of the Fourier 
series of a periodic extension of the function H  :

c7  = ~ H x(pm,o„) (27)

where com = ml A and <r = n!B define the discrete gridpoints in the Fourier transform 
domain. Apart from a continuous Fourier transform the function f i  also has 
a Discrete Fourier Transform. Denoting Hxmn = Hx(xm, yn), with x =mA/M  and 
y n = nB/N, the vector (H "n)mn where m = (-M l2+1), ..., Ml2 and n = (-N/2+1), ..., 
NI2 defines the given function at the discrete gridpoints in the spatial domain. The 
DFT of the function Hx is then given by the formula:

d (h A  =V x  Jmn

M/ 2 N! 2
pmn  _

MN Z Z H > exp
s= -M  !2 + \t= -K  l2+\

- l -

. 2urns . 2flat
M

-i-
N (28)

where m = —M/2+1, ..., Ml2, n = -A72+1, ..., M2. The relation between the spatial 
domain and the DFT domain, together with reciprocity relations, has been shown 
in Figure 5.

In order to estimate |F " -  c s'| — the error of computing the Fourier coefficients 
by using the DFT, the Poisson summation formula has to be applied. Briggs and 
Henson [33] give a derivation of this formula in one-dimensional case. Using an 
analogous approach results in the following 2D Poisson summation formula:

Z Ej=-r-O k=—TO

6 ■ i \J « co~-— ,<j ------
Ax Ay

V - J

AxAy J ]  ^ H mx n exp(-i2nxmco - i2nyma ) (29)
m=-<c n=—x>

where Ax = AIM and Ay = BIN (cf. Figure 5).
By applying the rela Ions (27), (28), (29) one gets a formula which may be 

applied to estimate the error (which is in fact the error due to aliasing):
In order to estimate the above error, it is necessary to find a bound for the

• c l ' - ^ ^ C s+‘̂ ,t+^
i——cc j =—oo

(30)
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Fourier coefficients c " In other words the main issue is estimating the rate of 
decay of the coefficients with the increasing indices 5 and t. This can be done if 
some additional assumptions are made about the function Hx defined over the 
region Q = [-At2, A/2] x [-5/2, B/2]. We assume that: 1) Hx has a finite number of 
discontinuities (i.e. discontinuity points or planes) in the region Q, 2) H  is 
differentiable (except the discontinuity points or planes), 3) For any curves lying on 
the surface 3H (x, y)!8x or 8H(x, y)!dy these curves are piecewise monotone. Note, 
that the condition 3) is in fact not too restrictive and is satisfied by virtually all 
functions which arise in applications. Under these assumptions the 2D analogue of 
the theorem presented in [33] (p. 187) may be written:

c f C
I |2i |25 m

s t  0, t t  0 (31)

< C, t * 0 (32)

lc'° i - - 2  s'* °  (33)

where C, C, and C2 are constants independent of 5 or t (but they depend on the 
number of discontinuity points or planes and the extreme values of H  and its 
erivative at Q). Now we are ready to estimate the error (30) 
using the above bounds together with formula (30):

\F! ■c\’ C,
■I V

C2 C3 
\t\2 M 2 N 2M 2

t t  0, s it 0 (34)

< Q
' M :

C 5

m 2n 2
s t  0 (35)

\f : 0t< Q
N 2

C7
m 2n 2

11 0 (36)

In the numerical tests we have compared the values of Fourier coefficients 
computed analytically with those computed using Discrete Fourier Transform. The 
tests included calculation of the Fourkr coefficients of the matrix of a chosen 
differential operator T represented by the scalar products (compare formula (20)) in 
the DFT domain. The analytical values were calculated by explicit computation of 
appropriate values of sines and cosines combined accordingly to form of the input 
operator. In this way the matrix of Fourer coefficients was explicitly created. While 
using DFT, the calculation of the coefficients was based on computing the matrix- 
vector product for a given input vector, which involved calculating backward and
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Average relative error in the calculation of the Fourier coefficients using FFT,

Figure 6, Average error in calculating the Fourier coefficients using the DFTfor two different input 
operators: the vector operator, given by formula (7) and the scalar operator, given by formula (8).
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Figure 7. Average absolute error in calculating the Fourier coefficients using the DFT 
fo r  two different input operators: the vector operator, given by formula (7) 

and the scalar operator, given by formula (8)

forward Fourier transforms, just as described in Section 2.1. The comparisons of 
the Fourier coefficients were made in two kinds of tests:

1. In the first approach we have calculated the DFT-based matrix-vector product 
for the input vector which had only one (e.g. i th) non-zero element. The outcome 
of the product was simply the i-th column of the operator matrix, which could 
immediately be compared to the analytically computed values of the
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Maximum relative error in the calculation of the Fourier coefficients using FFT
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Figure 8. Maximum error in computing Fourier coefficients using the DFT 
fo r two different input vector fields.
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Figure 9. Average error in computing Fourier coefficients using the DFT 
fo r two different input vector fields.

corresponding Fourier coefficients.

2. In the second approach the DFT-based matrix-vector product was calculated for 
an arbitrary input vector. Consequently, the outcome had to be compared with 
outcome of the matrix-vector product for the analytically derived operator matrix 
and the same input vector. This test was intended to investigate the quality of 
the DFT approximation for a more realistic case.
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Average relative error in the calculation of the Fourier coefficients using FFT
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Figure 10. Errors in computing the Fourier coefficients using the DFT 
fo r two chosen coefficients.

In the tests the errors for the first 100 coefficients (with indices ranging from 
0 to 9 or 1 to 10 in every spatial dimension) were calculated for different lengths of 
the Fourier transform, ranging from 128 to 2048 (both in x and y  dimensions). 
Figure 6 shows the average relative errors in calculating the first hundred 
coefficients for different lengths of the DFTs. The average errors were computed as 
arithmetic mean of the absolute values of the relative errors. The DFT lengths were 
equal in both directions and were changed simultaneously. The Figure presents the 
results for two different operators: for the first one only FFT is used to compute the 
matrix-vector product; for the other one a hybrid algorithm using FFT and 
numerical integration (IRAM-FFT-NI), described in Section 6.1.1 is applied. 
Referring to absolute error, Figure 7 shows a graph presenting average absolute 
errors (computed as arithmetic mean of absolute values of differences between 
Fourier coefficients computed analytically and computed with FFT). In the Figure 
an approximately quadratic decrease (for A and M<  1024) in the average absolute 
error is observed which stays in accordance with the estimations (36). (As s « M  
and t « N  the estimations give a quadratic decrease of the error with the increasing 
M a  N). The decrement in the average absolute error becomes slower 
(approximately linear) for larger FFT lengths which may be due to the increasingly 
important error due to floating-point arithmetics computations.

Figure 8 and 9 show a comparison of the results for the two different types of 
tests described above. Figure 8 presents a maximum relative error observed for the 
first hundred Fourier coefficients. As it rs seen this error is higher in the case of an 
arbitrary mput field than for the field with only one non-zero component. Still, if 
the average error is considered (1 igure 9) the situation is contrary. The average 
relative error for an arbitrary input field is continually smaller. Moreover, the
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approximately quadratic decrement in this error observed with the growing DFT 
length appears to be very stable. It is an optimistic result which shows that for 
general input the DFT-based algorithm may produce an outcome with a very 
predictable size of the error. The graph shown in Figure 10 presents the values of 
the relative error (in this case the original signs of the errors were maintained) for 
two different Fourier coefficients — one of them is a low order coefficient (c 0>1) 
and the other one is a higher order coefficient.^9’10). In both cases the error 
decreases approximately in a quadratic order.

An interesting observation is that the relative error for the high order coefficient 
is approximately by a hundred times smaller than the corresponding error for the 
low order coefficient.

The general conclusion which may be drawn from the above tests is that the 
approximately quadratic decrement in the relative error is observed with the 
increasing (in both dimensions) length of the 2D Discrete Fourier Transform for N  
and M<  1024. Referring to the values of the relative errors, the average error for 
the first hundred coefficients stays at a level of a few percent for the transform 
length that equals 128. If the acceptable level of error equals 0.5 % then the DFT 
length should be increased to at least 1000. The results refer only to the first 100 
coefficients and with more coefficients taken into account while representing 
a given operator in the DFT domain the average relative error will inevitably 
increase, so that longer transforms will be necessary to obtain the desired level of 
numerical error.

4. Characteristics of the distributed memory systems
Flaving presented the numerical algorithms being in the scope of interest of this 

study we will now discuss some issues in high performance computing which are 
crucial to the process of designing parallel algorithms, concentrating on the 
relations between scalable parallel system architectures and programming 
paradigms. We shall also briefly describe the specific features of parallel 
programming environments and answer how they influence the implementation of 
the algorithms expected to deal efficiently with large scale scientific and 
engineering computations.

4.1 Massively Parallel Processing
In the recent years the term of “Massively Parallel Processing” has gained 

a tremendous popularity among the users of hi-end computer systems who perform 
highly demanding numerical computations as it comprises the realized hopes for 
a platform suitable for large-scale simulations. The technology of parallel distributed 
memory supercomputers (including the virtual shared memory architectures), 
provided the only truly scalable environment offering computation speedup of tens or 
hundreds times with an adequate increment in memory storage capabilities.

At the same time many questions referring to programming techniques or data 
handling in distributed memory environments had to be resolved. The development 
of programming methods in the scalable parallel distributed memory systems has
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led to defining certain dominant programming models, described later on. The 
growing understanding of the scalable parallel architectures also resulted in setting 
forth the key factors influencing the performance in distributed memory systems 
and creating a number of highly efficient parallel numerical libraries and parallel 
programming environments. The following sections discuss these issues in more 
detail, presenting the relations between the distributed memory architectures and 
parallel programming aspects.

4.2 Programming paradigms and parallel data decomposition
The formulation of new programming models or paradigms has always been 

closely related to the developments in computer system architectures, now 
classified by the Flynn’s taxonomy which is based on the distinction of systems 
with single and multiple data and instruction processing streams (cf. Figure 11). 
The progress in computer technology brought about the dominance of the Multiple 
Instruction Multiple Data (MIMD) systems. This <n turn resulted in rapid 
development of parallel programming techniques in MIMD systems. Two of them 
have gained a particular importance and have recently become dominant in parallel 
programming of MIMD systems. These are the data parallel programming and the 
message-passing programmmg.

Starting with the data parallel programming one has to mention that this model 
originates in vector supercomputers where programs applied highly efficient vector 
or matrix operations which inherently involved parallel data processing and 
distribution. The data parallel model assumes that a programming language offers 
intrinsic functions and mechanisms which enable the processors (processes or 
computational threads) to operate on global data. Consequently, this paradigm was 
a basic programming model in virtually all Single Instruction Multiple Data (SIMD) 
systems, such as architectures based on transputer matrices e.g. Connection 
Machine CM-200. In these machines a program defined the operations performed 
on global data, without specifying the data interchange scheme among the

Flynn’s Taxonomy

S1SD SIMD
CM-200 
ICL DAP

MISD MIMD
SM: SGI Power Challenge 

DM: IBM SP2 
VSM: Cray T3D, T3E

Figure 11. Flynns taxonomy. In the scheme: S = Single, M  = Multiple, I  = Instruction stream and 
D = Data stream. Within the MIMD machines the following architectures may be distinguished: 
Shared Memory (SM), Virtual Shared Memory (VSM) and Distributed Memory (DM) systems.
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processors and so the parallelism was obtained by the parallel data distribution. One 
thing has to be stressed about the data parallel paradigm in SIMD machines: the 
model assumes here that continuous synchronization occurs between the processors 
during parallel data processing. The situation is different in the case of modem 
MIMD systems, where the processors are said to be “loosely synchronized” with 
the same operations being performed on analogous data approximately at the same 
time. This constitutes one of the generalizations of the data parallel programming 
model on MIMD machines. The other important generalization ic the possibility of 
defining local, private data whose distribution is handled by the compiler and which 
allows e.g. replicating some calculations on all the processors involved in the 
computations.

The data parallel programming model as described above seems to be inherently 
attributed to computer systems equipped with the global storage e.g. vector 
supercomputers or true shared memory systems. This is no longer a valid point of 
view while some novel parallel system architectures gain growing importance. These 
architectures include the virtual shared memory systems being n fact distributed 
memory scalable parallel systems equipped with efficient global addressing software 
and hardware mechanisms, which favour them from other MIMD systems for use 
with the data parallel programming paradigm. (The examples of such architecture is 
Cray T3E parallel system described in Section 7.1.2.)

The example of a parallel programming language which applies the data 
parallel paradigm is the High Performance Fortran (HPF). (An overview of the 
characteristics of this language may be found in [36] or [37], One of the HPF 
implementations is described in [38].) In High Performance Fortran, which is 
a superset of Fortran77 and Fortran90, the parallelism of matrix and vector 
operations is obtained solely by defining parallel data distribution. HPF may be 
therefore considered a high level parallel programming language offering a simple 
platform for writing parallel codes which frees the programmer from issues 
concerning optimization of non-local data access patterns or design specifics of 
parallel matrix operations.

The other popular parallel programming model is the message-passing 
programming which is often considered a low-level programming paradigm. 
Indeed, this programming style offers great freedom in the design of a parallel 
algorithm at the price of the necessity of dealing with various programming issues 
concerning e.g. the design of interprocessor communication schemes. The message
passing programming paradigm assumes that the parallel computation takes place in 
an environment of interconnected multiple processing elements with each element 
having its own local memory. This model further assumes that there is no globally 
addressable memory (as in the data parallel paradigm) so that only one processing 
element may directly access its local memory. As it is seen this programming model 
is inherently attributed to distributed memory parallel MIMD systems, although it 
may also be ported to shared memory architectures. The other fundamental 
assumption about the model is that processors (processes, computational threads)
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cooperate by explicit data exchange / communication using messages sent and 
received across the interconnection network. The process synchronization also 
occurs via message-passing.

In the message-passing model the programmer defines all details of the parallel 
design including e.g. the modes and the sequence in which the messages will be 
sent and received. (In the case of collective communication procedures the specific 
design schemes of message-passing may often be resolved on a lower level which 
explores the characteristics of a given parallel distributed memory environment in 
order to obtain higher efficiency.) The programmer is particularly responsible for 
designing correct communication e.g. avoiding deadlocks, livelocks or assuring the 
determinism in a parallel computation (unless specified otherwise). The necessity 
of dealing with all the above issues inevitably complicates the implementation of 
a message-passing based parallel program. On one hand this programming 
complexity is the main drawback of this paradigm and on the other hand it offers 
the programmer a free choice from a variety of solutions in order to make use of 
any potential parallelism enclosed in the problem being solved. Consequently the 
output parallel programs may result more efficient in a given parallel environment 
than their analogues constructed using the data parallel programming paradigm. 
The other fact is that the message-passing model allows one to implement various 
parallel data and computation mapping techniques (described in Section 3.1). While 
the data parallel model applies solely the static domain decomposition scheme, the 
message-passing programming may be used to implement e.g. functional parallel 
decomposition of a given problem or a dynamic load leveling scheme.

The two main standards which are most widely used in the distributed memory 
parallel systems and support the message-passing programming model (or rather 
provide a standard interpretation of this model) are the Message Passing Interface 
(MPI) standard specification and the Parallel Virtual Machine (PVM) 
communication system. The domination of these two programming instruments is 
a result of their versatility and portability which allows one to run the same codes 
on a variety of parallel systems ranging from massively parallel supercomputers to 
networks of workstations. A great number of publications is devoted to both MPI 
and PVM (cf. [29], [39], [40] (MPI), [41], [42] (PVM)) describing the capabilities 
and implementations of these message-passing systems.

4.3 Performance issues in parallel distributed memory systems
Some of the basic features and elements of parallel distributed memory systems 

have a decisive impact on the design and performance of parallel programs which are 
to be run in these environments. They are briefly described in the following items:

— The cost o f accessing non-local data significantly higher than the cost of 
accessing local data. This very substantial feature of distributed memory systems 
is a result of using the message-passing mechanisms and protocols in order to 
transmit non-local data to the processor requesting a remote access by another 
processor. The message communication time which is composed of the 
communication startup time (related to the topology of a given network, network
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protocol and the routing algorithms applied) and the transmission time (related 
to the physical bandwidth of the communication channel joining the units 
interchanging data) exceeds the analogous local memory access time by tens, 
hundreds (in the case of highly efficient interconnection networks in parallel 
supercomputer systems) or thousands times (in the case of standard networks 
connecting workstations). The situation is more balanced in virtual shared 
memory (VSM) systems where additional hardware circuitry supports software 
procedures handling non-local memory access requests (cf. [43]). Still, in any 
case the amount of inter-processor communication determines the performance 
of parallel programs in these systems and if this communication is not optimized 
the parallel bottleneck is inevitable. The parallel bottleneck demonstrates in the 
increment of the processors’ idle time and the degradation of speed-up and 
efficiency with the increasing number of processors involved in computations.

— Topology o f the interconnection network. The network topology may importantly 
influence the performance of collective communication operations and balancing 
of the execution times across the processing elements (PEs). In the case of 
a network of workstations the network topology may favour some processing 
elements which will result in a quicker communication between selected 
processing elements, in the imbalance in the execution time and eventually in 
a decrement in the overall efficiency. In the case of the interconnection networks 
applied in supercomputer systems, the uniform topologies of connections 
between the PEs are usually used. Nevertheless, in a certain topology some 
collective communication or reduction schemes may be favoured, e.g. algorithms 
involving only nearest neighbour (systolic) communication or algorithms 
applying global broadcast operations. The specifics of the interconnection 
topology are widely exploited in the design and implementation of parallel 
communication and numerical libraries provided for use in given parallel 
systems.

— Relatively small local memory storage. This fact is a consequence of distributing 
the memory resources across a number of processing elements. In distributed 
memory systems the memory usually equals about 128-256 MB per PE, while 
in the case of medium size shared memory systems the usual size of the global 
storage equals 4 GB. Consequently the designs of parallel algorithms have to 
assume balanced memory requirements for the processes to be executed on 
different PEs.

— Local and global disk storage. Different kinds of disk storage organization 
schemes are used in parallel distributed memory systems. In some designs the 
disk memory is attached locally to each processing element while in others there 
is only a single processing node that manages the entire disk storage system. In 
this case all the access requests have to be processed by this single node. In the 
case of tasks which have to use disk memory intensively or periodically it is 
advisable e.g. to distribute the disk read or write requests across the PEs in case
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of many local disks or if all the processors (processes, computational threads) 
have to access a single disk storage system, the access requests should be 
distributed in time as to avoid bottlenecks,

The above points presented selected issues which have to be addressed while 
designing parallel programs in distributed memory parallel systems as they may 
greatly influence the performance of parallel programs. Typically, as many of these 
issues require conflicting design solutions, various trade-offs appear. Let us recall at 
this point the classical form of the Amdahl’s law which imposes an upper bound on 
the speed-up S achieved by a program executed on P processors:

5 “ a  + ( l-a ) /T * “ a  (37)

where a is a fraction of the single-processor execution time of a given program, 
spent on operations which cannot be parallelized. In the original interpretation of 
the Amdahl’s law the value of a was determined solely by the structure of the 
sequential program to be parallelized. Still, the process of parallelization involves 
modifications of a given sequential program wh;ch include e.g. introducing inter
processor communication. Consequently the value of a is modified (incremented) 
by these parallel overhead operations. In this context the value of a  starts to 
depend on the applied paralle’'zatiGn strategy and also typically becomes 
a function of the number of processors P. At this point the role of the mentioned 
parallel design trade-offs, which aim at decreasing the value of a  at least for 
a certain range of the number of applied processors P, becomes clear. A very 
typical parallel design trade-off arises e.g. when the amount of communication is 
being reduced by applying the replication of some calculations on all the 
processing elements. If the amount of replicated calculations becomes too large 
the problem of serial bottleneck appears. So, a kind of trade-off has to be applied 
in order to avoid both parallel and serial bottlenecks in parallel design of a given 
algorithm. The trade-offs also appear while dealing with distributed memory 
resources. For instance, some output data produced by a single PE may either be 
stored locally wh'ch saves inter-processor communication but increases imbalance 
in memory requirements per PE or may be distributed among all the PEs which 
requires communication but allows one to achieve better management of memory 
resources.

Many more examples could be given with different design solutions. Still, quite 
often the general solutions that could produce highly efficient parallel programs 
cannot be given due to the diversity of parallel distributed memory systems. In this 
case achieving efficient, scalable parallel programs often requires application of 
various programming tools available in particular systems offering highly optimized 
parallel solutions for many computational tasks.

4.4 Parallel programming environment - discussion o f the available tools
In this section we would like to outline the role of parallel programming tools, 

especially parallel libraries n developing parallel codes and enhancing their
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efficiency in scalable distributed memory environments. Let us address these issues 
in the following points:

— Compilers. The role of compilers in distributed memory systems depends 
primarily on the programming model applied to develop a target parallel 
program. If the data parallel programming paradigm is used then the role of the 
compiler is principal as managing the issues of non-local data access, process 
synchronization and communication is left to the compiler, while the 
programmer defines only a parallel data distribution pattern. In turn, if the 
message-passing programming model is applied, the role of the compiler is rather 
limited. As in this programming style all the inter-processor communication is 
handled by the library routines (e.g. MPI or PVM routines) and the entire parallel 
design is left to the programmer only a serial compiler is needed and its role is 
reduced to performing standard serial optimizations. Obviously in this case the 
role of the message-passing libraries becomes particularly important.

— Inter-processor communication libraries. Focusing on the two most important 
libraries, i.e. Parallel Virtual Machine (PVM) library and communication system 
and the implementations of Message Passing Interface (MPI) it is important to 
indicate some significant differences between these two parallel programming 
tools. First of all, PVM is mainly designed for use in parallel network 
environments. This fact has the following consequences: 1) PVM contains 
features which are particularly useful in the network environment e.g. the 
dynamic task creation or defining relative speeds of the processing elements 
forming the virtual machine. 2) The PVM communication routines are not 
optimized for use with any particular network topology. This second point 
indicates that if the portable versions of PVM library implementations are 
applied in parallel supercomputer systems, the capabilities of usually highly 
efficient interconnection networks in these systems may not be fully exploited. 
This especially refers to collective communication procedures whose 
performance may be significantly enhanced if the characteristics of the network 
topology are taken into account in their design. Although there exist 
implementations of PVM library for massively parallel distributed memory 
systems (e.g. the PVMe library for IBM SPx [44]), this library offers very little 
in the supercomputing environment as compared to the MPI library. In turn, MPI 
appears to be specifically designed for use in supercomputer systems offering 
a great variety of communication modes and types, including various collective 
communication or global reduction operations. In this case the role of 
implementation which exploits the network capabilities (e.g. the capabilities of 
switches applied to connect the processing elements or specifics of the protocols 
applied in a given interconnection network) becomes crucial and consequently 
the optimized communication libraries supplied by the hardware vendors may 
provide much higher performance than the analogous portable implementations. 
Lastly, one has to mention that the original MPI standard assumes a static
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communication system. Therefore, if sophisticated parallel systems involving 
dynamic task creation or parallel input / output operations are to be developed, 
some newer solutions and tools should be applied e.g. PVM v. 3.4 [45] or MPI- 
2 [46], Summing up, all the above facts have to be taken into account while 
designing and implementing a parallel application. In the process of porting 
parallel codes to specific parallel systems the appropriate choice of tools, 
including parallel inter-processor commur:cation libraries, should be made 
which may result in a seriou: improvement of the parallel performance.

— Parallel numerical libraries. The role of parallel numerical libraries in the 
process of designing computafonal applications to be run in distributed memory 
parallel environments cannot be underestimated. With the development of 
parallel algorithms in such application areas as basic linear algebra, differential 
equations, FFT and signal processing or eigenproblem analysis various parallel 
numerical libraries emerged. Among the most important portable libraries 
covering a large number of basic algorithms used in linear algebra one has to 
mention PBLAS (Parallel Basic Linear Algebra Subroutines) and ScaLAPACK 
(Scalable Linear Algebra Package) which extends PBLAS. Both the libraries 
depend also on the BLACS (Bas -’ Linear Algebra Communication 
Subprograms) (cf. [47]) library which serves as a base for inter-processor 
communication and provides a parallel programming interface. Apart from 
public, portable implementations of the numerical libraries also a number of 
native 'mplementations associated with given parallel systems have been created. 
The most widely known libraries fiom this group, implementing many BLAS 
and LAPACK routines, are: LibSci (provided by Cray Research) [48], Parallel 
Engineering and Scientific Subroutine Library (PESSL [49]) (IBM) or NAG 
library (from Numerical Algorithms Group [50]). The librar:3S cover many 
application areas in scientific computations and provide its users with interfaces 
to different inter-processor communication systems: e g. BLACS or HPF (in case 
of PESSL - cf. [49]), PVM or MPI (in case of NAG — cf. [50]). Apart from these 
most widely known products many smaller parallel programming libraries which 
cover more specific areas of applications are available, including PARPACK 
library (widely described in the following section) or PIM (Parallel Iterative 
Methods package used to solve large systems of linear equations using 
conjugate-gradient approach [51]). (A much broader overview of available 
parallel numerical libraries may be found in the repoit [52].) The principal role 
of parallel numerical libraries is facilitating the process of development of 
numerical solvers in parallel environments. While the parallel libraries provide 
the ready designs and implementations of numerical algori thms, they also offer 
ready parallel data distribution schemes. Consequently, if we choose a certain 
numerical library, we also have to accept the ava;iable parallel interface which 
can be more or less suitable for our parallel system as well as incorporate the 
parallel data d'stribut'on or mapping model supported by the library. This
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important aspect of using parallel numerical libraries has to be taken into account 
as, although in most cases it simplifies the process of design, it also limits the 
possible parallelization strategies.

5. Implementation of the operator eigensolvers in parallel 
distributed memory systems

This section describes parallel design and implementation of the algorithms of 
solving operator eigenproblems presented in Section 2. The implementations of the 
iterative solvers are discussed jointly with the parallel designs of matrix-vector 
products for the discretization schemes discussed in Section 3, as to provide the 
reader with a description of complete methods which can immediately be used to 
solve eigenproblems for a wide class of operator:

Three parallel solvers will be presented in this section:
— IRAM-FD solver, based on the 1RAM iterative process and the Finite Difference 

(FD) discretization of the 'nput operator.
— IRAM-FFTsolver, based on the IRAM iterative process and the implicit discrete 

representation of the operator, applied jointly with the FFT algorithms to enhance 
the efficiency of the method.

— IEEM-FFT solver, providing a parallel implementation of the IEEM-FFT 
algorithm, described ;n [ 18] and based on the Iterative Eigenfunction Expansion 
Method presented in Section 2.

The base for the implementation of the two first parallel solvers (IRAM-FD and 
IRAM-FFT) is the PARPACK library, descr.oed in the following section and 
offering portable parallel implementation of the IRAM iterative algorithm, ready for 
use in distributed memory systems. The tasks which have to parallelized 
independently include:

— The matrix-vector product operation for the matrix operator discretized using 
the FD mapping technique.

— Two-dimensional backward and forward Fast Fourier Transforms.
— The m at‘ix-vector product in the IRAM-FFT algorithm which requires 

calculation of the appropriate inner products, involving computation of 2D FFTs.
— The basic iteration of the IEEM-FFT algorithm, involving computation of the 

inner products (as described in the prew >us item) and global norms (requiring 
inter-processor communication in a parallel i nplementation).

5.1 The P_ARPACK library —  The Arnoldi solver for MPP platforms
This section presents a description of the Parallel ARnoldi PACKage 

(PARPACK.) — a portable library implementing the Implicitly Restarted Arnoldi 
Method (IRAM) for distributed memory parallel systems.

The P_ARPACK software has been developed at Rice University (cf. [53]) and 
provides a versatile package of Fortran77 subroutines for solving either symmetric
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or non-symmetric, real or complex matrix eigenproblems. The important feature of 
the Amoldi algorithm which has been exploited in the design of the library routines 
is that the method does not require any explicit form of the ;nput operator matrix to 
be used. Instead, all the information on the considered operator is passed via the 
matrix-vector product. This has teen used by introducing the reverse 
communication interface. On one hand, this interface enables the subroutines that 
perform the Amoldi algorithm iteration to be independent of the input matrix 
storage format and, on the other hand, it makes the user of P_ARPACK free to 
choose the most appropriate method of compufing the matrix-vector product for 
a specified input matrix operator. The general framework of a parallel program 
calling P_ARPACK routines in a reverse communication loop is shown in Figure 
12 and constitutes a basis for the solvers presented in the following sections.

The central point of the presented program is a call to the pd n au p d  ()

-------------  Parameter selection for p d n a u p d () ----------

comm = MPI_COMM_WORLD ! Set the communicator 
call MPI_Comm_size(comm, ! Determine the number of

nprocs, ierr) ! processors used
n = N t size of the problem
nev = NEV 1 number of eigenvalues to be computed
ncv = NCV 1 number of orthogonal columns of V
nloc n/nprocs 1 Determine local size of the problem
bmat = ’I' 1 standard eigenvalue problem
which = ' LM' t find eigenvalues with largest magn.
tol = 1. e- 8 ! set the desired accuracy-
ido = 0 1 first call to reverse communication
info = 1 1 resid contains the initial vector
do 100 i = 1, nloc 1 initialize resid as a vector

r e s i d (i ) = 1 ,d0 1 with 1's as all elements
00 continue
i p a r a m (1 = 1 ; exact shifts with respect to H
iparam (3) = 1000 ; maximum number of updates
iparam(7) = 1 t Mode set to 1

-----------------  Reverse communication loop -----------------

200 continue
call pdnaupd(comm, ido, bmat, nloc, which, nev,

& tol, resid, ncv, v, ldv, iparam,
& ipntr, workd, workl, lworkl, info)

if (ido .eq. -1 .or. ido .eq. 1) then 
Compute matrix-vector product: A*v
call Av(nloc, w o r k d (i p n t r (1)) , w o r k d (i p n t r (2) )

go to 200 ! Loop back to call pdnaupd () again
endif

Figure 12. Calling pdnaupd () P_ARPACK subroutine, solving a non-symmetric 
real eigenproblem in a reverse communication loop.
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subroutine which implements the IR.AM algorithm for a non-symmetric real 
eigenproblem. This call is preceded by the initialization of various parameters 
defining the problem, including: n — the global problem size, n lo c  — the local 
problem size for a given processor (process), nev  — the number of eigenvalues to 
be found, bm at — type of the eigenproblem (standard/generalized), w h ich  -  
-  which part of the operator spectrum is to be considered (e.g. eigenvalues with the 
largest real part or the largest modulus). The in f o  parameter determines whether 
an initial vector v will be submitted. If in f o = l  the initial vector is stored in the 
r e s  i d  parameter. Otherwise, the initial vector is random. The t o l  parameter 
determines the stopping criterion for the Amoldi factorization. The algorithm stops 
if the condition:

is satisfied for all A.. Parameters i p a r a m ( l )  -  ip a ra m (8 )  define various 
options of the algcTthm including the maximum number of Amoldi updates 
allowed or types of shifts used in the polynomial filtering process. A detailed 
description of all the parameters of P ARPACK routines may be found in [15],

Another important design feature of the P_ARPACK library is the possibility of 
applying the Single Program Multiple Data (SPMD) programming style, regarded 
the most efficient and transparent in the parallel message-passing programming. 
This programming technique allows one to write a single code (such as shown in 
Figure 12) .to be executed on all the processors. Once again the reverse 
communication interface to the P_ARPACK subroutines allows the user to choose 
a convenient parallelization strategy for the matrix-vector product operation.

Last but not least, the P_ARPACK library offers portability across a wide range 
of distributed memory parallel systems (including networks of workstations) by 
implementing its parallel routines using standard inter-processor communication 
libraries: the Message Passing Interface (MPI) ([39]) and the Basic Linear Algebra 
Communication Subprograms (BLACS) ([47]).

5.2 Parallel design of the Amoldi factorization
Apart from knowing the functional characteristics of the routines implementing 

the Implicitly Restarted Amoldi method in the P_ARPACK library, it is important 
to be conscious of the parallel design features of the basic Amoldi factorization 
proposed in this library by MaschhofF and Sorensen ([53]).

If, once again, the formula for the Amoldi factorization is examined:

where the symbols have the same meaning as in Section 2.4.1, then the 
parallelization scheme illustrated in Figure 13 may be described as follows:

— the A x A upper Hessenberg matrix H k is replicated on every processor,

Au, < tol -|Af| (38)

A Vk -  Vk Hk + j (39)

— the matrix Vk is block-distributed across a one-dimensional processor grid,
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— fk_ and workspace are distributed accordingly,

— parallel data distribution in the input matrix A is chosen by the user. Still, as 
the outcome of the matrix-vector product has to be distributed analogously

Figure 13. Parallel block data distribution during the Arnoldi factorization applied 
in the P_ARPACK library.

as the matrix H k , the decomposition of the matrix will typically be

commensurate with this block distribution.
According to the conclusions obtained in Section 2.4.3, the memory storage 

requirements for the applied data distribution equal nhcO(l) + O(P) per processor, 
where nhc ~ n/P (P equals the number of processors) and l = k+ p  equals the sum of 
the number of eigenvalues to be found and to be filtered-out.

A crucial aspect of parallel implementation in distributed memory systems is 
the size of messages communicated between the processors during the execution of 
the algorithm. Referring to P_ARPACK and Arnoldi factorization there are only 
two communication points. One of them is computation of the norm of the

distributed vector f k and the other is the orthogonalization of f k to Vk using the

MGS algorithm, where the global scalar products of a given vector with the 

columns of the matrix Vk have to be computed. In the MPI implementation these

global norms and sums are calculated using a global reduction procedure 
M P I_ A llred u ce  (. ). For a single iteration in the Arnoldi factorization, the 
overall size of elements communicated across the processors is extremely low and 
is of order 0(Pk), where P denotes the number of processors and k equals the 
number of eigenvalues to be found.

A certain kind of trade-off may be observed in the parallelization strategy 
applied in the IRAM iteration. As all the operations on the upper Hessenberg matrix

H k are replicated on each processor, the communication of the results is not 

needed. Nevertheless, this introduces some redundancy to the algorithm that may
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lead to a serial bottleneck as the size k of the matrix increases. This may eventually 
cause the lack of scalability of the method.

According to the results obtained in Section 2.4.3 the numerical complexity of 
the parallel version of a single update in a p-step IRAM algorithm equals 0(p2 « ) 
or (if p  = 0(k)) 0(k2nhc) per processor, where nhc is the local dimension of the 
problem., in the above estimations the costs of performing the parallel matrix- 
vector operation and storing the operator matrix, which largely depend on the 
choice of finite-dimensional mapping method, have been excluded. This problem 
will be addressed in the following sections.

5.3 Parallel Arnoldi solver for FD operator discretization
This section presents two portable implementations of a parallel solver of a non- 

-symmetric linear operator eigenproblem based the Implicitly Restarted Arnoldi 
Method (IRAM), for operators discretized using the Finite Difference method.

The implementations are based on calling the P_ARPACK library routines 
which perform the IRAM iteration. Consequently, according to the description of 
P ARPACK from the previous section, the implementation of the solver follows the 
reverse communication scheme shown in Figure 12. Therefore, the implementation 
of the solver may concentrate on only two aspects: 1) Defining parallel data 
distribution, which includes distribution of the vectors and the discrete operator and 
2) Implementing the parallel operation of matrix-vector product which corresponds 
to the applied parallel data distribution.

5.3.1 Implementation o f the matrix-vector product in parallel

As discussed in Section 3.2 the matrix obtained in the FD mapping is a highly 
sparse matrix with very regular structure. Consequently, a simple parallel block data 
distribution scheme may be applied. In this distribution each of the processors

.Matrix operator A Vector v

Needed by 
Processor 1

N eeded by 
Processor 2

Needed by 
Processor 3

Figure 14. Schematic o f  a block distribution among the processors o f a quasi five-diagonal 
sparse matrix and the corresponding vector. The Figure shows that in order to calculate 

the matrix-vector product with such distribution the grayed parts o f the vector y need 
to be communicated between the neighbouring processors (processes).
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(processes) stores a specific range of rows of the operator matrix and a corresponding 
range of elements of the input vectors. This has been illustrated in Figure 14.

The matrix presented in the Figure shows the discrt 'zed differential operator 
discussed as an example in Section 3.2. With most of the non-zero elements located 
on five diagonals, the presented distribution minimizes the inter-processor 
communication necessary to compute the matrix-vector product. The regions of the 
input vector y which have to be communicated between the pairs of neighbouring 
processors have been shown in the Figure as grayed regions. In our example, as the 
matrix (and the vector) size equaled 39700, the number of the vector elements to be 
communicated between each pair equaled approximately 400.

In order to investigate the importance of the matrix-vector product operation on 
the overall parallel performance of the solver this operation has been implemented 
using three different methods, including different formats for storing the operator 
matrix:

— In the first implementation all the non-zero elements of the local part of the 
matrix belonging to an appropriate processor are stored using the Compressed 
Sparse Row (CSR) format. In this representation the information on the regular 
quasi five-diagonal structure of the matrix is not used. In this case the overall 
number of memory locations needed to store the matrix equals 2 • nnz + n + 1, 
where n is the matrix dimension and nnz is the number of the non-zero matrix 
elements. In order to perform the matrix-vector product all the elements of the 
vector v are communicated, so that the entire vector is “known" to all the 
processors. In the case of the MPI-based implementation this communication 
may be performed by applying a single high level collective communication 
routine, such as M P I_ A llG a th e r  ( . ) . Clearly the overall memory 
requirements have to be incremented by P ■ n, where P is the number of 
processors used. Another issue which has to be addressed in a parallel 
implementation is the overall size of the messages communicated between the 
processors. In the convdered case, this size is relatively high and equals 
approximately (P -  1 )n elements. After the communication has been completed 
each of the processors calls a general purpose SPARSKIT library ([31]) routine 
amux (. ) which calculates the matrix-vector product for the appropriate range 
of rows of the distributed matrix. As it is seen, the procedure presented above 
may be used to perform a parallel matrix-vector product for an arbitrary block- 
distributed sparse matrix. The two other implcmentati .ms use the characteristics 
of the matrix to reduce both complexity of serial operations and storage, as well 
as the size of the inter-processor communication.

— In the second implementation a serial optimization is performed. If the matri? 
discussed in Section 3.2 is considered, then on each of the processors a hybrid 
type of storage may be applied. The five diagonals are stored separately in the 
5 x /j matrix and the remaining 5% of the elements are stored in the CSR format. 
The resulting storage requirements are lower than in point 1 and (assuming that
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5n ~ 0.95nnz) equal approximately 0.95nnz + 2 • 0.05mmz +.n + 1 = 1.05nnz + 
n + 1 elements. Similarly as in the first implementation the entire vector y is 
communicated across all the processors. The algorithm of calculating the matrix- 
vector product is also a hybrid one and consists in computing the product of the 
matrix elements located on the five diagonals with the vector elements and 
computing the product of the remaining matrix elements with the vector using 
the amux ( . )  routine.

— In the third implementation the serial part of the computations and the matrix 
storage scheme remain the same as in the previous implementation. Instead, the 
inter-processor communication is significantly optimized. Once again the 
information on the structure of the matrix operator is used. In the considered 
example the band of the matrix (understood as the maximum difference between 
the row indices for non-zero elements located in the same column) equaled 400. 
Consequently, only 400 elements had to be communicated as to enable every 
processor to compute its part of the matrix-vector product (cf. Figure 14). In 
consequence, no collective communication routines are necessary and a simple 
two-step inter-processor communication scheme shown in Figure 15 may be 
used. This Figure shows how the necessary parts of the input vector y are 
communicated using a series of simple blocking send and receive procedures. 
The pseudo-Fortran77 code of this operation is shown in Figure 16. In our 
example the overall size of the data communicated between the processors 
decreases dramatically and equals approximately (P -  1) ■ 0.01m elements, as 
400 = 0.01 • 40000 ~ 0.01«. This means the size of communication is reduced 
by a hundred times! Clearly, the presented scheme of communication may be 
applied to arbitrary banded matrices provided that b < (2 • n/P), where b is the

Step 1 

Step 2

MPX_Send(.) MPI_Send(.)
- MPI Recv(.) - MPI Recv(.)

L iT

P E I PE2 PE3 PE 4 PE5

P E I PE2 PE3 PE 4 PE 5

S __ ? !
MPI_Send(.) MPI_Send(.)

- MPI Recv(.) - MPI Recv(.)
Figure 15. Two-step communication scheme used in the parallel matrix-vector product calculation.
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bandwidth of the matrix of size n, block-distributed among P processors. If this 
condition is not satisfied more complicated schemes have to be applied involving 
not only pairs of neighbouring processors.

call MPI_Comm_size(MPI_COMM_WORLD, size, ierr) 
call MPI Comm rank (MPI COMM_WORLD, rank, ierr)

if (mod(rank,2) .eq. 0) then 
if(rank .It. (size-1)) then

call MPI_Recv() # receive data 
- call MPI_Send() # send data to 

end if
if (rank .gt. 0) then

call MPI_Recv() # receive data 
call MPI_Send() # send data to 

end i f 
else

if (rank .gt. 0) then
call MPI_Send() # send data to 
call MPI_Recv() # receive data 

end if
if(rank .It. (size-1)) then

from 'rank+l'-th processor 
'rank+l'-th processor

from 'rank-1'-th processor 
'rank-1'-th processor

'rank-1'-th processor 
from 'rank-1'-th processor

Figure 16. Pseudo-code involving MPI calls showing the optimized inter-processor 
communication scheme during the matrix-vector product operation.

call MPI_Send() it send data to 'rank+l'-th processor 
call MPI_Recv() # receive data from 'rank+l'-th processor 

end if 
end i f
The implementations discussed above used Message Passing Interface (MPI) as 

an inter-processor communication platform and exploited the MPI interface 
provided within the P_ARPACK library. These programs may be ported to var .us 
parallel systems, still itis  recommended to use them in scalable distributed memory 
supercomputer systems. The main reason is that the vendor supplied 
implementations of the MPI standard provide library functions, containing hi~h- 
level collective communication and global reduction routines which are highly 
optimized for use in, specific system architectures. Therefore, while designing and 
implementing the parallel solver using MPI, part of the complexity may be hidden 
in high-level inter-processor communication routines without loosing any 
efficiency.

5.3.2 PVM-BLACS implementation

Apart from the MPI-based parallel functions, the P_ARPACK library also 
provides routines supporting Basic Linear Algebra Communications Subprograms 
(BLACS) inter-processor communication platform. Availability of the BLACS 
version of this parallel library extends its functionality and enables its users to 
apply high level (as compared to MPI) designs of communication schemes in their 
parallel solvers. Generally speaking, using BLACS gives simpler and faster
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implementation at the price of giving up the versatility offered by MPI.
The BLACS version of the P ARPACK library not only does allow one to 

implement the entire solver using this communication library but also provides 
means to use concurrently different inter-processor communication platforms on the 
implementation level. This somehow non-standard use of BLACS-P_ \RPACK 
library has been presented in the rest of this section.

The parallel MPI-based solver described in the previous section may also be 
implemented using two communication platforms simultaneously. Firstly, the 
BLACS interface to P_ARPACK routines may be applied and secondly Parallel 
Virtual Machine (PVM) (cf. [42]) library functions can be used to implement the 
solver, including the routine for calculating the parallel matrix-vector product.

program parpackfd

include 'fpvm.h' # Include the PVM header file

call pvmfmytid (mytid) # Enroll in the virtual machine

call pvmfjoingroup ('solver', me) # Join a group of processes

if ((me .eq. 0) .and. (NPROCS .gt. 1)) then 
t i d s l (0) = mytid
call pvmfspawn ('parpackfd', PVMDEFAULT, '*' , # Spawn
NPROCS-1, t i d s l (1), info) # processes

end if 
#
# Synchronize all the processes
#
call pvmfbarrier ('solver' , NPROCS, info)
#
# Communicate the array of tids among all the processes
#
if (me .eq. 0) then

call pvmfinitsend (PVMDEFAULT, info) 
call pvmfpack (INTEGER4, t i d s l (0), NPROCS, 1, info) 
call pvmfbcast ('solver', 1, info) 

else
call pvmfrecv (-1, 1, info)
call pvmfunpack (INTEGER4, t i d s l (0), NPROCS, 1, info) 

end if 
#
# Initiate pvm processes in the BLACS domain
#
if (NPROCS .eq. 1) then
call SETPVMTIDS (NPROCS, mytid)
else
call SETPVMTIDS (NPROCS, t i d s l (0)) 
end if 
#
call BLACS_PNFO (mypinfo, nproc)
#
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#
# Get the BLACS context
#
call BLACS_GET (0, 0, context)
#
# Initiate the block data distribution by rows
#
call BLACS_GRIDINIT (context, 'R ' , nproc, 1)
#
# Obtain information on the distribution
#
call BLACS_GRIDINFO (context, nprow, npcol, myprow, mypcol) 
#
# Synchronize all the processes
#
call pvmfbarrier ('solver', NPROCS, info)
#
# Call the main solver routine
#
########################################
#
call solver (me, context, NPROCS, tidsl)
#
######################*#################
#
# Leave PVM group and the virtual machine
#

Figure 17. This fragment o f Fortran77 code presents main points o f an SPMD program 
in which both PVM and BLACS communication subsystems are initialized to be used 

jointly in an arbitrary parallel solver (called by the solver (. ) subroutine).

call pvmflvgroup ('solver', info) 
call pvmfexit (info)

stop
end
The combination of the two commurf cation platforms requires constructing 

a certain kind of a “wrapper” for the parallel numerical solver in which both 
systems are coherently initialized. Such general construction has been shown in 
Figure 17 which presents an SPMD (Single Program Multiple Data) parallel 
Fortran77 code. In the Figure, the call to the s o lv e r  (. ) routine, which performs 
all numerical calculations, is preceded by several initialization steps:

1. The first processor (process) enrolling in the virtual machine creates the group of 
processes named “solver” and spawns a given number of processes (NPROCS-1).

2. All the spawned processors (processes) executing the program enroll in the 
Parallel Virtual Machine and join the “solver” group.

3. After these steps, all the processes are synchronized u s in g p v m fb a rr ie r  ( .) .

4. The array of tids containing task ids of all the members of the “solver” group is
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communicated to all the processes from process 0. In this way, all the processes 
may identify other processes involved in the parallel solver.

5. Following is the BLACS ii Itialization which starts with a call (executed by all 
the processes) to the SETPVMTIDS ( . ) BLACS library function. (The 
SETPVMTIDS ( . ) routine belongs to “unofficial” functions of the BLACS 
library and is available only in the PVM-BLACS implementat! m of this library.) 
This function establishes processes with provided task ids as processes which 
take part in the BLACS communication.

6. The next nnportant step is obtaining the BLACS context by the processes by 
calling the BLACS _GET ( . )  routine. The BLACS context (an equivalent of the 
MPI intra-commurlicatojr) establishes a “commurnV.uion universe” for the 
processes involved in the solver.

7. The following step (optional at this point) defines the parallel data distribution 
type used by the solver, by calling the BLACS_GRIDINFO ( . )  routine. In the 
presented program the block distribution by rows has been applied (cf. Figure 17).

Afterwards the s o l v e r  ( . ) routine is called with parameters defining the 
number of processes involved in the computation, their tids related to ordinal 
numbers in the “solver” PVM group (and commensurate with the ordinal numbers 
of the processes established by BLACS), the BLACS communication context and 
the ordinal number of the process calling the routine. This set of parameters is 
sufficient to estabbsh a coherent communication using jointly BLACS and PVM.

The i nplementation of the actual parallel Amoldi solver using BLACS and 
PVM is entirely analogous to its MPI implementation. In the calls to P_ARPACK 
library routines the MPI communicator is replaced by the BLACS context and in 
the implementation of the matrix-vector product (the optimized version) the same 
communication scheme from Figure 15 is applied with p v m fs e n d ( .)  and 
pvmf r e c v  (. ) function calls and additional data packing and unpacking routines 
replacing the MPI blocking send and receive functions.

The main advantage of the presented implementation is that it extends the 
functionality of P ARPACK which originally does not have a PVM version of its 
library routines. Consequently, using the scheme shown in Figure 17, the programs 
which applied PARPACK routines can also make use of the capabilities of the 
Parallel Virtual Machine communication system. As PVM remains the most 
popular "brary for parallel network computing, the P_ARPACK based solvers 
implemented in PVM may be efficiently ported to the environment of networks of 
workstations (NOWs). In th is way, many of the PVM features, specifically oriented 
for use in parallel network environment, may be exploited tc improve performance 
of the solvers in the network systems. Although BLACS is a static system and 
consequently the P_ARPACK routines may be used with a constant number of 
processors (processes), the reverse communication interface to these routines 
enables one to introduce dynamic process creation to the solvers implemented in 
PVM while computing in parallel e.g. the matrix-vector product. In this way, if the
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time spent on computing the Av product is suitably longer than the ti ne spent in

the P_ARPACK routines, then the design involving dynamic process creation may 
produce in some cases more efficient solvers, fully exploiting the potential of 
a given network environment.

5.3.3 Numerical and memory complexity o f the method

The memory complexity of the parallel solver may be easily derived if the 
results of the discussion from the previous sections are applied. In the case of 
a general'sparse matrix the overall memory requirements per processor equal the 
sum of the storage needed by the solver 0(k2nhc) and the storage size used by the 
matrix in the CSR format 0(2 ■ nnz. + n, +1), where nnz, is the number of non- 
-zero elements in the locally stored part of the matrix and n « n/P, where P is the 
number of processors. It may be seen that a very undesirable situation will occur if 
the non-zero matrix elements are not distributed evenly in the matrix. In this case 
the memory requirements will vary very significantly among the processors.

The numerical complexity of the parallel solver estimated for a single update in 
a p-step IRAM algorithm consists of the cost of performing the Arnoldi 
factorizations which equals 0(p2n ) and the cost of calculating p  matrix-vector 
products with the sparse matrix stored in the CSR format. The latter cost equals 
0(p ■ nnzl ). Consequently, the overall (per processor) cost of a single update in the 
iterative solver equals O(p2nloc + p ■ ««$,). Once again, this shows that the 
workload imbalance may result from a non-uniform distribution of non-zero 
elements in the input sparse matrix.

The size of messages communicated among the processors is determined 
primarily by the data sent and received during the matrix-vector product. In the case 
of a general sparse matrix with a highly irregular distribution of non-zero elements 
this size may be as high as 0(p(P -  1)/?) for a single update in a p-step IRAM 
algorithm. If the matrix is a banded one with a bandwidth b then (assuming that 
b < (2n/P)) this message size is reduced to 0(p(P  -  1 )b) and becomes independent 
of the problem size n.

5.4 Parallel Arnoldi solver with implicit discrete representation of the operator
This section presents a parallel program which exploits the Method of Moments 

representation of both functions and the input operator in order to solve the given 
operator eigenproblem using the Implicitly Restarted Amoldi Method, implemented 
in the P ARPACK library. The salient feature of tin discrete representation is that 
the operator matrix is stored implicitly, resulting in reduced storage requirements 
and allowing much more efficient implementation of the matrix-vector product 
operation.

The description concentrates on presenting the MPI implementation of the 
solver wlfch may be ported to various distributed memory systems and deals with 
real non-symmetr:; eigenproblems of operators whose domain are 2D vector fields
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defined over two-dimensional space. This choice of the operator domain is guided 
by numerous applications in which such vector fields play an important role. The 
chosen 2D domain also generates some non-trivial issues concerning parallel design 
of the algorithm which make it an interesting research subject.

Analogously as in the previous section, the implementation of the solver is 
based on the reverse communication scheme (presented in Figure 12) in which calls
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Figure 18. Schematic o f parallel data distribution in matrix-vector product design for  
the DFT-based operator and function representation. The dashed lines mark 

the block data distribution pattern among the processors.

to P_ARPACK library routines (mainly the pdnaupd  () routine) performing the 
Amoldi factorization are followed by calls to user-supplied routines calculating the 
matrix-vector product.

The following section presents the parallel implementation of the matrix-vector 
product jointly with the description of the parallel distribution of the elements of 
the input vector.

5.4.1. Parallel implementation o f the matrix-vector product using two-dimensional 
Fast Fourier Transform

Assuming that the domain of the given linear operator T is the space of 2D 

vector fields H = {h x, H }') where Hx, FF e L2([0, b] * [0, a]) the following
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representation for the functions in this domain has been defined in Section 3.3:

H = r > r x r v r > 1
(40)

c x and c jij kl

= i / / ',  /7- ) ( / / ',  /?1',) ( / / " , )  ( / / v, /7,v2 ) . . . , ( / /1, /r;,,,) ( / / ',  )]

where H  is a finite representation for the vector field H = {h x, H y \
are Fourier coefficients defined by appropriate inner products and {h*} and {hj)  
form orthonormal bases in the Z,̂ ([0, b] x [0, a]) functional space.

As described in Section 3.3, calculating the matrix-vector product in the case of 
the discussed representation may be performed using an efficient method which 
dramatically reduces the computational cost of this operation, as compared to the 
classical approach used in the Galerkin Method (GM). In this unorthodox approach 
the operation of calculating matrix-vector product involves three steps: 1)

calculating the backward 2D FFTs, 2) calculating the TH product in the spatial 
two-dimensional domain and 3) calculating forward 2D FFTs. This has been 
illustrated in Figure 18.

This Figure also shows the main idea of parallelization of this matrix-vector 
product, which is based on block-distributing (by rows) of the input elements of the 
vector H. given by the equation (40). In other words, each processor stores a range 
of rows of the matrices of coefficients [c *] and [c.J]. The number of rows stored by 
each processors is balanced, as to assure a similar workload for all the processors. 
After completing the computation of the matrix-vector product each processor

stores the same range of rows of the Fourier coefficient matrices for the TH field.
In the Figure 18 it may also be noted that after computing the two-dimensional 

backward FFTs, the elements of the matrices Hx and Hy are block distributed by 
columns and not by rows. This is the effect of the parallel design of the two- 
dimensional FFT algorithm. Let us look in more detail at the parallel algorithm of 
computing the backward two-dimensional FFT. The schematic of this operation has 
been shown in Figure 19. The computation involves three steps:

1. As the matrices (from which only one was shown for simplicity) of the Fourier 
coefficients are distributed by rows, each processor computes a backward one
dimensional FFT in the x-direction for a locally stored range of rows.

2. In order to perform the backward one-dimensional FFT in the y-direction the 
processors need to have access to a full range of coefficients from specified 
columns. Consequently, a parallel transposition of the distributed matrices 
obtained after completing the backward FFTs in the x-direction has to be 
performed. This operation involves mainly the inter-processor communication, 
as each processor has to send (P -  1) blocks of the locally stored part of the 
matrix and has to receive also (P -  1) different blocks from other processors. 
In the MPI implementation of the solver this operation may be performed by 
using a high-level collective communication routine M P I_ A ll to a l l  (. ) (or
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M P I _ A l l t o a l l v  ( . ) for non-equal sizes of the transmitted matrix blocks) 
which sends from all the processors to all the processors the specified blocks 
of data. Clearly, this operation may also be performed by using simple send and 
receive operations by scheduling these operations appropriately. Still, if the 
high-level message-passing routine is applied, the programming complexity is 
passed to the library implementation. Another advantage of such approach 
is that we may achieve better performance if a native implementation of the MPI 
library which optimizes collective communication routines for a specific 
interconnection network topology is applied in a given testing platform. In the 
actual implementation this approach has been successfully used, producing
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Processor 2 
Processor 3
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m m backward FFT 0,0 ; ; j
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x-direction ' / . ; 256,lOj
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FIT
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Figure 19. Idea o f  the parallel backward two-dimensional FFT algorithm design. 
The scheme o f performing a forward 2D FFT is entirely analogous.

a highly efficient parallel routine as shown in Section 7.

3. After the transposition each processor computes a one-dimensional FFT in the 
y-direction for a locally stored range of columns.

This completes the parallel operation of computing the two-dimensional FFT. 
One may ask whether the elements of the output matrices should be block distributed 
among the processors by rows rather than by columns. The answer is negative. The 
main reason is that there is no need to perform an extra transposition operation 
(which involves a considerable amount of inter-processor communication) in order to 
obtain a parallel block distribution by columns. As may be seen from Figure 18, after

computing the backward 2D FFT and performing the TH  operation a forward 2D 
FFT is performed. During the forward 2D FFT the parallel block distribution by rows 
is restored. The forward FFT involves analogous steps as those shown in Figure 19, 
namely: 1) Computing one-dimensional FFTs in the y-direction, 2) Performing 
a parallel matrix-transposition using the M P I A l l t o a l l v ( . )  routine,
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3) Computing one-dimensional FFTs in the x-direction.
By reversing the order of computing one-dimensional FFTs, two unnecessary 

(and costly) transposition operations are avoided. The numerical tests performed by 
the author comparing the two versions of the algorithm for computing the matrix- 
vector product — the one described above and the older serial implementation 
which performed additional transpositions (applied e.g. in [18]) show that for 
a single-processor execution the first algorithm was by about 30 % faster than the 
second serial algorithm. Even the overheads due to initiating the MPI 
communication and additional computations needed to establish the parallel data 
distribution scheme did not prevent the parallel algorithm from running faster on 
one processor than the second algorithm. This fact implies that the execution times 
of the solver, given in [18] may be further reduced by up to 30 %.

So far nothing has been told about the operation TH  performed in the spatial 
domain during the matrix-vector product. This step is entirely dependent on the 
form of the operator T. Still, in many applications this operation may be completed 
in a linear time with respect to ./V = ./V • N , where N  and N  denote the FFT lengths 
in the x- and y-directions respectively. Before discussing in detail the memory and 
computational complexities of the presented version of the parallel matrix-vector 
product computation let us present a special case of the algorithm which results 
important in certain application fields.

5.4.2 Special case o f the FFT-based matrix-vector product implementation

Let T be a given infinite-dimensional linear operator and its domain is the same 
space of 2D vector fields as defined in the previous section. It is assumed that this 
operator may be decomposed (analogously as in the IEEM method - compare 
Section 2.5.1) as follows:

T = L -  F (41)
where the operator L is a self-adjoint adjoint operator. Furthermore it is assumed 
that L is a scalar operator and its eigenfunctions are the functions from the 
trigonometric bases {hf}  and {hj}  (which form the orthonormal bases in the 
discussed functional space) and the corresponding eigenvalues {A.*} and {A^} 
are known.

Let v = [vx, vy ̂  s X  be an eigenfunction of the operator T corresponding to the 

eigenvalue A:
Tv = L v -F v  = Av (42)

The above equation may be written in the following form:

i f ,  • Lv -  n ,  Fv = m xv 

U y ■ Lv -  II ̂  • Fv = AII^v

(43)

(44)
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where TLx([qx,q f i )  = qx and I I , ([<?,, qy]T) = qy. Denoting IT F = Fx and 
11  ̂■ F = Fv and taking into account that L is a scalar operator the above equations 
may be rewritten as:

LVj -  Fvv = AVj (45)

Lvv -  F^v = Xvy

Expanding the field v in the series of the h x and h.y functions:

- W -
1T

(46)

(47)

and inserting the above expansion into equations (45) and (46) gives:

u 0 (48)

(49)

Taking the inner product of both sides of the above equations by h*  and h
correspondingly one gets:

Ckl h-kl A hi ) - kcu

C'kH\t ~ (^VHi )= ̂ ckl

(50)

(51)

Consequently, if the already discussed finite approximation of the operator T is 
applied the elements of the emerging operator matrix are given by the following 
formulas:

- ( fX j , h xu ) ( u h ( k , i )  

A '-(F ^ ,^ ) (ij)=(k,l) 

(tH , h ,)= -(fyH , h i )  {ij)*(k,i)

a^-(fva ,a ) (ij)=(k,l)

(52)

(53)

(54)

(55)

Consequently the modified steps of the parallel FFT-based matrix-vector 

product 7 7 /,  where T is a finite representation of the operator T and H  denotes

the finite representation of the field H  , are given as follows:
1. Given the vector of Fourier coefficients c x and c j  compute two 2D backward 

FFTs in order to obtain H  and H ,x yr 2

2. Compute FXH  and FyH
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3. Compute two 2D forward FFTs in order to obtain (f v// ,  h*) and (f vH,  hy")

4. Compute c~ = AxyCy -  (f xH , h*) and c£ = Ayklckl -  (f vH,  hyk, )

Note that an additional step 4 of the above algorithm does not involve any 
communication, as all the necessary data is stored locally be each processor. 
Therefore this step is “perfectly parallel”.

5.4.3 Numerical and memory complexity o f the method

In this section the numerical and memory complexity of a single p-step update 
of the IRAM algorithm involving the FFT-based matrix-vector product will be 
investigated. Applying the results from Section 2.4.3 and Section 3.3.1 one may 
estimate the overall memory storage needed by the parallel solver as the sum of the 
storage needed by the IRAM procedure {{NIP) ■ 0{k) + 0{k2)) and the memory

required in the matrix-vector product computation {p{lK  / P + 2N  / P + 6-/^)),
where P is the number of processors, k is the number of eigenvalues to be found 
(p = 0{k)), K - K y  AT, where Kx and A" denote the FFT lengths in the x- and 
y-direction respectively and N  is the problem size. (A= Ar • A , where A and A 
denote the number of expansion functions used to represent the functions in the 
respectful spatial dimensions.)

The numerical complexity of a single update involves the time cost of 
perfonning the Amoldi factorizations (0{p2N/P)) and the cost of computing 
p  matrix-vector products which equals pO{KiP log K). The overall cost is given by 
the formula:

^ o ( p 2N + p K \o g K )= ^ o (k 2N + kK\ogK)  (56)

with all the symbols having the same meaning as above.
Another aspect which has to be addressed is the size of messages communicated 

in the algorithm which in this case is dominated by the size of the messages 
communicated during the matrix-vector product computation. In a single matrix- 
vector product the communication occurs during the two transposition operations. 
The size of the communicated data equals 0{{KNy + K N ) { P - \ ) I P )  elements. 
Consequently in a k-step IRAM algorithm the communication size equals:

o(p{KxNy+KyNx){P-\)IPyo(p4KN{P-\)p) (57)

assuming that Ky = 0{K ) and Ny = 0{Nf.

5.5 Parallel Iterative Eigenfunction Expansion Method with the FFT 
integration

This section presents a parallel algorithm solving operator eigenvalue problems 
based on the Iterative Eigenfunction Expansion Method described in Section 2.5.3. 
The finite dimensional mapping of the input operator is based on the implicit
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operator representation as discussed in Section 3.3. In this representation 
calculation of the scalar products may be implemented using Fast Fourier 
Transform, resulting in the reduced numerical cost. Such parallel implementation 
has already been presented in the previous section for the case of operators whose 
domain is the appropr'ately defined space of two-dimensional vector fields. As all 
the considerations concerning computing the scalar products (the matrix-vector 
product) and the discussion of the parallel design of the computations and parallel 
data distribution are entirely the same as in the previous sections (5.4.1 and 5.4.2) 
we shall now limit to presenting the explicit steps of the IEEM method in the basic 
version and :.i the modified version, which applies the deflation techniques 
(Compare Section 5.4).

5.5.1 Parallel implementation o f the basic algorithm

As discussed in Section 2.5 the basic IEEM is capable of finding a single 
eigenvalue from the point spectrum of a given operator T. We will assume that the 
domain of the input operator is the Z,, space defined over a two-dimensional 
bounded rectangular region Q = ([0, b] x [0, a]) e R2 and the appropriate 
decomposition of the operator (as discussed in Section 2.5.1) may be applied. In 
this case all the results from the previous sections (especially the Section 5.4.2) may 
be applied. In this context, a single Z-th iteration of the IEEM-FFT may be 
described by the following steps ([26]):

ALGORITHM 5: IEEM-FFT.

STEP 1: Applying the Fourier coefficients:

v ( A - l )  y ( k - 1) r(A-l) y ( k - 1) „.t(*-l) ..v(A-l)
11 ’ c l l  >C I2 >C I2 ’ c m«

obtained in the previous iteration, apply the parallel procedure 
involving 2D backward and forward FFTs to compute the following 
inner products:

(fs

where / / ^ ' l  = il l  ll'~

and //'(*-') = Y.FPX.« =  £ cy(k- \ )
kl h V

kl

STEP 2: Compute the new values of Fourier coefficients c f {k) and ckf k):

,(o M * ~ W )
“ A J -A " - '1

A i - i * - "
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STEP 3: Normalize the Fourier coefficients:

S,
,  cu

(k)

IH (*) i

r y(k)
a v - __
gkl ll'lfN

STEP 4: Compute the k-th approximation of the eigenvalue A:

Assuming that a parallel block distribution by rows of the matrices of Fourier 
coefficients [c***] and [ckf k)] has been applied, the following inter-processor 
communication has to be performed during the iteration. Apart from inter-processor 
communication arising in Step 1 of the method additional communication is 
performed in Steps 3 and 4. The communicaii an in Step 3 is necessary to compute

the global norm of the field H^'1. In the MPI implementation this operation 
involves a single call to the M P I_ A llred u ce  (. ) routine. After this call all the 
processors know the value of the squared global norm. The size of messages sent in 
this step is very small and equals about 2P elements. An entirely analogous 
situation occurs in Step 4 where also a global sum has to be computed and an MPI 
global reduction procedure is used to this end. Summing up, the intensive 
communication appears solely in Step 1 of the presented algorithm.

Applying the results obtained in the Section 5.4.3, one may easily assess the 
complexity of the parallel version of the IEEM-FFT method. The memory

complexity equals: oif-K  / P + 2N  / P + 6 J~K ), where P is the number of processors
used, K = Kx - Ky is a product of the FFT transform lengths in respectful directions 
and N = Nx - N  is the problem size. The computational complexity of a single 
iteration consists of computing the inner-products which involves 0(K/P  log K) 
operations and the complexity of the steps 2-4 which is linear (0(N/P)). The overall 
computational complexity may be estimated at the level 0(K/P  log K). The size of 
messages is roughly the same as in the previous method and equals:

O
P -1 ■Ik n

\

5.5.2 Implementation o f the deflation procedures

This section presents a modification of the IEEM algorithm described in the 
previous section. In this algorithm the deflation procedures, introduced in Section
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2.5.4, are incorporated in the iteration loop allowing one to find a few eigenvalues 
from a given operator’s spectrum. It is assumed that (s -  1) eigenvalues (together 
with corresponding right and left eigenvectors) have already been found in the 
previous stages of the algorithm. This assumption requires an additional comment. 
Generally speaking finding left eigenfunctions (eigenvectors) of a given operator 
may become a problem which is equally complex as the problem of finding right 
eigenvalues, as it may require solving the adjoint eigenproblem. In this case the 
complexity of the presented method may even double. Still, in some applications, 
including some problems arising in electromagnetics, computation of left 
eigenvalues may be performed in a different way, as described in Section 2.2. If this 
is the case, then deriving left eigenvalues is a fairly inexpensive operation which 
only slightly increases the computational complexity of the method. With the above 
assumptions the steps the &-th iteration of the algorithm are summarized in the 
following pcints:

ALGORITHM 6: lEEM-FFT-deflation.

STEP 1: Applying the Fourier coefficients:

*(*-1) 1) „*(*-!) n y { k -1) „ * ( * - ! )  v ( * - l ) ]'11 ’ G l  ’ C12 ' C \2 ’ Cmn

obtained in the previous iteration, apply the parallel procedure 
involving 2D backward and forward FFTs to compute the following 
inner products:

iFxH k~',h;) (FyH k-" M )

where H {k~x) = {$ix{k~x) ,H  y{k~x)\  M x'y{k~x) = ijC$'y{kAfo*'» . 

STEP 2: For r = 1, ..., (s -  1) compute the following scalar values: 

tr = a ,\{E r,H {kA])
wheie a. are the deflation coefficients, A previously computed 
eigenvalues of the input operator and Er are the corresponding left 
eigenvectors.

STEF 3: Compute the new values of Fourier coefficients c*(k) and c j (k):

cu -■

Ctrl —

STEP 4: Normalize the Fourier coefficients:

r *(k) 
x ij

Stj = ITHTTiWII
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STEP 5: Once again, for r = 1, (5 -  1) compute the following scalar
values:

t.

where ar are the deflation coeffic ents, Xr are previously computed 
eigenvalues of the input operator and Er are the corresponding left 
eigenvectors.

STEP 6: Compute the k-th approximation of the eigenvalue A:

r= \

5-1

M *-1, v h jL ''<
r = l

After the convergence of the above iterative process is obtained, the 5-th left 
eigenvector has to be computed. This may be done by either solving the adjoint 
problem or, if possible, deriving this vector from the ~ght vector (as shown in 
Section 2.2). After the left eigenvector is found it has to be normalized as to obtain 
the following relation:

Figure 20. Cross-sections o f the waveguiding structures used during numerical tests. 
In the Figure all dimensions are given in millimeters.
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& > £ ) = !
In order to enhance the stability of the iterative process involving the deflation 

procedure the orthonormalization procedure (MGS algorithm) is introduced to the 
iteration after Step 3 (and is executed every few iterations). In this procedure is the

vector field is re-orthonorma'ized with respect to (5 -  1) left eigenvectors

Ey-->Es-\

6. Application and validation of the algorithms
This section presents application of the algorithms presented above to solving 

operator eigenproblems arising in electromagnetics or more specifically in the theory 
of electromagnetic waveguides. The eigensolvers are used to find propagation 
constants in selected dielectric waveguides, shown in Figure 20. The tested structures 
include a slab waveguide (A) and image guides (B,C) with discontinuous permittivity 
profiles as well as an elliptical guide (D) with a continuous permittivity profile s (x, y).

The numerical tests presented wthin this study include validation of four 
algorithms of solving operator eigenproblems: 1) IRAM-FD algorithm, 2) IRAM-FFT 
algorithm. 3) IEEM-FFT-deflation algorithm and 4) IEEM-FFT-NI algorithm. The 
last algorithm is a modification of the IEEM-FFT algorithm which extends 
applicability of this method to modelling waveguides with discontinuous pennittivity 
profiles and will be presented in the following section.

The results obtained using the mentioned algorithms are then compared to the 
results produced by 1) the Transverse Resonance Method (TRM) which is regarded 
one of the most accurate algorithms for finding propagation constants, suitable while 
dealing with certain relatively simple waveguiding structures; 2) the Galerkin Method 
(GM) in which the operator is represented by the appropriate inner products, as 
described i.i Section 3.3. Although the idea behind the representation of the operator is 
the same for the Galerkin Method and for the IRAM-FFT ar.d IEEM-FFT algorithms, 
the two extremeh important differences occur: 1) In GM the operator matrix is stored 
explicitly as compared to the implicit storage applied in the two latter algorithms and 
2) For the Galerkin Method the analytical integration s used to compute matrix 
elements (Fourier integrals) as opposed to the FFT integration applied in the two other 
algori hms. In the case of the eigensolver implementing the Galerkin Method used in 
comparative tests the eigenproblem for the generated operator matrix has been solved 
using the QR algorithm.

Before presenting the results of numerical tests let us address a few issues 
concerning operators which arise in numerical modelling of electromagnetic 
wavegT ides.

6.1 Modelling electromagnetic waveguides using operator formulation
The forms of differential operators, derived from Maxwell’s equations, which 

model electromagnet!1, fields m dielectric waveguides have already been discussed in 
Section 2.2. The first of the menticned operators was a vector d'Yferential operator:
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t (-)=v ,20 + * oM*,>OQ-
s(x >y)

[v,£(x,y)x(v,x(.))] (58)

f 5 5 U
where V, (•) = £0 is the wavenumber in the free space and £(x,y) is

the permittivity profile of a waveguide in the x - y  plane. The simplified, scalar 
version of the above operator was given by the formula:

T(-)=V?(.)+*oM * ,t X-) (59)
The domain of both operators i 5 defined as the space of 2D vector fields 

H  = {h x,H y\  where Hx and fP  are square integrable functions defined over 
a bounded rectangular region containing the cross-section of the examined 
waveguiding structure. In the presented formulation, the eigenfunctions of the

operator t (t ) correspond to the transverse magnetic field and its eigenvalues
correspond to squared propagation constants p 2.

Let us now consider problems which arise if some kind of numerical treatment 
is to be applied to solving an eigenproblem of a differential operator T given by the 
formula (58). The initial issue which has to be addressed is finding the finite
dimensional mapping of the operator T. One of the immediate choices is the Finite 
Difference (in this case the Finite Difference Frequency Domain (FDFD)) mapp, lg 
technique. This case has already been discussed n Section 3.2 and it has been 
found that the resulting operator matrix is a sparse, banded matrix with a highly 
regular non-zero element distribution. (In the discussion we have applied data 
refening to the discretization of the operator modelling a dielectric waveguide with 
a discoiiD nuous, rectangular permittivity profile (cf. structures A-C in Figure 20).) 
Consequently in this case the parallel solver implementing the IRAM-FD algorithm 
described in Section 5.3 may be applied to find eigenvalues of the input operator. 
The following section presents eigenvalues computed using this solver for selected 
waveguiding structures.

The other finite-dimensional representation — the Method of Moments 
representation with implicit operator storage, uiscussed within this study (Section 
3.3) may also be applied. Still, in this case it is necessary to find out whether this 
representation is suitable for all the operators in the form given by Equation (58). 
As described in the previous sections, in the considered finite mapping technique 
the operator is represented by certain inner products - the Fourier coefficients, such 
as (Th.j, h j) .  These coefficients are in fact 2D definite integrals whose values are 
computed numerically by using the Discrete Fourier Transform. Using the DFT we 
calculate approximate values of these integrals using a regular g .;d of samples of 
the integrated 2D function. The numerical error in the integration depends on the 
class of the integrated function. If the form of the operator T given by formula (58)



Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 679

is examined, one may note the term V ,f(x,y). If the permittivity profile is a O  class
function then the operation T on an arbitrary function from the C2 class results in a 
continuous function. In this case one may expect that the DFT-based representation 
of the operator will provide an adequate finite approximation of the operator. In fact, 
as shown in the section presenting results validating the discussed numerical 
methods, in the case of continuous permittivity profiles the solvers applying the DFT- 
based approach produce correct results.situation may change drastically if the 
permittivity profile has a discontinuity. This situation may case is considered in the 
following subsection.

6.1.1 Discontinuous permittivity profiles and the DFT representation.

In the case of a waveguide shown in Figure 21 the permittivity profile s (x ,y ) is 
a discontinuous function which is given by the following formula:

e(x,y)= (e  - \)h{x2 -  x)h(x -  x, )h(y2 -  y)h(y -  y ,)+1 (60)

where h{x) denotes the Heaviside function. Only the derivatives in a generalized 
sense exist for e(x, y):

—  e(x,y ) = (s ~ l> (x2 -  x)h(x -  x, )h(y2 -  y)h{y -  y, X<5(x -  x ,) -  8 (x2 -  x)) (61) 

where 8 (x) denotes the Dirac distribution.

Figure 21. Schematic o f a dielectric waveguide with a rectangular, discontinuous 
permittivity profde e (x, y).

Obviously applying “sampling” to a distribution is impossible. Consequently 
calculating the Fourier integrals by using the Discrete Fourier Transform does not 
have any correct mathematical meaning in this case, which results in severe 
numerical errors which are indeed observed in many applications (including the 
currently discussed one) if this kind of approach is applied.

The solution which may be proposed is a modification of the solvers which use 
the discussed implicit representation of operators (e.g. IRAM-FFT or IEEM-FFT 
algorithm). The modification refers to the method of calculating the matr' :-vector 
product which implicitly contains the form of the operator. The proposed method is
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a hybrid algorithm which uses both DFT (FFT) and numerical integration to 
calculate the matrix-vector product. The method starts with decomposing the initial 
operator T given by the equation (58):

T = L -  F (62)

where:

l O = v 7Q +<:o£( ^ t X-) (63)

(64)

Denoting as Fx and F the projections of the vector operator F into x- and 

y- directions, the inner products (f xHt ,h*) and for the structure shown

in Figure 21 are given by the following ID integrals.

where the term 2(£-l)
£ + 1 is obtained while integrating the permittivity profile,

under the assumption that the Heaviside function is given by the formula:

0 x < 0 
h{x)=- 0.5 x = 0

1 x > 0
(65)

The above linear integrals may be computed using any standard method of 
numerical integration. If we denote by Lx and Ly the projections of the operator L 
(cf. equation (63)) then the steps of the hybrid algorithm calculating the inner

products and (t M t,hyk̂ ) may be given as follows:

1. Gi\ en the Fourier coefficients {cf} and {c j}  compute the values of the vector 

field H t - 1 /* ,H y) in the spatial dom; n by applying backward 2D FFTs.

2. Applj nig numerical integration (NI) compute the following inner products:

g*=[FxH ',h ;)  yM ^ )

3. Derive the Fourier coeffit ients (Lx/ / , h •r) i QL Hy, h j )  using the 2D FFT
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Table 1. Comparison o f the normalized propagation constants f  /k0 calculated fo r  a slab guide 
(structure A in Figure 20) with a discontinuous permittivity profile. In the tests the frequency 

f  equalled 15 GHz. the number o f expansion functions used equalled 10 in every spatial direction, the 
FFT length equalled 256 in both directions, NEV = 4, NCV = 20 (IRAM-FFT).

TRM [18] 1EEM-FFT GM IRAM-FFT

1.2353 1.2352 1.2344 1.2339
— 1.0756 1.0813 1.0818
— 1.0622 1.0648 1.0641

4.1570-01 4.1563-01 4.1146-01 4.1412-01

algorithm.

4. Compute the final Fourier coefficients:

(T\ H „ h f ) = ( L xH x,hf}+gfj

(TyH „ h ^ yHy,h>’,)+gu
where Tx and Ty denote the projections of the initial operator T onto x- and 
^-dimensions.

Apart from the obvious advantage of being able to deal with discontinuous 
permittivity profiles, the above algorithm also has a very substantial drawback of 
increasing the computational complexity of the matrix-vector product algorithm by

o {\[k n ) (in the worst case this means the increment of the complexity to 0{K?a),
as compared to 0(K  log K)), where K  is the product of the DFT lengths in the 
x-and y-dimensions and N  is the problem size (the product of the number of 
expansion terms used to approximate functions in the x- and y-dimensions).

Application of the third considered algorithm — the Iterative Eigenfunction 
Expansion Method (IEEM) to solving the eigenproblem of the differential operator 
T given by equation (58) arises if the following decomposition is applied:

T = L - F  (66)
where:

L O =V ;(.)+*02O (67)

f O = -^ o2(^ (^ e )+ 1X O - ^ - ^ [ v ,£(^>;)x (v , x0)] (68)

One should note that the above decomposition is different from the one applied 
previously (cf. equation (62)). By selecting this kind of decomposition we assure

that the operator L is self-adjoint in the considered functional space and its



682 M. Rewiehsk

Relative error in  the  calcu lation  of the propagation  constants u sing FFT.
2 .5  r------------------------------------- ------------------------------------------ T-----------------------------------------------------------------------------------------------

Figure 22. Relative difference in the values o f normalized propagation constants f  /k0computed 
fo r a slab guide (structure A in Figure 20) using the IRAM-FFT solver and the Galerkin Method 

(GM) as a function the length o f the FFT applied in the IRAM-FFT algorithm. During the tests 
the frequency f  equalled 15 GHz. the number o f  expansion functions used equalled 10 (in every 
spatial direction), NEV= 5, NCV= 20 (IRAM-FFT). The errors were computed for the first 5 

eigenvalues found by the methods.

eigenfunctions form a trigonometric orthonormal basis in this space. Although it

has not been proven that the operator F is relatively compact with respect to

operator L which is a sufficient condition to ensure the convergence of the 1EEM 
method (compare Section 2.5), the numerical tests show that the iterative process 
converges to the eigenvalues of the input operator T.

6.2 Validation of the algorithms
Having presented main features of operators used to model magnetic fields in 

selected waveguiding structures and specifics of application of the discussed 
algorithms to solving eigenproblems of these operators we may now turn to the 
presentation of the results of numerical tests.

We start with the presentation of the numerical results with a comparison of the 
values of normalized propagation constants p /kQ calculated for a simple slab 
waveguide (cf. structure A in Figure 20) using four different algorithms. Although 
the number of expansion functions used in discrete representations of functions and 
operators is very small and equals 10 in every spatial direction (x andy) (for IEEM- 
FFT, IRAM-FFT and GM) a very good convergence of results is obtained, (cf. 
Table 1) It may easily be found that the relative differences between the 
corresponding eigenvalues do not exceed 1%. Moreover, although the vector 
operator T (cf. formula (58)) has been used in these tests, application of a simpler,

scalar operator T (cf. formula (59)) gices entirely analogous results. This effect is 
due to a very simple structure of the modelled waveguide.
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Table 2. Comparison o f  the normalized propagation constants f  /k0 computed using the modified 
IRAM-FFT algorithm (IRAM-FFT-NI) and the Galerkin Method. The structure used in the tests was 
an image guide (structure C in Figure 20). Other test parameters: f  = 15 GHz. NEV = 8, NCV = 40. 
The relative error was computed using the formula: E = /00|/3 -/3 |/I/JCM|.

GM 20*20 IRAM-FFT-NI 20*20 
FFT length 2048

Relative 
error [%]

2.3110 2.3132 0.10
1.5947 1.5951 0.03
8.5624-01 8.5142-01 0.56
5.1314-01+2.7998-0 li 5.1403-01+2.7986-01 i 0.16

5.1314-01—2.7998—Oli 5.1403-01-2.7986-01 i 0.16
6.9140—Oli 7.0192-0 li 1.52
1.1278i 1.1276i 0.02
1.2571 i 1.2568i 0.03

A different series of tests performed for the same simple waveguiding structure 
compared the values of normalized propagation constants computed with the 
Galerkin Method and the IRAM-FFT algorithm for different lengths of the Fourier 
Transforms, applied in the IRAM-FFT method and ranging from 128 to 2048 in 
every direction. The results of these tests are shown in Figure 22. As one could 
expect the relative differences between the computed eigenvalues become smaller 
with the increasing FFT length. T f '» means that the approximations of inner 
products computed using the FFT algorithm approach the values of the inner 
products computed analytically in the Galerkin Method with application of a more 
refined dicretization grid (determined by the FFT length).

If a more complex waveguiding structure is considered, e.g. an image guide 
with a discontinuous permittivity profile (structure C in Figure 20) then substantial 
problems appear with algor'dims which use the DFT-based discretization scheme, 
i.e. the IRAM-FFT algorithm and the IEEM-FFT algorithm. The eigenvalues found 
e.g. by the IRAM -FFT algorithm for the vector operator T (compare equation (58)) 
differ significantly (by 10-20%) frcm the corresponding eigenvalues found using 
the Galerkin Method. This fact is due to the effects described in detail in Section
6.1.1. The situation improves considerably if a modification of the IRAM-FFT 
algorithm (denoted as IRAM-FFT-NI algorithm), described in Section 6.1.1 is 
applied. The results of the comparison between the GM and IRAM-FFT-NI 
algorithm are presented in Table 2 and Figure 23 and show that the computed 
eigenvalues stay very close to each other (especially for lower-order modes). The 
results confirm the usefulness of the investigated IRAM-FFT-NI algorithm in 
modelling structures with discontinuous rectangular permittivity profiles, such as 
the tested image gu ide (cf. structure C in Figure 20).

Although obviously the IRAM-FFT-NI algorithm, instead of the IRAM-FFT
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Relative error in the calcu lation  of the propagation  constants using FFT.

Figure 23. Comparison o f selected real normalized propagation constants p  /k0 computed using 
the modified 1RAM-FFT algorithm (IR.4M-FFT NI) and the Galerkin Method fo r  different FFT 
lengths applied. The structure used in the tests was an image guide (structure C in Figure 20) 
Other test parameters: f  = 15 GHz, NEV = 8, NCV = 40. The relative error was computed using 

the formula: E  = 100(P IRAU~p cJ / ( p  GJ .

method, should be used to model waveguides with discontinuous permittivity 
profiles, the scope of applicability of the basic algorithm does not limit to 
investigating only the simplest structures. The IRAM-FFT algorithm may be 
effectively used to model waveguiding structures with continuous permittivity 
profiles. The numerical tests involving computation of propagation constants for an 
elliptical waveguide with continuous permittivity profiles (structure D in Figure 20) 
were performed applying the IRAM-FFT algorithms. The tested structure was an 
elliptical wavegu' le with the semiaxes ratio 2/1 and the permittivity profile given 
by the functmn:

(x ,y )= s0 \ - i l x H a f  + { y l a f Y 2^ (69)

An open structure was modelled by taking the screening walls sufficiently far 
away from the guide (at the distance of 20a from the centre of the waveguide). The 
results presented in Table 3 show a comparison of the propagation constants (for 
different profile exponents alpha) computed using ITEM (not IEEM-FFT!) 
algorithm [18] and obtained by the author using the IRAM-FFT method. The Table 
shows non- ''mens'onal normalized propagation constants Z computed from the 
following formula:

s -1
(70)

In the tests the normalized frequency V, given by formula: V = kQ ■ 2a ■ -Je -1
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Table 3. A comparison o f the normalized propagation constants 2  computed in the IEEM method 
and the IRAM-FFT algorithms for the elliptical waveguide with a continuous permittivity profile 
(structure D in Figure 20), fo r different permittivity profile exponents alpha. In the tests: V = 3, 
NEV = 1, NCV = 20, FFT length -  256,number o f expansion function used to represent 
functions = 75 (in every spatial direction).

a IEEM [18] IRAM-FFT Difference [%]

2 0.4894 0.4907 0.27
4 0.6254 0.6258 0.06
6 0.6740 0.6742 0.03
8 0.6976 0.6978 0.03

10 0.7112 0.7114 0.03

Table 4. Comparison o f the normalized propagation constants p /k a computed using the IRAM-FD 
algorithm and the Galerkin Method. The structure used in the tests was an image guide (structure 
C in Figure 20). Other test parameters: f  = 15 GHz, NEV = 8, NCV = 40 (IRAM-FFT). The relative 
error was computed using the formula: E = 100\p CII\A:P (.J.

IRAM-FD (200x100) GM 20x20 Relative error [%>]

2.3058 2.3110 0.23
1.5840 1.5947 0.67
8.0878-01 8.5624-01 5.54
4.9398-01+3.2770-0 li 5.1314-01+2.7998-01 i 1.41
4.9398-01-3.2770-01 i 5.1314-01-2.7998-01 i 1.41
7.3406-01 i 6.9140-0 li 6.17
1.1297i 1.1278i 0.17
1.2639 1.2571 i 0.54

Table 5. Comparison o f the values o f  the propagation constants computed using the IRAM-FFT 
algorithm and the IEEM-FFT algorithm using the deflation techniques with additional re-orthonor
malization performed eveiy 20 iterations. The structure modelled was an image guide (structure B in 
Figure 20). The 4-th eigenvalue has not been found in the case o f the IEEM-FFT algorithm due to the 
lack o f convergence o f the iterative process. Other test parameters: FFT length = 256, number o f 
expansion functions = 7 in eveiy direction, NEV= 4, NCV= 20, f  = 15 GHz.

IRAM-FFT lEEM-FFT-deflation Difference [%]

2.5408 2.5408 0.00
1.7205 1.7207 0.01
1.6973 1.6967 0.04
4.3770e-01 — —
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Figure 24. Convergence profiles fo r  the IEEM-FFT method applying deflation procedures with 
additional re-orthonormalization performed every 20 iterations. The relative difference was 

computed for the two most recently found approximations o f eigenvalues. The structure modelled 
was an image guide (structure B in Figure 20) parameters: FFT length = 256, number o f 
expansion functions = 7 in every direction, f  = 15 GHz, convergence criterion = 1.0e-06.

equalled 3. The Table shows almost a perfect agreement between the obtained 
results, confirming that the IRAM-FFT algorithm may be successfully applied to 
deal with the discussed class of structures.

The next series of tests aimed at comparing the IRAM-FD algorithm and the 
Galerkin Method. Table 6.2 shows the normalized propagation constants p / k Q 
computed using the two considered algorithms for an image guide with 
a discontinuous permittivity profile (structure C in Figure 20). One may note that 
the differences in computed eigenvalues are significantly larger than in the case of 
the comparison between GM and IRAM-FFT-NI (cf. Table 2), although especially 
for modes far from cut-off these differences stay at an acceptable level. This may 
easily be explained if one takes into account that entirely different discretization 
strategies are applied in the compared methods. (In the case of the comparison 
between IRAM-FFT-NI and GM the finite-dimensional mappings in both methods 
were based on the same concept of representing operators by appropriate inner 
products.) In fact we do not know which propagation constants are computed with 
greater accuracy, as we do not know whether e.g. the 200 x 100 FU discretization 
grid provides a more accurate finite representation of the input operator than the 
20 x 20 matrix of Fourier coefficients also representing the same operator. Still, 
a simple conclusion which may be drawn is that the IRAM-FD method provides 
one of acceptable approaches towards modelling of the considered waveguiding 
structures.

The last group of tests, presented in Table 5, shows some preliminary results 
obtained using the IEEM-FFT algorithm with deflation and re-orthonormalization
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procedures applied. In the tests the propagation constants for an image guide with 
a discontinuous permittivity profile (structure B in Figure 20) were computed as

eigenvalues of the scalar operator T (cf. equation (59)). The comparison shows 
almost perfect accordance with the results obtained using the IRAM-FFT algorithm. 
The problem which has been found to occur with the IRAM-FFT-deflation 
algorithm is the lack of convergence of the iterative process while trying to find the 
fourth eigenvalue. Although many different choices of parameters concerning 
deflation and re-orthogonalization procedures were made the situation did not 
improve. Still, the process of re-orthonormalization was found to play a particularly 
important role in stabilizing the iterative process in the algorithm, as excluding this 
phase from the algorithm resulted in the lack of convergence to any of the higher- 
order propagation constants. Figure 24 shows convergence profile for the discussed 
test using th IRAM-FFT-deflation method with additional re-orthogonalization. One 
may note that the fastest convergence occurs if the first eigenvalue is being sought. 
The convergence to higher-order eigenvalues usually involves more iterations, 
although this depends largely on the stai mg point of the iterative process.

7. Numerical results — performance of the parallel solvers
The previous sec' on concentrated on assessing the scope of applications of the 

discussed numerical eigensolvers within the theory of electromagnetic waveguides. 
This part of the study focuses on performance and scalability of the solvers in 
distributed memory parallel systems, including both scalable supercomputer 
systems as well as networks of workstations. The tests presented in the following 
sections a’.n at determining whether the considered parallel eigensolvers may be 
efficiently applied in the mentioned systems and which factors affect their 
performance in these environments.

7.1 Characteristics o f the hardware test platforms
We start with a brief description of the characteristic features of distributed 

memory systems which served as testing platforms for the proposed parallel 
solvers, presented in Section 5. Three environments are described: IBM Scalable 
Power2 (SP2) Parallel System, Cray T3E and a network of workstations with 
a special attention dedicated to the potential impact of the specifics of system 
architectures on the performance of parallel programs based on the message-passing 
programming paradigm.

7.1.1 IBM Scalable Power2 Parallel System

The IBM SP2 Parallel System installed in the Academic Computer Centre 
TASK in Gdansk, which has been used as one of the platforms for numerical tests, 
is a frilly scalable distributed memory system which consists of 15 processing nodes 
and a high performance interconnection network. (A maximum of 8 nodes may 
have been used to run a parallel task in this system.) Starting from the processing 
nodes in the considered system there are 14 “thin” nodes and 1 “wide” node, each
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node equipped with a POWER2 processor having a 66.7 MHz clock and a peak 
performance of 267 Mflops, 64 MB (128 MB in case of a wide node) of the local 
RAM memory and local disk storage. The total peak performance of the described 
system equals about 4 Gflops.

All nodes have 128 Kbytes of level 1 data cache and 32 Kbytes of instruction 
cache. The POWER2 superscalar processor has a four-way set-associative dual- 
ported cache with load and store pipes controlled by two fixed-point processors. It 
is possible to have cache with 32-byte data paths, so in total four double precision 
words can be loaded and four stored in one clock cycle. 15-20 clock cycles are 
required to recover from a cache miss. POWER2 has also two floating point 
processors each having a pipeline able to do a multiply and add in two cycles. 
Summing up, effectively two multiplies and two adds can be performed by the CPU 
each cycle provided that loads and stores can be appropriately scheduled by the 
compiler [54],

The other important element of the SP2 system, greatly affecting the 
performance of parallel applications, is the interconnection network. This 
interconnect, named High Performance Switch (HPS) is a low latency switching 
network capable of sustaining high transmission bandwidth. HPS may connect 16 
nodes and can handle up to 128 communication threads between every pair of 
nodes. The bandwidth equals about 40 Mbytes per second in the bidirectional 
transmission and the latency equals less than 40 microseconds.

Table 6. Network performance for MPI and MP1L based message communication in the IBM SP2 
parallel system [54],

Library Network latency [fas] Transfer rate [MB/s]

MPI (ip) 656 6.26
MPI (us) 71 34.77
MPL (ip) 270 8.38
MPL (us) 44 35.20

The above hardware designs are supported by software solutions which enhance 
the performance of distributed parallel programs. The Communication System 
Support (CSS) should be mentioned in the first place. The CSS is a set of software 
layers that support communications through the High Performance Switch 
and includes interfaces with protocols that can be used for inter-processor 
communication using HPS. Two protocols are supported by CSS: 1) The Internet 
Protocol (IP). If this protocol is used to communicate through the HPS the IP 
messages are wrapped in the HPS protocol, so that applications using IP protocol can 
transparently apply HPS to achieve high-speed communication and data transfer. 
2) The user space (US) protocol. This protocol is used in the message-passing library 
subroutines provided with IBM AIX Parallel Environment to develop high- 
performance parallel programs. Communication operations are directly executed
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from the user space without any system call (bypassing the TCP/IP layers) which 
enhances the communication performance — compare Table 6.

The already mentioned IBM’s Parallel Environment is a set of programming 
tools supporting parallel distributed applications. It includes parallel libraries: MPI, 
MPL and PVMe, especially tuned for use with the SP2 system nodes and the High 
Performance Switch interconnection network to achieve better parallel 
performance. The Parallel Environment also provides various tools which support 
compiling, running, monitoring and debugging parallel programs, e.g. compiler 
scripts (such as m p x lf  — message-passing Fortran compiler) which automatically 
link in the message-passing libraries and provide environment variables allowing 
one to control the run-time environment.

Table 7. All-to-all communication performance on a 32-wide node IBM SP2. m is the message size in 
bytes [55],

m [bytes] MPI: Time [s] HPF: Time [s]

128 0.001 0.670
IK 0.016 1.236

128K 0.139 58.360
1M 0.784 355.714

Summing up, the IBM SP2 parallel system is a very typical distributed memory 
machine which provides both hardware and software support for distributed parallel 
computing. The programming model which emerges as a dominant one in this 
system is the message-passing programming due to optimized message-passing 
libraries (MPI, MPL) offering truly high-level parallel performance as compared to 
alternative solutions. This may be very clearly seen if we quote some performance 
data from the paper by Klepacki [55], The results of the tests shown in Table 7 give 
the execution time in the IBM SP2 system for the all-to-all global communication 
routine implemented using Message Passing Interface and High Performance 
Fortran. The performance of MPI implementation is strikingly high as compared to 
the HPF version of the program. This indicates that if intensive collective 
communication takes place in a given parallel program then using the low-level 
message-passing programming model will result in a tremendous improvement in 
performance.

7.1.2 Cray T3E parallel system

The Cray T3E is a scalable virtual shared memory (VSM) parallel system. The 
term “virtual shared memory” means that although the memory is distributed across 
the processing nodes, the system provides a global, shared address space of up to 
2048 processors over a three-dimensional torus topology interconnection network, 
node of the T3E system contains an Alpha 21164 processor running at 300 MHz
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(450 MHz) clock, system control chip, local memory and network router. Toms 
links provide a raw bandwidth of 600 MB/s in each direction, with payload 
bandwidths ranging from 100 to 480 MB/s after protocol overheads (cf. [43]). The 
input / output is based on the GigaRing channel with sustained bandwidths of 267 
MB/s for every four processors.

The Alpha 21164 processor is capable of issuing four instructions per clock 
cycle (with one floating point add and one floating point multiply) which gives it 
apeak performance of 600 Mflops (being more than twice as much as for the 
POWER2 processor). It contains the 8Kb level 1 data and instruction caches and 3- 
way associative 96 Kb level 2 unified cache. The local memory ranges from 64 Mb

Table 8. Network performance for MPI, PVM and Shmem based message communication in the Cray 
T3E parallel system. This data has been published in [43],

Library Network latency [pis] Bandwidth [Mbyte/s]

sma (Shmem) 1 350
PVM 11 150
MPI 14 260

to 2 Gb and the transfer rate from memory to processor equals about 1 Gb/s. There 
is no board level cache in the T3E nodes. Instead stream buffers are applied 
enhancing the local memory bandwidth.

The nominal latency of the network in the Cray T3E system equals 1 fts. Still, if 
using various message-passing libraries the effective latency is usually much larger 
due to overheads e.g. associated with buffering. Table 8 shows the effective 
network latency and the asymptotic bandwidth for different message-passing 
libraries. The most impressive result is the minimal latency offered by sma (shared 
memory access) Cray library which handles a simple one-sided communication. In 
the case of both PVM and MPI libraries the latencies are significantly higher. Still, 
in all the cases the bandwidth is similar. At this point a comparison can be made 
between the discussed Cray T3E and IBM SP2 systems. In the case of MPI 
communication the latency is about 5 times higher for the IBM SP2 and the 
bandwidth is about 7.5 times larger for the Cray T3E. In both aspects Cray T3E 
provides a significantly more efficient interconnection network.

Summing up, the Cray T3E system offers a highly efficient environment for 
parallel distributed programming offering an extremely low latency and high 
bandwidth network as well as high performance processing units. Although the 
globally addressable memory space, accessible through the calls to Shmem library 
routines is not used directly in the message-passing programming model, the native 
implementations of message-passing libraries available in the Cray T3E systems 
make use of this extremely efficient communication mechanism. It is clearly seen 
that the T3E system shows a significant superiority in terms of both the network 
performance and the computati, inal capabilities of the processing nodes (600
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MFlops as compared to 267 MFlops per processing node) as compared to the IBM 
SP2 system.

The actual Cray T3E system installation in the Interdisciplinary Centre for 
Mathematical and Computational Modelling at the University of Warsaw which has 
served as a platform for performance tests presented in the following sections 
consists of 32 processing nodes (with a maximum of 24 processing elements 
available for a single parallel task), with each computational node equipped with 
128 MB of local RAM memory.

Table 9. Approximate message startup times ( t j  and transmission rates (per four byte word) (tw) in 
inter-processor communication for selected parallel systems. Data published in [29).

Parallel system tjfts] tw[ps]

IBM SP2 40 0.11
Intel Paragon 121 0.07
Workstations on Ethernet 1500 5.0
Workstations on FDDI 1150 1.1

7.1.3 Networks o f workstations

The third distributed memory system which has served as a hardware platform 
for numerical tests is a cluster of 6 workstations connected through the 
Asynchronous Transfer Mode (ATM) based network. The workstations used are the 
Silicon Graphics Indy systems equipped with the R4400 RISC processors. The 
workstations are connected via a standard ATM switch.

Although obviously the performance of the workstations is lower in comparison 
to the performance of processing nodes in the IBM SP2 or Cray T3E, the main 
differences between NOWs and distributed memory supercomputer systems show 
up in specifics of the interconnection network. Generally speaking, NOWs may be 
characterized as systems in which there is a very significant imbalance between the 
processing capabilities and network communication efficiency. In other words, both 
high latency and relatively narrow bandwidth cause that intensive inter-processor 
communication which may occur in distributed parallel programs cannot be handled 
efficiently. Table 9 shows the comparison of network parameters between parallel 
supercomputers (IBM SP2, Intel Paragon) and networks of workstations. One may 
note that the network latency for NOWs may be almost 40 times higher than for 
supercomputer interconnects. This situation does not improve significantly if 
a more advanced network technology is used (e.g. FDDI). The transmission rates 
also vary significantly and are lower by an order of magnitude for the networks of 
workstations. Clearly, the result is the lack of scalability of such network systems, 
so that the number of workstations which can be connected in order to obtain high 
speedup and efficiency of the parallel programs is rather limited. An interesting 
discussion of a distributed memory network system based on computers with Intel
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Pentium Pro processors connected through Fast Ethernet and its assessment for 
different parallel application programs may be found in the paper [56],

7.2 Performance of the solvers
Having briefly described some characteristics of distributed memory parallel 

systems which have served as hardware platforms for numerical tests let us now 
present the results of performance tests starting with the description of the details 
concerning methods of time measurement, compilation options, libraries used and 
run-time environment.

The main goal of the performance tests has been determining a few basic parameters 
characterizing investigated parallel programs, including the speed-up, efficiency and 
scalability. Both speed-up and efficiency have been computed as relative speed-up 
(SreiamJ an^ efficiency (Erelalive) which are given by the following formulas:

5 r e l a t i v e
I I
TP (71)

J  r e l a t i v e

v r e l a t i v e (72)

where T, is the execution time on one processor of the parallel program and Tp is 
the execution time on P processors of the same parallel program. The above 
quantities are called relative because they are defined with respect to the parallel 
algorithm executing on a single processor. The absolute speed-up and efficiency 
are obtained if the time T in the equations (71) and (72) is taken as the execution 
time on one processor for the best-known algorithm.

Calculating speed-up and efficiency involve measurements of the execution 
time of programs running in a parallel environment. The following general rules 
and timing procedures have been applied:

-— The measured execution time was the user time and not the wall-clock time.

— The following routines have been used to measure the user time: 1) In the IBM 
SP2 and Cray T3E systems the t im e s  () routine has been used. This function 
gives the number of clock cycles already used by a given process. 2) In the SGI 
Indy systems the e t im e  subroutine has been used to measure the user time.

— The time Tp from equations (71) and (72) has been calculated as follows: 1) The 
mean execution time (user time) T ‘ for all the P processes involved in the 
computation has been calculated for every measurement. 2) Tp has been 
calculated as a mean value of the TJ. The number of measurements has typically 
equalled from 2 to 5. Only two measurements were performed if the values 
obtained in both tests differed insignificantly which indicated that the 
measurements were exact and reliable.
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The following compilers and compilation options have been used in the testing 
platforms:

— The x l f  IBM Fortran compiler version 3 (jointly with the m p x lf  script 
providing support for message-passing programs) available with AIX 4.1 
operating system has been used to compile the codes in the IBM SP2 system. 
The following optimization options have been tested: -0 2  -q a rc h = p w r2  ; 
- 0 3 ;  -0 3  -q a rc h = p w r2 ; -0 3  -q h o t  -q a rc h = p w r2  which perform 
different levels of optimization.

— The c f  90 Cray Fortran 90 compiler has been used in the T3E system. The 
optimization options considered included: - s c a l a r l ;  - s c a l a r 2 ;  
- s c a l a r 3 ; -0 2  ; -0 3 . It resulted that for the tested parallel programs there 
are only minor differences in performance if using - 0 2 ,  - 0 3 ,  - s c a l a r 2  
o r  - s c a l a r 3  option. A significant decrease in performance was noted if 
- s c a l a r l  or - g ,  -g  1 options were applied.

— The f  77 SGI Fortran compiler available with IRIX 6.2 operating system has 
been used to compile codes for the SGI Indy workstations. Among the tested 
optimization options the simple -0 3  optimization resulted the most efficient both 
for the codes and supporting libraries.

A number of message-passing and numerical libraries have been used jointly 
with the parallel solver codes written in Fortran 77. These include:

— MPI library. Only native, vendor provided implementations of the MPI standard 
were used during the tests, including the IBM’s MPI implementation available 
with AIX 4.1 operating system and the Cray Research MPI available within the 
CrayLibs package for the Unicos/mk operating system.

— PVM library. The library used in the tests was the public domain, portable 
implementation PVM v. 3.3 (cf. [41]) available from NETLIB, compiled for the 
SGI Indy workstations.

— BLACS libraty. We have used a portable implementation of the PVM-BLACS 
v. 1.1 available from the NETLIB repository. The BLACS library has been 
compiled for the SGI Indy workstations.

— P_ARPACK library. The parallel Amoldi package is a library implemented by 
Maschhoff and Sorensen (cf. [53]) and available from f t p .  caam. r i c e . edu. 
The P_ARPACK library depends on a few other libraries: MPI (or BLACS), 
BLAS and LAPACK (version 2). Although PARPACK is distributed with 
necessary BLAS and LAPACK (version 2) routines, the subroutines from native 
implementations of BLAS or LAPACK functions were used, whenever possible. 
Consequently the codes which used P_ARPACK were also linked to the ESSL 
library (IBM SP2) or LibSci (Cray T3E) library.

— ESSL libraty. The Engineering and Scientific Subroutine Library provides 
implementations of many computational subroutines including BLAS routines 
optimized for the POWER2 processor architecture ( - l e s s l p 2 ) .
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— LibSci library is a library of computational routines, implementing some of the 
LAPACK and BLAS functions optimized for use in the Cray T3E system.

— FFTPACK library. The FFTPACK library is a portable package of Fortran77 
subprograms written by Paul Swarztrauber ([57]) for calculating one
dimensional Fast Fourier Transforms. The implementation is based on the 
Winograd version of the FFT algorithm. The library routines have been used to 
implement the code performing two-dimensional backward and forward Fourier 
transforms.

— SPARSKIT library. The parallel solver based on the FD finite-dimensional 
applied the amux (. ) subroutine from the SPARSKIT library to compute the 
matrix-vector product for a sparse operator matrix. In the implementation a 
portable public-domain SPARSKIT code has been used ([31]).

Let us briefly present the run-time environment provided by the three discussed 
testing platforms:

— IBM SP2 parallel system. In this testing platform the Load Leveler job 
scheduling system and the Parallel Operating Environment (POE) has been used 
to run the parallel codes. An important feature of POE is that it allows the user to 
define which communication subsystem is to be used for inter-processor 
communication (Ethernet or High Performance Switch) and which 
communication protocol will be applied (Internet Protocol (IP) or User Space 
(US)). In the performance tests only the HPS communication subsystem has been 
used, as applying Ethernet resulted in totally unreliable performance results. 
Another important fact which appeared was the necessity of placing the 
executables in the local ( /tm p ) disks of every node involved in the parallel 
computation. This operation prevented the use of NFS-mounted disks which 
offered a rather unpredictable response during the run-time as it has been 
observed that if the executables were not copied to local disks the measured times 
varied by up to a 100 % which made the results clearly unacceptable. Such 
behaviour of the SP2 system has also been reported by Allan ([54]). This implies 
that the executables should always be copied to local disks of the processing 
nodes in order to obtain a stable execution time. A broader description of the 
issues concerning the IBM SP2 parallel run-time environment may be found in 
the report [58],

— Cray T3E. In the Cray T3E system the MPI parallel programs were run using the 
standard mpirun command. Scripts containing this command were submitted to 
the Network Queuing System (NQS). Each time before running the parallel 
program its code was copied to the /  tmp local file system.

— Network o f workstations. This platform served for tests of the PVM 
implementation of the IRAM (Amoldi) solver using the FD mapping of the input 
operator. The parallel jobs were run from the PVM console after creating a 
virtual machine by adding all available hosts.
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7.2.1 Internal scalability o f the P_ARPACK routines
The first group of tests aimed at determining the performance and internal 

scalability of selected P_ARPACK horary routines. The influence of different 
compiler optimization options and libraries ’inked in the parallel codes on the 
performance of PARPACK has also been examined. The hardware platform for all 
the tests described in this section v/as the IBM SP2 parallel system.

We investigated mainly the pdnaupd () P_ARPACK subroutine which 
performs the IRAM iteration for the non-symmetric real problems. The input 
operator with eigenvalues to be found was the square diagonal matrix with random 
elements between 0 and 1 located on the diagonal. Four of the diagonal elements 
were incremented by 1.1 which allowed them to be easily found by the pd naup d () 
routine. The matrix had the size of 160.000 and was block-distributed among the
Table 10. Performance o f  pdnaupd () routine for IP and US protocols, N  = 160000, NEV = 4,
NCV = 20, the number o f Arnoldi iterations = 4, Compiler directive: rapxlf -02 -qarch=pwr2 
xxx. f; (portable BLAS). All times are given in seconds.

Number o f  
nodes Time (IF) Speedup (IP) Time (IP) Speedup (US)

1 51.05 1.00 51.17 1.00
2 25.59 1.99 ' 26.78 1.91
4 17.64 2.89 20.10 2.55
8 7.71 6.62 9.83 5.20

Table 11. Performance o f  pdnaupd () routine for IP and US protocols, N = 160000, NEV = 4,
NCV = 20, number o f Arnoldi iterations = 4, Compiler directive: mpxlf -03 -qarch=pwr2 xxx.f 
'portable BLAS). All times are given in seconds.

Number o f  
nodes Time (IP) Speedup (IP) Time (US) Speedup (US)

1 72.96 1.00 1125 1.00
2 38.52 1.89 39.96 1.93
4 25.33 2.88 25.43 3.04
8 12.73 5.73 12.91 5.98

Table 12. Performance o f  pdnaupd () routine for IP and US protocols, N= 160000, NEV = 4,
NCV = 20, number o f Arnoldi iterations = 4, Compiler directive: mpxlf -03 -qarch=p»;r2 xxx. f 
-o xxx -lesslp2, (ESSL BLAS). All times are given in seconds.

Number o f  
nodes Time (IP) Speedup (IP) Time (US) Speedup (US)

1 72.27 1.00 77.03 1.00
2 38.26 1.89 39.72 1.94

4 21.82 3.31 29.23 2.63

8 13.35 5.41 13.09 5.88
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processors. The p d n aup d O  routine was called with the following parameters: 
NEV = 4 (number of requested eigenvalues), NCV = 20 (number of columns of the

matrix Vt — cf. equation (39)) and WHICH = ’LM’ (eigenvalues with the largest

magnitude were to be found). The characteristics of the problem presented above 
were chosen so that it was independent of the changing problem size and the number 
of Amoldi update iterations remained constant in every case.

The code of the parallel solver for the operator described above was compiled 
with different optimization options. (The P ARPACK library was compiled with the 
same sets of options.) The BLAS routines needed by the P_ARPACK routines were 
provided in two implementations: 1) The standard, portable implementation; 2) The 
ESSL IBM’s implementation. The different compilation and linkage options are 
given below:

—  m p x lf -02 -qarch=pw r2 x x x . f  -o  x x x (Table 10)

—  m p x lf -0 3  -qarch =p w r2 x x x . f  -o  x xx  (Table 11)

—  m p x lf -0 3  -qarch=pw r2 x x x . f  -o  x x x  - l e s s l p 2  (Table 12)

—  m p x lf -0 3  -q h o t -qarch=pw r2 x x x . f  -o  x xx  - l e s s l p 2  (Table 13)

Tables 10, 11, 12 and 13 show the results of performance tests for different
compilation flags used while building both the library and the tested executable. In 
the Tables all the times are average user times given in seconds. The time measured 
in all the cases is the time spent in the Arnoldi iteration of the pdnuapd routine and 
should be considered as the total time needed by the IRAM algorithm to converge to 
the wanted solutions. During the tests different communication protocols of inter- 
processor communication have been used: the column “Time (ip)” shows the timings 
while the Internet Protocol has been used, while “Time (us)” gives times measured 
while the User Space protocol has been applied. In all the cases the number of 
implicit Amoldi updates equalled 4 and did not change wi:h the changing number of 
processors used.

The results of the tests show that for the considered size of the problem 
N = 160000, the total time spent in the Amoldi iteration is shorter if the library is 
compiled with a lower level of optimization, i.e. the -02  flag and not -03 flag.

Table 13. Performance o f  pdnaupd () routine for IP and US protocols, N  = 160000, NEV = 4,
NCV = 20, number o f Arnoldi iterations = 4, Compiler directive: mpxlf -03 -qhot -qarch=pwr2 
xxx.f -o xxx -lesslp2, (ESSL BLAS). All times are given in seconds.

Number o f  
nodes Time (IP) Speedup (IP) Time (US) Speedup (US)

1 76.77 1.00 1 76.66 1.00
2 38.18 2.01 39.26 1.95
4 19.62 3.91 21.60 3.55
8 10.78 7.12 10.05 7.63
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While using only the -0 3  flag the performance degrades by about 30%. This kind 
of situation has also been observed by Allan ([54]). Comparing the tests performed 
using the IP and US communication protocols it may be noted that the execution 
times (user times) are slightly higher. This fact may be explained by the US 
protocol characteristics where the calls to communication routines are made 
directly from the user space omitting the system calls which are used in the case of 
the IP communication. Nevertheless, the results given in the Tables show that 
applying US protocol results in a better speed-up if the -0 3  optimization flag has 
been used during compilation. This result may confirm that the US protocol 
provides a more efficient communication between the nodes of the SP2 system.

Table 13 shows results of performance tests if an additional compiler flag 
- q h o t  is used during the compilation of both P_ARPACK library and the solver 
code. This flag forces the compiler to determine whether or not to perform high 
level optimization (-03 ) on specific loops in the program’s code. Consequently 
different parts of the code as optimized with different optimization levels. Although 
the measured times are similar to those obtained only with -  0 3 flag, the speed-up 
obtained in this compilation method is the highest, e.g. for 8 processors the speedup 
exceeds 7.00 (cf. Table 13), while in the former cases it does not reach 6.00 (cf. 
Tables 10, 11, 12).

The above tests also examined the influence of choosing an implementation of 
the BLAS library routines on the performance of the Amoldi solver. Parallel 
ARPACK software uses a number of Basic Linear Algebra Subroutines including 
a matrix-vector product subroutine Xgemv (. ) or a matrix by upper triangular 
matrix multiplication Xtrmm ( . ). In the first test (Table 11) the routines from the 
portable BLAS version 2 implementation provided together with P_ARPACK have 
been used, while in the second test (Table 12) the implementations of BLAS 
subroutines from the IBM's ESSL library have been linked to P_ARPACK routines. 
The results show that the performance of the pdnaupd does not depend much on the

Table 14. Scalability o f the pdnaupd () routine. The size o f the problem equals N  = P ■ 200000, where 
P is the number ofprocessors, NEV = 4, NCV = 20, compiler directive: mpxlf -03 -qhot 
-qarch=pwr2 xxx.f -lesslp2.

Number o f 
nodes Time (IP) Efficiency Time (US) Efficiency

1 97.29 1.00 95.81 1.00
2 97.47 1.00 93.64 1.02

3 125.80 0.77 96.53 0.99
4 143.92 0.67 99.99 0.96

5 134.11 0.72 95.92 1.00

6 110.43 0.88 96.95 0.99

7 138.25 0.70 97.92 0.98

8 136.95 0.71 100.98 0.95
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Table 15. Performance o f  pdnaupd () routine for IP and US protocols, N  = P ■ 200000, where P is the 
number ofprocessors, NEV  = 1, 8, 16, 32; NCV = 40, compiler directive: mpxlf -03 -qhot 
-qarch=pwr2 xxx.f -lesslp2. All times are given in seconds.

NEV Number o f 
nodes

Time
(IP)fsl

Efficiency Time
(US)fsJ Efficiency

1 1 40.96 1.00 40.92 1.00
2 41.05 1.00 40.98 LOO
4 41.90 0.98 42.68 0.95
8 47.00 0.87 43.27 0.94

8 1 83.11 1.00 82.90 1.00
2 105.87 0.78 85.93 0.96
4 100.78 0.82 86.68 0.96
8 131.61 0.63 87.26 0.95

16 1 140.69 1.00 143.14 1.00
2 141.33 0.99 146.62 0.98
4 185.00 0.76 * *

8 240.11 0.58 147.02 0.97
32 1 390.62 1.00 389.61 1.00

2 496.79 0.79 395.85 0.98
4 503.99 0.77 399.45 0.97
8 586.86 0.66 401.66 0.97

version of BLAS library used, as minor differences in the execution times are 
observed. Still, the authors of P_ARPACK ([53] and [59]) suggest that the native 
BLAS implementations should be linked to the codes whenever possible instead of 
those provided with the P_ARPACK software. Consequently in all the following 
tests only the IBM’s proprietary ESSL library or the LibSci library in the Cray T3E 
system containing implementations of BLAS subroutines have been used.

The following series of tests measured the internal scalability of the 
pdnaupd () newline P ARPACK library subroutine. The same solver program as 
in the previous tests has been used during the measurements. As it has already been 
remarked the input matrix in the parallel solver has been chosen so that its 
characteristics was independent of the size of the problem. More precisely, during 
the scalability tests with the pdnaupd () subroutine, the number of Amoldi update 
iterations remained the same for a fixed number of eigenvalues to be computed 
(NEV = 4) and the changing size of the problem. The size of the problem was 
chosen to be N  = 200000 for 1 processor and increased linearly with the number of 
processors. Both IP and US communication protocols have been used during the 
measurements and the codes were compiled using the following directive was:
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m p x lf  - 0 3  -q h o t  -q a rc h = p w r2  x x x . f  -o  x x x  - l e s s l p 2 .  The 
results of the tests are given in Table 14.

The results of scalability tests show that the efficiency of the pd n aup d () 
subroutine remains relatively high for the available number of processors involved 
in the parallel computation. It is well seen that application of the US protocol gives 
a considerable improvement in scalability and efficiency of the executed program. 
For the number of processors from 1 to 8 and the problem size A =200000, 
40000, ..., 1600000 the efficiency stays above the level of 95 %, while in case of 
the Internet Protocol it falls below 70 %. The reason for such behavioui is that for 
large problem sizes the amount of communication increases, so that both the 
network latency and the bandwidth (compare Table 6) start to play an important 
role during the run-time. It has to be noted that the above results stay in close 
accordance with the scalability results reported in [53] for tests performed in the 
Maui HPCC SP2 machine. The obtained scalability ;s high but obviously not 
perfect. This effect is due to a serial bottleneck caused by the algorithm in which 
the upper Hessenberg matrix and the calculations involving this matrix are 
replicated by all the processors during the Arnoldi factorization.

Another series of tests performed using the previously described solver 
intended to find out the dependence of the total execution time of the pd naup d () 
P ARPACK subroutine on the number of eigenvalues (NEV) to be computed. 
In the IRAM algorithm the increment of NEV = k  causes an increment in the 
memory storage requirements, the number of computations and the size of messages 
communicated among the processors. In the parallel implementation of ARPACK 
these factors may affect performance and scalability of the library routines. As 
mentioned before, the upper Hessenberg matrix is replicated on every processor and
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Figure 25. Efficiency o f the pdnaupd () P_ARPACK subroutine. The size o f  the test problem 
equals N  = P ■ 200000. NEV = 1, 8, 16, 32; NCV = 40. The number o f  Arnoldi update 
iterations remained constant fo r  a fixed number o f eigenvalues (NEV) to be computed.
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therefore may cause a serial bottleneck as its size increases. An increasing value of 
k also results in the increased communication costs during the re-orthogonalization 
phase where more global sums have to be computed and communicated using the 
global reduction opera;ions.

Table 15 shows the timings obtained for the p d n au p d  () subroutine. The size 
of the problem equalled N  = P ■ 200000, where P is the number of processors. The 
number of eigenvalues to be computed NEV = 1, 8, 16, 32 (NCV = 40). The 
number of Amoldi update iterations remained constant for a fixed number of 
eigenvalues (NEV) to be computed. Once again two communication protocols were 
considered.

It may be noted that in the case of using the Internet Protocol, the efficiency 
decreases faster for larger values of NEV, e.g. for 8 processors the efficiency 
equals: 0.87 (NEV = 1), 0.63 (NEV = 8), 0.58 (NEV = 16). (The graph of the solver 
efficiency vs. the number of processors for different values of NEV is shown in 
Figure 25.) This effect has not been observed while applying the US protocol. 
A conclusion may be drawn that the degradation in the performance in the first case 
is mainly due to communication overhead and not a serial bottleneck caused by

Table 16. Time spent on orthogonalization phase in the pdnaupd () routine. The test were performed 
using IP and US protocols, N = P ■ 200000 where P is the number ofprocessors; NEV = I, 8, 16, 32; 
NCV = 40, compiler directive: mpxlf -03 -qhot -qarch=pwr2 xxx.f -lesslp2. All times are 
given in seconds.

NEV Number o f  
nodes

Time (IP) 
fsj

Percent o f 
total time

Time (US) 
fs j

Percent of 
total time

1 1 19.72 48 19.75 48
2 19.87 48 24.49 59
4 27.78 53 25.49 59
8 23.86 50 27.78 • 64

8 1 23.86 28 37.78 45
2 53.51 ■ 50 39.32 46
4 49.92 49 49.92 57
8 70.61 54 53.34 61

16 1 54.80 38 55.71 39
2 55.11 39 58.12 40
4 81.19 44 * *

8 112.69 47 77.47 53
32 1 95.C3 r  24 95.14 24

2 135.80 27 94.13 24
4 139.65 28 126.29 32
8 173.65 29 136.61 34
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replicating the H  matrix. If this! had been the cause, the efficiency would have

degraded for both communication subsystems.
The next Table (Table 16) shows the user times spent in the orthogonalization 

phase during the Amoldi factorization for different numbers of eigenvalues to be 
computed. The data were obtained for the same parallel solver as in the previous

Peiformanc3 of the parallel Amoldi solver

Number of processors

Figure 26. Total execution time o f the parallel IRAM-FD solver as a function o f  the number o f 
processors for different methods o f calculating the parallel matrix-vector (OP*x) product.

Figure 27. Speedup in the total execution time o f the parallel IRAM-FD solver as a function o f  the 
number ofprocessors for different methods o f  calculating the parallel matrix-vector product.
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paragraph. During the orthogonalizaticn phase global sums have to be computed 
and the number of these global reduction operations depends on the number of 
eigenvalues NEV to be computed. The test results show clearly that the percentage 
of time spent on orthogonalization increases ■with the increasing number of 
processors used (for a fixed value of NEV). This effect is due to the communication 
costs which appear during computation of global sums. Still, a posit ive fact which 
may be noted is that the percentage of time spent on orthogonalization decreases 
(for a fixed number of PEs) with the increasing value of NEV. Consequently this 
scaling effect may be exploited to reduce the influence of the poorly scalable 
orthogonalization operation on the overall performance of the solver.

Summing up the results obtained in this section one may conclude that the 
pdn au p d  P_ARPACK routine shows high performance and scalability in the 
considered distributed memory environment. High efficiency is observed for 
different values of NEV and NCV, although it may potentially decrease if the 
percentage of time spent on the orthogonalization phase is too large as compared to 
the total execution time. The tests also show that the parallel performance may 
largely depend on the interconnection network parameters (particularly the network 
latency).

7.2.2 Parallel Arnoldi solver with FD operator discretization

The previous sec ion aimed at assessing internal parallel performance of 
P_ARPACK routines implementing the IRAM iterative process. Consequently 
a trivial diagonal input matrix operator has been used in the tests. This section 
presents the results of performance tests of the parallel Arnoldi solver for the input 
operator which may be encountered in “real life” applications, discretized using the 
Finite Difference (FD) technique. The tests involved the parallel program (whose 
implementation was described in Section 5.3) applied to solving electromagnetic 
eigenproblems, as discussed in the previous Section. Although a specific 
application of the parallel algorithm is being tested the general characteristics of the 
parallel performance remain valid for the entire class of operators discretized using 
the Finite Difference mapping technique. .

We start the discussion of the characteristics of the parallel IRAM-FD solver 
with the presentation of performance of the three versions of the algorithm (with 
three different methods of calculating the parallel matrix-vector product) described 
in Section 5.3.1.

The following tests were performed in the IBM SP2 system for the MPI 
implementation of the algorithm. During the tests the User Space (US) protocol was 
normally used to handle the inter-processor communication. The command used for 
compiling the P_ARPACK library and the solver code was: m p x lf  -0 3  - q h o t  
-q a rc h = p w r2  x x x . f  -o  xxx - l e s s l p 2 .  The essential input parameters 
defining the tests were as follows:

1. The size of the input matrix equalled N  = 39700; the matrix was sparse with
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Figure 28. Speedup in the execution time o f the parallel matrix-vector (OP*x) product fo r  different 
methods o f calculating the parallel matrix-vector product as a function o f  the number ofprocessors.

199538 non-zero elements; among the non-zero elements 95 % were located in 
the five diagonals: 0 (main diagonal), +2, -2 , +199, -199; the bandwidth of the 
matrix equalled 402.

2. NEV = 4 (number of eigenvalues to be found), NCV = 20 (number of additional 
eigenvalues to be filtered out)

3. The stopping criterion — the accuracy of computed eigenvalues equalled 
tol= 1.210-16.

Figure 26 shows total execution times of the parallel solver for three discussed 
methods of calculating the distributed, parallel matrix-vector product. In the first 
method the general routine amux ( . )  was used to calculate the matrix-vector 
(OP*x) product, the second method applied the optimized scheme of the serial 
calculations and the third method used the optimized version of the inter-processor 
communication, (compare Section 6.3.1) From the comparison of performance for 
one processor of the first two implementations (cf. “Using AMUX ...” and “Non- 
optimized ...” curves in Figure 26) is it well seen that exploiting the regularity of 
the matrix gives some drastic decrease in the total execution time of the solver. In 
this way the serial optimization has been performed.

Comparison of other two implementations which use different inter-processor 
communication patterns (cf. “Non-optimized ...” and “Optimized ...” curves in 
Figure 26) shows that for eight processors the optimized solver is almost twice as 
quick as the non-optimized one. More important differences between these two 
options of the algorithm are seen in Figure 27. The graph shows the speedup in the 
total execution time of the solver for different algorithms as a function of the 
number of processors applied. It may easily be inferred from the graph that, except
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Table 17. Execution times o f the parallel IRAM-FD solver (fully optimized version) while using 
two different communication protocols available in the IBM SP2 system. All the tests have been 
performed using the IBM ’s dedicated High Performance Switch (HPS) switching network.

Number o f 
processors Time [seconds] IP protocol Time [seconds] US protocol

1 375.76 375.42
2 194.17 192.49
3 134.22 133.22
4 103.85 102.66
5 87.00 85.29
6 75.53 73.53
7 66.52 64.82

8 59.15 57.74

the algorithm applying the amux ( . )  routine, the time spent on calculating the 
matrix-vectoris dominated by the inter-processor communication. Consequently in 
the incase of non-optimized algorithm the inefficient communication between the 
nodes prevents the solver from speeding up for a larger number of processors. Only 
the optimized version of the solver is capable of making advantage of the additional 
computer power. In this case the program’s speedup stays close to the ideal linear 
case.

Even more drastic differences between the implementations may be noticed in 
Figure 28 which shows speedups in the execution time of the matrix-vector product 
operation alone. As it is seen the speedup of optimized version closely approaches 
the ideal linear case, while the non-optimized implementation shows virtually no 
speedup with the increasing number of processors used. While comparing Figures 
27 and 28 it may also be noted that the speedup of the parallel matrix-vector 
product computation is better than the speedup of the P_ARPACK routine 
p d n a u p d ( . ) .

Another conclusion which may be drawn from the above results of performance 
tests is as follows: The optimization of inter-processor communication may be 
applied only if the input matrix is a banded one. If the input matrix is a result of 
discretization using the FEM technique then the distribution of non-zero elements is 
highly irregular producing a non-banded matrix. Consequently, in this case the 
parallel performance is expected to stay close to the performance shown by dashed 
lines in the graph in Figure 27. This shows the advantage of the FD technique over 
FEM if this simple static domain decomposition parallelization strategy is used.

Another aspect of parallel performance of the considered solver, specific to the 
IBM SP2 distributed memory system, is the influence of the communication 
protocol (Internet Protocol or User Space protocol) used to handle the inter
processor communication. In Table 17, the total execution time of the parallel
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Table 18. Chosen total execution times o f the parallel IRAM-FD solver as a function o f the number 
o f processors involved in the computation. The tests were performed in the Cray T3E system.

Number o f PEs Total Time [s] NEV=4, 
NCV=20

Total Time [s] NEV=15, 
NCV=40

1 225.26 631.42
2 118.27 326.33
4 59.38 180.10
8 30.70 90.56

16 16.15 51.05
24 12.52 37.99

solver as a function of the number of processors is shown for the two 
communication protocols applied. The results given in the Table show that there is 
only a minor difference in the performance while using the two different 
communication protocols. Still, the performance is always slightly better for the US 
protocol. Nevertheless, no dependence of the number of processors on the relative 
performance can be observed.

Let us now present the results of performance tests for the parallel IRAM-FD 
solver obtained in the Cray T3E parallel system. The set of input parameters used in 
the following series of tests was the same as in the tests performed in the IBM SP2 
system. Additionally to the case where NEV = 4 (NEV — number of eigenvalues to 
be computed) and NCV = 20 (NCV — number of eigenvalues to be filtered out 
during the IRAM iteration) the tests for NEV = 15 and NCV = 40 were performed. 
Only the “fully optimized” version of the solver was tested. Both the PARPACK 
library and the solver code were compiled using the following directive: f  90 -0 3  
-X m x x x . f  -o  xxx - l s c i  - lm p i.

Figure 29 shows the total execution time of the parallel Amoldi FD solve for 
a different number of processors involved in the computation. For convenience, the 
same results for chosen numbers of processors have also been shown in Table 18. 
At this point a comparison can be made between the results obtained in the IBM 
SP2 system and the Cray T3E, shown in Tables 18 and 17. It may be calculated that 
for a single-processor execution (NEV = 4, NCV = 20) the program runs only 1.66 
times faster on the Cray T3E, although the peak performance of a single node in the 
Cray T3E system is more than two times (2.25) higher as compared to the 
processing node of the SP2 system. The superiority of the Cray T3E system shows 
up in the parallel execution. For the IBM SP2 the speed-up in the execution time for 
8 processors equals 6.50 while for the Cray T3E this factor equals 7.34. This clearly 
indicates that the interconnection network in the latter system _s more efficient.

Figures 29 and 30 show the speed-ups in the execution time of the parallel 
calculation of the matrix-vector (OP*x) product and the total time used by the 
solver. It may be noted that the speed-up while calculating the matrix-vector 
product is almost perfect which is due to the form of the input operator matrix
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Figure 29. Execution time o f  the parallel IRAM-FD solver as a function o f  the number ofprocessors 
involved in the computation. The tests were performed in the Cray T3E system.

Figure 30. Speedup in the execution time while calculating the matrix-vector (OP*x) product in the 
IRAM-FD solver in the function o f  the number ofprocessors involved in the computation. The tests 

were performed in the Cray T3E system. The dotted line shows a perfect linear speed-up.

obtained in the FD discretization. Analogously as observed in the IBM SP2 system 
the speed-up in total execution time is lower as compared to the speed-up for the 
matrix-vector product operation, still it reaches 18 for 24 processors applied which 
is a fairly good result.

Another thing which may be noted in Figure 31 is a relatively unstable 
performance of the solver for NEV = 15 and NCV = 40. Th;s effect, which has also 
been observed in the IBM SP2 system, is due to a different number of both Arnold' 
update iterations and number of matrix-vector operations performed during the



Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 707

2 4 -------- 1---------- r  i i i------------------:--------

I | --------  NEV=4 . NCV = 2o!
22- - -  -  NEV = 15, NCV = 40

2 0: \

Figure 31. Speedup in the total execution time o f the parallel IRAM-FD solver as a function 
o f the number ofprocessors involved in the computation. The tests were performed in the 

Cray T3E system. The dotted line shows a perfect linear speed-up.

execution of the algorithm with different number of processors applied. This 
phenomenon does not occur for the parameters NEV = 4 and NCV = 20. Generally 
speaking, it has been noted that a variable number of iterations occurs if the 
problem becomes more complex, i.e. more iterations are necessary to obtain the 
convergence of the Amoldi process. Still, this does not explain the dependence of 
the number of iterations on the number of processors used. A possible explanation 
is that during the implicit updates and during the initial iteration of the Amoldi 
factorization the vectors submitted to the iterative process are generated by each 
processor using only local data. In this case the global form of these vectors can be 
different for different numbers of processors applied. Consequently the starting 
point of the iterative process before each implicit restart may be different for 
different number of processors applied.

If now, for the case NEV = 15 and NCV = 40, we compute the speedups in 
computation time per single iteration of the algorithm we shall obtain much more 
stable results, presented in Figures 32 and 33, which show a true speed-up in 
computations due to parallelization. In fact the graph of the speed-up is almost 
identical to the case NEV = 4, NCV = 20.

The following graph (Figure 34) shows the percentage of total execution time of 
the IRAM-FD solver spent in the orthogonalization phase. These results cannot be 
clearly interpreted. The orthonormalization phase involves inter-processor 
communication so the percentage of time spent in this phase of the program should 
increase with the increasing number of processors. This happens only in the case 
NEV = 4, NCV = 20 while in the other case the effect is opposite. Probably the 
effect of scaling of the problem plays here the most important role. The only 
comment which can be made at this stage about these results is that the percentage 
of time spent in the orthonormalization phase does not change significantly with the
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Figure 32. Speedup in execution time o f a single iteration o f the IRAM-FD algorithm and the single 
matrix-vector product computation for the case NEV = 15, NCV = 40. The tests were performed in the 

Cray T3E system. The dotted line indicated the linear speed-up.

Figure 33. Execution time o f a single iteration o f the IRAM-FD algorithm and the single matrix-vector 
product computation in the function o f the number ofprocessors appliedfor the case: NEV =15, 

NCV = 40. The tests were performed in the Cray T3E system.

number of processors which once again may confirm the efficiency of the 
interconnection network.

Another thing which has been investigated for the discussed parallel IRAM-FD 
solver is the load-balancing achieved for the applied parallel data distribution 
scheme. Figure 35 shows the difference of the execution times for the processors 
involved in a parallel computation. The investigated task was run on 24 processors 
and the differences (in per cent) are related to the execution time for the process 0. 
As it may be noted the load-balancing is almost perfect with the largest relative
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Figure 34. The percentage o f total execution time o f the IRAM-FD solver spent in the 
orthogonalization phase as a function o f the number o f processors applied. The tests 

were performed in the Cray T3E system.

Table 19. Execution time and speedup in the parallel matrix-vector (OP*x) product calculation 
and the total execution time for the IRAM-FD parallel solver. The tests were performed in the 
cluster o f SGI Indy Workstations connected via the ATM network.

No. o f nodes OP*x time [s] Speedup Total time [sj Speedup

1 118.76 1.00 2118.69 1.00
2 56.70 2.09 1024.81 2.07
3 41.02 2.90 762.09 2.78
4 28.81 4.12 526.27 4.03
5 27.89 4.26 503.71 4.21
6 26.69 4.45 443.22 4.78

difference in execution time equalling 0.4%. Consequently, it may be stated that an 
appropriate parallel data distribution scheme has been applied in the solver.

The last hardware platform used to test the Amoldi-FD solver was a cluster of 
6 SGI Indy workstations connected via ATM network. This time the 
implementation based on BLACS and PVM (cf. Section 5.3.2) was tested. Data 
showing both execution time and speed-up in the total computation time and 
matrix-vector product calculation time has been given in Table 19 and also 
presented in Figure 36. One may note that for 2 and 4 processors used, the obtained 
speed-up exceeds the linear speed-up. Once again this effect is due to the number of 
algorithm iterations changing with the number of processors. Still, the results show 
that in the range from 1 to 4 processors the parallel implementation of the solver
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involving BLACS and PVM gives a good speed-up n the execution time and 
consequently the solver may be efficiently used in the network environment. 
Although the asymptotic behaviour of the parallel solver cannot be observed due to 
insufficient number of available workstations the results for 6 processors already 
indicate that a serious degradation in performance may occur if a larger number of 
workstations is used in the computations.
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Figure 35. The per cent variation in the execution times (as related to the execution time for 
process 0) on different processors involved in a parallel computation fo r  the IR.4M-FD solver. 

The tests were performed in the Cray T3E system.

Figure 36. Speedup in the parallel matrix-vector (OP*x) product calculation and the total execution 
time fo r  the IRAM-FD parallel solver as a function o f the number ofprocessors involved in the 

computation. The tests were performed in the cluster o f SGI Indy Workstations connected
via the ATM network.
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Summing up, the results of performance tests for the parallel IRAM-FD solver 
obtained in different parallel platforms show a very good scalability of the solver 
which is mainly due to an efficient parallel design and implementation of the parallel 
matrix-vector product computation.

7.2.3 Parallel Arnoldi solver using implicit operator projection

The performance tests of the Amoldi (IRAM) solver using implicit 
representation of operators (described in Section 5.4) have focused on measuring 
the speed-up achieved by the program in given parallel distributed memory 
environments. All the following tests have been performed in the two scalable 
parallel systems: the IBM SP2 and the Cray T3E.

The first Figure (Figure 37) shows the execution times for the IRAM-FFT 
solver (number of the eigenvalues to be found NEV = 8, number of eigenvalues to 
be filtered out NCV = 40) for deferent Fast Fourier Transform lengths and different 
number of expansion terms used to represent the functions in the input operator’s 
domain. Analogous results are shown in Figure 38 for the tests performed in the 
Cray T3E system. It may be noted that usually the execution times are lower by 
about 1/3 for the Cray T3E system, analogously as observed in the previous section.

Figures 39 and 40 show the speed-ups in the total execution times for the 
IRAM-FFT solver in the I3M SP2 and Cray T3E platforms. It may be seen that the 
results for both platforms are entirely analogous. The best speed-up may be 
observed ir. the case when the number of expansion functions equals 256 in every 
direction and the FFT length equals 1024 (in both directions). This indicates that 
applying a larger, more complex problem gives better performance. In other words, 
the solver scales well with the problem size and complexity. The other positive

Total execution tim e for the A rno ld i solver.
10%------------------------------------------r ------------------- 1----------------------------

Figure 37. Total execution time o f  the IRAM-FFT parallel solver as a function o f  the FFT length. 
The tests have been performed in the IBM SP2 system. (NEV = 8. NCV = 40).
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Figure 38. Total execution time o f the IRAM-FFT parallel solver as a function o f the FFT length. 
The tests have been performed in the Cray T3E system.

Figure 39. Speed-up in the total execution time o f the IRAM-FFT parallel solver vs. the number 
o f processors. The tests have been performed in the IBM SP2 system.

result which may be noted is that as the ratio between the number of expansion 
functions and the FFT length increases, the parallel performance also improves. 
This means that although the percentage of time spent on the matrix-vector product 
computation related to the total execution time increases and also the size of inter
processor communication during the parallel transposition operation becomes larger 
this does not cause a parallel bottleneck.

It may be noted in Figure 40 that the effect of a number of iterations changing 
with the number of processors also shows up in the IRAM-FFT solver resulting in
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Figure 41. Speedup in the total execution time o f a single iteration o f the 1R.4M-FFT parallel 
solver vs. the number o f processors. The tests have been performed in the Cray T3E system.

more than linear speedup for certain numbers of processors. If the “per iteration” 
speed-ups are calculated more stable parallel behaviour of the algorithm emerges, 
which has been shown in Figure 41. This Figure also shows that almost perfect 
speed-up in parallel computations is obtained in the case of FFT length = 1024 and 
the number of expansion function = 256.

Figures 42 and 43 show the speed-ups in the execution time of a pair of 
operations: a backward 2D FFT and a forward 2D FFT, as a function of the number 
of processors applied. The speed-ups were computed for the average time of 
a single operation. It may be noted from Figure 43 that although the speed-ups are 
high, they are lower from the total speed-up of the IRAM-FFT solver. This situation 
is opposite to the case of the IRAM-FD solver and can be a first signal that 
a parallel bottleneck may occur during parallel computation of the inner products,
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Speedup  in the execu ton  tim e for the FFT bT FT f pair calcu lation

Figure 42. Speed-up in the execution time o f a pair o f operations: a backward 2D FFT 
and a forward 2D FFT, as a function o f the number o f processors applied.

The tests were performed in the IBM SP2 system.

Figure 43. Speed-up in the execution time o f a pair o f operations: a backward 2D FFT 
and a forward 2D FFT, as a function o f the number ofprocessors applied.

The tests were performed in the Cray T3E system.

involving 2D Fast Fourier Transforms, for a larger number of processors applied.
The Figure 44 shows a percentage of :me spent on the orthogonalization phase 

during the execution of the parallel IRAM-FFT solver. The results show no 
dependence of the number of processors on this relative time which indicates that 
the time spent on nter-processor communication occurring in this procedure is 
entirely insignificant.

In Tables 20 and 21 the total execution times (for a single-processor execution ' 
of the IRAM-FFT solver were shown for different number of expansion functions
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Table 20. The total execution time (for one processor) o f the IRAM-FFT solver for different numbers 
o f expansion functions used to approximate the 2D fields by the Fourier series. The tests were 
performed in the IBM SP2 system. (NEV = 15, NCV = 40, FFT length m 256)

Number o f expansion 
functions

Size o f the operator 
matrix Total execution time [s]

5 x 10 115 70.74
10 x 10 220 105.33
20 x 10 430 192.09
40 x 10 850 371.52
80 x 10 1690 892.69

160 x 10 3370 2216.21

Table 21. The total execution time (for one processor) o f the IR.4M-FFT solver fo r  different discretiza
tion grids (FFT lengths) used to approximate the 2D fields by the Fourier series. The tests were 
performed in the IBM SP2 system.

DFT Length Total execution time [s]

256 x 256 444.68
512 x 256 825.52

1024 x 256 1611.83
1024 x 512 4023.25
1024 x 1024 9235.12

Table 22. Comparison o f the execution times (on one processor) between the Galerkin Method (CM) 
and the IRAM-FFT solver. In case o f the IRAM-FFT method: FFT length = 256, NEV = 4, NCV = 20. 
The tests were performed in the IBM SP2 system.

Number o f expansion functions: Time [s] GM: Time [s] IRAM-FFT:

10 * 10 1.61 8.85
20 * 20 304.92 19.94
30*30 4254.86 38.22

used and different FFT lengths. The results confirm a rather stable behaviour of the 
solver which shows up in the linear or linear-logarithmic type of time growth. This 
type of growth may be opposed to drastic time increment observed in the GM 
method (using the QR algorithm to find eigenvalues of the operator matrix) - 
compare Table 22. This last Table shows the substantial difference in performance 
of the classical method (the Galerkin Method) in which an explicit representation of
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the input operator is applied producing a dense matrix and the proposed IRAM-FFT 
method which uses implicit operator representation.

Table 23. The total execution time (for one processor) o f the IEEM-FFT solver for different Discrete 
Fourier Transform lengths and a fixed number o f expansion functions applied to represent the 2D 
fields (the number o f expansion functions equalled 128 in every direction).

FFT length Total execution time [s]

256 x 256 0.58
512 x 256 1.28
512 x 512 2.99

1024 x 512 6.24
1024 x 1024 14.66
2048 x 1024 29.31
2048 x 2048 64.43

Table 24. The total execution time and speed-up o f the IEEM-FFT parallel solver vs. the number 
ofprocessors. The tests have been performed in the Cray T3E system. (The number o f expansion 
functions equalled 256 in every direction and the FFT length equalled 1024. The number o f the 
solver iterations equalled 21 for the tested structure. The stopping criterion equalled le-06.)

Number o f PEs Time [s] Speedup

1 36.96 1.00
2 18.67 1.98
4 9.36 3.95
8 4.81 7.68

16 2.45 15.09
24 1.80 20.53

7.2.4 Parallel Iterative Eigenfunction Expansion Method with the FFT integration

This section shows some preliminary performance results for the solver 
implementing the IEEM-FFT method for parallel distributed memory systems, as 
described in Section 5.5. The code has been implemented in Fortran77 and MP1 and 
has been tested in the Cray T3E system. The results of the tests are presented in 
Figure 45 and Table 24 showing very good performance of the parallel solver. 
These results of parallel IEEM-FFT solver are not surprising, as the implementation 
of this eigensolver is based mainly on the parallel implementation of the method of 
computing inner products using the 2D FFTs (cf. Section 5.4.1) which was found to 
scale very well. (The results showing performance of the parallel computation of 
a pair of a backward and forward 2D FFTs are presented in the previous section.) 
The other operations performed by the IEEM-FFT algorithm during its basic
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Figure 44. The percentage o f total execution time o f the IRA M-FFT solver spent 
in the orthogonalization phase in the function o f the number ofprocessors 

applied. The tests were performed in the Cray T3E system.

iteration are almost perfectly parallel with only minor inter-processor communication 
occurring, related to the computation of global vector norms. The other tests 
(involving single-processor execution), performed using the IEEM-FFT solver show 
the character of the execution time growth with the increasing FFT lengths — cf. 
Table 23. As it may be noted an almost perfect, linear growth of execution time is 
observed.

2 4 6 8 10 12 14 16 18 20 22
Number of processors

figure 45. Speed-up in the total execution time o f the IEEM-FFT parallel solver vs. the number o f  
processors. The tests have been performed in the Cray T3E system. (The number o f expansion 

functions equalled 256 in every direction and the FFT length equalled 1024. The number o f the 
solver iterations equalled 21 for the tested structure. The stopping criterion was le  -  06.)
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Table 25. Comparison o f the number o f updates, the number o f matrix-vector product operations 
(OP*x) performed by the IRAM process and the execution times for IRAM-FFT and IRAM-FD solvers. 
In the case o f IRAM-FFT algorithm both FFT length and the number o f  expansion functions used 
equalled 128. For IRAM-FD algorithm the discretization grid equalled 200 x 200 or 128 x 128.
In all cases: NCV = 40 and NEV = number o f eigenvalues to be found.

NEV Problem
size

No. o f  
updates

No. o f OP*x 
operations

Total time 
[seconds/

OP*x time 
f,seconds/

IRAM-FFT (128x128)
1 33024 142 2860 112.35 23.07
4 33024 168 5983 171.57 47.91

IRAM-FD (200x200)
1 1 79600 61 1240 80.27 5.56

4 79600 121 4264 191.24 19.10
IRAM-FD (128x128)

1 32512 34 700 18.42 1.31
4 32512 77 2688 50.02 5.03

7.2.5 Comparison o f performance o f the proposed eigensolvers

In this section we shall present a short comparison of execution times of the 
three basic algorithms discussed in this study: 1) IRAM-FFT, 2) IRAM-FD and 3) 
IEEM-FFT. In the comparison we investigate single-processor execution times for 
the considered methods, applied to solve the same problem (in physical terms). The 
problem consists of finding propagation constants in one of the waveguiding 
structures discussed in Section 6. The test parameters are as follows: 1) For all 
algorithms the stopping criterion equalled 1.2e -  16. 2) In the case of the IRAM-FD 
algorithm the 200 x  100 discretization grid has been used. 3) In the case of IRAM- 
FFT and IEEM-FFT methods the number of expansion functions equalled 40 in 
both x- andy- directions. The FFT lengths equalled 128, 256, 512 or 1024 in every 
direction. 4) In the case of IRAM-based algorithms the number of eigenfunctions to 
be filtered out equalled 20 -  NCV = 20 and the number of eigenfunctions to be 
found (NEV) equalled 1, 2 or 4. With this choice of input parameters one may 
expect that the quality of approximations of eigenvalues computed using the 
discussed solvers will roughly be the same.

The graph shown in Figure 46 presents the execution times for the IRAM-FD 
algorithm and IRAM-FFT method (for different FFT lengths) as a function of the 
number of eigenvalues to be found. One may note that the IRAM-FFT algorithm is 
faster if the FFT length equals 128 or 256. Still, if FFT length equals 512 then the 
IRAM-FD algorithm appears to be twice as fast as the IRAM-FFT method. 
It should be stressed here that the number of update iterations of the IRAM process 
did not change at all with the changing FFT lengths in the IRAM-FFT algorithm.
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Figure 46. Comparison o f single-processor execution times o f IRAM-FD and IRAM-FFT solvers 
fo r  different number o f eigenvalues to be found and different FFT lengths applied. The tests 

have been performed in the Cray T3E system.

It means that the growth in execution time while changing the FFT length is due 
solely to the increasing execution time of calculating the inner products. Another 
interesting observation can be made about the presented results. It is apparent that 
the execution time grows faster for the IRAM-FD algorithm than for the FFT-based 
algorithm with the growing number of eigenvalues to be found. It is not known 
whether this tendency is stable or for what range of parameters it occurs, as the 
computational complexity of the IRAM-FD solver is lower than the cost of FFT-
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Figure 47. Comparison o f single-processor execution times fo r  the IRAM-FD, IRAM-FFT and 
1EEM-FFT methods. The number o f eigenvalues to be found equalled l fo r all the methods. 
The times for the FFT-based algorithms are given as a function o f the FFT length. The tests 

have been performed in the Cray T3E system.
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Figure 48. Comparison o f single-processor execution times for the IRAM-FFT and IEEM-FFT 
methods. The number o f expansion terms used to represent functions equalled 40 in each spatial 
direction. The convergence criterion equalled 1.2e -  16. In the case o f IRAM-FFT algorithm the 

number o f eigenvalues to be found was l, 2, 4 and 8, while fo r  the IEEM-FFT method only 
a single eigenvalue was found. The tests have been performed in the Cray T3E system.

based algorithms. Still, due to smaller size of the problem solved in the IRAM-FFT 
method (as compared to the IRAM-FD method) the growth of the number of 
derations of the IRAM process necessary to obtain convergence is not so dynamic 
as in the IRAM-FD method and compensates the higher complexity of the IRAM- 
FFT algorithm. Table 25 shows a comparison of the number of update iterations and 
OP*x operations for the IRAM-FFT and IRAM-FD algorithms if one and four 
eigenvalues are to be computed. One may note that while for the IRAM-FFT 
algorithm the number of update iterations increases by less than 20 % (for 
NEV = 4), it doubles for the IRAM-FD algorithm. The increment in the number of 
matrix-vector products (inner products) to be computed also changes more rapidly 
for the IRAM-FD algorithm. Consequently the growth in execution time is also 
faster for the IRAM-FD as compared to IRAM-FFT solver. Lastly, it should be 
noted that the time spent on calculating the matrix-vector product does not exceed 
10 % of the total execution time of the IRAM-FD solver, while for the IRAM-FFT 
solver this percentage may range from about 20 % to more than 90 %. This fact is 
a consequence of transferring the complexity of the solver from the IRAM iterative 
process to the operation of computing inner products (using 2D FFTs).

Figure 47 shows a comparison of single-processor execution times for three 
solvers: 1) IRAM-FD, 2) IRAM-FFT, 3) IFEM-FFT if only one eigenvalue is to 
be found. The execuion time for the IRAM-FD algorithm has been drawn as 
a horizontal line, since the algorithm does not depend on the FFT length. The times 
for the FFT-based method have been given for different FFT lengths applied. From 
the graph one may note that the IRa M-FFT algorithm is faster than IRAM-FD
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method for FFT length that equals 128 or 256. If the FFT length is smaller than 1024 
then the execution time for the IEEM-FFT is significantly shorter than for two other 
algorithms. It is also interesting to note that the growth of execution time is much 
faster for the IRAM-FFT method than for the IEEM-FFT method, although both 
method are based on the same representation of the operators and the same method 
of calculating inner products. This effect is due to a different number of iterations 
needed to obtain convergence, which equals about 700 for the IRAM-FFT algorithm 
and about 100 for the IEEM-FFT algorithm. (The numbers of iterations stay 
approximately the same for different FFT lengths.) Another comparison of IRAM- 
FFT and IEEM-FFT solvers is shown in Figure 48. This Figure presents execution 
times while solving a different eigenproblem than in the previous tests. In this case, 
if only a single eigenvalue is to be found, the number of iterations equals 620-640 for 
the IRAM-FFT and 382-453 for the IEEM-FFT method. Consequently the 
execution times for IRAM-FFT and IEEM-FFT are comparable also for larger FFT 
lengths. If a larger number of eigenvalues is to be found, the number of iterations 
increases up to 1800 iterations for the IRAM-FFT solver which results in an 
appropriate growth in the total execution time.

8. Conclusions
In the conclusion we would like to make a general comparison of various 

features of the numerical algorithms proposed for solving operator eigenproblems in 
distributed memory parallel systems. We will focus on the following issues:

— The numerical complexity, memory storage requirements and the size of messages 
exchanged between the processors for the proposed parallel eigensolvers.

— Performance of the solvers in parallel distributed memory systems.

— Assessment of chosen general properties and functional parameters of the solvers,

Table 26. The assessment o f numerical complexity, memory storage requirements and the size o f 
messages exchanged among the processors for the discussed parallel eigensolvers.

Algorithm Computational
complexity

Memory
complexity

Size o f the 
messages

IRAM-FD 0(k2N/P)+
0{k-nnz/P)

0(k2N/P)+
0(2nnzlP+N/P)

0(k(P-1 )b

IRAM-FFT 0(k2N/P)+
O(klPKlogK)

0(2K/P+2N/P)+ 
0(6\Jk  +k2NIP)

O (A -^rV ^A )

IRAM-FFT-NI
0(k2N/P)+ 
0(k/PK\ogK)+ 
0(kN\J~K IP)

0(2KIP+2N/P)+ 
0(6s[K +k2N/P)

O ( k ^ r s f K N )

IEEM-FFT 0{KIP\ogK)+ 
0( 12K/P)

0(2KIP+2N/P)+
0(6y/A)

O ( k ^ - ^ j K N )
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including e.g. the scope of eigenproblems which may be solved by 
a certain algorithm or the portab ility of the .mplementation.

— Applicability of the discussed algorithms to solving eigenproblems arising in 
electromagnetics.

The comparison of the complexities of the parallel solvers has been shown in 
Table 26. This Table presents numerical cost estimat'Ans for the following 
algorithms: 1) The IRAM-FD: The solver based on the IRAM iterative algorithm 
and applying the FD finite-dimensional mapping technique in order to obtain 
discrete operator representation; 2) The IRAM-FFT: The solver based on the IRAM 
iterative algorithm and applying implicit finite-dimensional projection of the input 
operator; 3) The IRAM-FFT-NI: The modification of the previous solver which 
applies a hybrid algorithm of calculating the matrix-vector product using FFT and 
Numerical Integration (NI); 4) The IEEM-FFT: The solver implementing the 
Iterative Eigenfunction Expansion Method using implicit projection of the input 
operator with FFT-based calculation of inner products in parallel distributed 
memory environment.

The following symbols have been applied in Table 26: P — the number of 
processors, N  — global algebraic size of the problem, K  — product of the lengths 
of Discrete Fourier Transforms in the x- and y- spatial d;mensions, determining 
the grid size in the DFT (FFT) domain (usually N  «  K, although it may happen 
that N=K),  nnz — the number of non-zero elements in the input operator matrix, 
k  — number of eigenvalues to be found and b — bandwidth of the operator matrix 

Comparing the results shown in Table 26 the following conclusions may be drawn:
— Assuming that£ = 1, it may be found that the IRAM-FD algorithm has the lowest, 

linear numerical complexity. The algorithms involving implicit (DFT-based) 
operator projection methods have at least a linear-logarithmic complexity. 
Potentially the highest numerical cost occurs for the IRAM-FFI-Ni algorithm 
(OfV372)) which may result in a deterioration of performance for larger 
problem sizes.

— Although, as mentioned in the previous item, the IRAM-FFT and the IEEM-FFT 
solvers have generally higher computational complexities than the IRAM-FD 
solver, in many applications the resulting problem size is much smaller for the 
ormer methods than for the latter one. (In a typical situation one has K = Nf[)

and Nfft = Nfd/25-) Consequently in these cases the FFT-based methods are 
faster, while offering an equivalent quality of solutions.

— Referring to the memory cost it has to be noted that generally the storage 
requirements of the FFT-based methods are lower than the requirements of the 
FD-based solvers. For instance, typically nnz = 5N. In this case the IRAM-FD 
solver uses almost three times more memory than the IEEM-FFT algorithm. This 
comparison may even be more favourable for the FFT-based solvers if one keeps 
in mind that the problem size is usually significantly larger for the IRAM-FD 
method.
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— Another important feature of parallel solvers is the size of messages exchanged 
by the processors during execution of the program in a parallel environment. 
This size is the lowest for the IRAM-FD solver if the bandwidth of the input 
operator matrix is considerably smaller than its size. On the other hand if the 
matrix is not banded the message size may increase very significantly. It may 
also be noted that in the case of the IRAM-FD algorithm the size of 
communicated messages is a function of the number of processors, while in the 
case of DFT-based methods this size is virtually independent of P. Still, the 
problem with the DFT-based algorithms is that due to relatively large size of 
communicated messages a parallel bottleneck is expected to occur for larger 
problem sizes.

Turning to the issues concerning serial and parallel performance of the solvers 
the following concluding remarks can be made:

— Due to relatively low numerical complexities of all the discussed solvers 
(estimated for a single iteration or a single p-step update of the algorithm) the 
execution time does not “blow up” with the increasing problem size (for a 
considerably large range of problem sizes).

— Still, it was found that in the case of the algorithms based on IRAM the number 
of updates may increase significantly for the increased problem size or the 
number of eigenvalues to be found and / or filtered-out during the execution of 
the algorithm.

— Referring to parallel performance, it has to be concluded that all the developed 
parallel solvers offer high efficiency and speed-up in scalable distributed memory 
systems.

— Although for large problem sizes the speed-up is higher for FFT-based solvers 
than for the FD-based algorithms, these methods require generally larger 
problem sizes to achieve high efficiency in a parallel environment.

The following general functional features of the presented parallel solvers may 
be outlined:

— The solvers based on the Implicitly Restarted Amoldi Method (IRAM) enable 
one to find several eigenvalues from the desired part of the operator spectrum. 
This is a substantial advantage over the IEEM-FFT method which, in its basic 
version, allows one to find only a single eigenvalue.

— Investigating the properties of the IRAM-FD algorithm it may be concluded that 
the algorithm is best suited for banded, sparse matrix operators obtained from 
discretization of differential operators. In this case the solver may offer extremely 
high performance.

— Referring to the solvers using implicit discrete operator representation (IRAM- 
FFT, IEEM-FFT) it may be stated that their efficiency is directly related to the 
reduction of the emerging problem size. Consequently, they may be most
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efficiently applied if the resulting low-cost representation offers an acceptable 
approximation of the considered input operator.

— Problems with the DFT-based solvers may arise if the input operator acting on 
the elements from its domain produces discontinuous, highly varying functions 
or distributions. This problem may be solved at the cost of increasing the 
numerical complexity of the algorithm (cf. the IRAM-FFT-NI method).

— A crucial functional feature of all the presented solvers is their portability which 
allows one to use efficiently the developed parallel methods in a variety of 
parallel distributed memory systems, including supercomputer facilities and 
network environments supporting message-passing programming model.

— The further advantage of the discussed eigensolvers which greatly extends their 
applicability to solving large-scale eigenvalue problems is relatively low memory 
complexity as compared to many classical methods, as well as balanced storage 
requirements across the processors.

Lastly, let us mention some characteristics of the discussed algorithms being of 
particular importance in the electromagnetic applications discussed in this study:

— The IRAM-FD algorithm has yielded an efficient tool while dealing with 
eigenproblems of non-symmetric differential operators arising in 
electromagnetics. In the current version of the solver it may be used to solve 
eigenproblems for waveguiding structures with discontinuous, rectangular 
permittivity profiles.

— On the other hand, the IRAM-FFT and IEEM-FFT solvers are to be particularly 
useful while dealing with waveguides with arbitrary continuous permittivity 
profiles.

— The scope of application of the FFT-based algorithms can be extended to 
structures with discontinuous permittivity profiles at the cost of increasing 
computational complexity of the algorithm.
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Appendix A

Matrix formulation o f the 1EEM

This section presents a new approach towards the Iterative Eigenfunction 
Expansion Method, suitable for solving eigenproblems of firite-dimensional linear

operators. In this case the matrix formulation may be used. If f  ( f  e M (c)„x„)
denotes the matrix of the finite-dimensional linear operator T then, analogously as 
in Section 2.1, the following decomposition can be made:

T = L - F  (73)

The eigenvalues of the matrix L are assumed to be known and will be denoted

as {A } We do not assume here that there are exactly n different eigenvalues. For 
some i and j  there may be A. = A . In order to be able to appropriately represent

every vector from the space C  the eigenvectors of the matrix L : }, have to be

linearly independent. Consequently, the condition for the matrix T is that it should 
be similar to some diagonal matrix or, in other words, to have a simple structure. If

this is the case, the set of its eigenvectors may be orthonormalized and in this

way an orthonormal basis {/vi.}" in the C  space is obtained. Initially the

representation of the linear operator F is the matrix F , describing the linear 
transformation for the standard canonical basis in the C” space. This matrix may 

also have a representation in the basis of the orthonormal eigenvectors {/7 -}" of the

matrix L . By applying the similarity transformation:

F = H~'FH  (74)

where the matrix H  is an orthonormal (unitary) matrix, whose columns are the

eigenvectors h}, one obtains the matrix of the operator F in the basis {h.}". It is 
also obvious that:

D = diag{Au ... ,A n}= H -'L H  (75)

If one denotes as y ^  the k-th approximation of the eigenvector of the matrix 

T , represented in the standard canonical basis and as ^  = H  ' y ^  the same
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vector represented in the basis, then the steps of a single iteration of the

IEEM method in the matrix formulation may be described as follows:

ALGORITHM 7: IEEM-matrix.

STEP 1: Compute the matrix-vector product F v .

STEP 2: Detennine the (k+l)-th approximation of the eigenvector
y ( * 0 ) =  |-v  (* + l ) 5- y  ( * - ! ) ] ;

(76)

where AU) is the k-th approximation of an eigenvalue of the matrix [  . 
STEP 3: Normalize vector i-1’":

w
k +1
k + \ (77)

STEP 4: Determine the (k+l)-th approximation of the eigenvalue:

= - f e < * ’) V * "  (78)

The question that appears is under what conditions the above method converges

to the solution, i.e. the eigenvalue and the eigenvector of the matrix T . For the
operator version of the algorithm (described in Section 2.4) Jablonski proved that in 
a Hilbert space being the domain of the operator T = L -  F, the iterative process 
converges provided the operator L is relatively compact with the operator F (cf. 
[16]). If the finite-dimensional Hilbert space l~ (the linear space of n-dimensional 
vectors with the Euclidean norm and a standard inner product) is considered then

for any two matrix operators L and F these two operators are relatively compact, 
as according to one of the definitions of the operator compactness, any finite-

dimensional operator is compact. Consequently, the matrix operator f (? J  -  L f x (for

Ae ( Cn-Up(L)))  is also compact., it may be inferred that for any decomposition

r  = L - F ,  such that matrix E has a simple structure, the iterative method 

converges to the solution.
Another question which immediately emerges is which solution (i.e. which 

eigenvalue from the matrix spectrum) is being found in the iterative process. In the
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simplest case the matrix L is similar to a diagonal matrix which has a single n-fold 
eigenvalue A. In this case for all i one has A. = A in the equation (76) and it may be 

clearly seen from the same equation that the vector y'<+1* approaches the direction 

of an eigenvector corresponding to the dominant eigenvalue of the matrix F . 

(In this case the IEEM reduces to the Power Method and the subsequent vectors vk 

are constructed in a simple power iteration for the matrix F .) If A denotes the 

dominant eigenvalue (the eigenvalue with the largest modulus) of the matrix F

then the method converges to A -A  . Unfortunately no results have been obtained

so far for different choices of the matrix E, although the relations between the
Iterative Eigenfunction Expansion Method and the Power Method seem to 
be apparent.

Symbol conventions and abbreviations
General symbols

A — linear operator
A* — adjoint operator associated with A
A _ matrix
a — vector
B(XA0 — space of linear operators {A | A : X ->  X }
c the set of complex numbers
C  — the class of functions with continuous derivatives
C2 — the class of functions from C1 class with continuous second derivatives
8(x) — the Dirac delta distribution
h(x) - the Heaviside function
L2(Q) - space of square integrable functions defined over the region Q

- the set of n x n matrices with complex elements
R the set of real numbers
°>(A) — point spectrum of the operator A
v,w — functions
X — complete, linear (Banach) space
(•> 0 inner product in a Hilbert space
II 'll — norm in a Hilbert space induced by the inner product

Physical quantities

P - propagation constant
£ --- relative permittivity of medium
£o permittivity of the free space

E. transverse electric field intensity
7
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f frequency

transverse magnetic field intensity
wavenumber in the free space 
permeability of the free space 
normalized propagation constant

Selected abbreviations
DFT
FD
FEM
FFT
GM
IEEM
IRAM
MGS

Discrete Fourier Transform
Finite Difference discretization method
Fin; e Element Method
Fast Fourier Transform
Galerkin Method
Iterative Eigenfunction Expansion Method 
Implicitly Restarted Amoldi Method
Modified Gram-Schmidt orthonormalization algorithm ARPACK 
Parallel ARnoldi PACKage 
Transverse Resonance Method

PARPACK— 
TRM —
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