
TASK QUARTERLY 2 No 4 (1998), 611-731

METHODS OF SOLVING OPERATOR
EIGENPROBLEMS IN PARALLEL

DISTRIBUTED MEMORY SYSTEMS
AS APPLIED IN ELECTROMAGNETICS1

MICHAL REWIENSKI

Faculty o f Electronics, Telecommunications and Computer Science
Technical University o f Gdansk

Narutowicza 11/12, 80-952 Gdansk, Poland
mrewiens@task.gda.pl

Abstract: This study presents numerical methods of solving operator eigenproblems, focusing on their
applications in electromagnetics. The discussion concentrates on the analysis of new iterative algorithms
or modifications of the existing ones, which are capable of finding a few eigenvalues from the point
spectrum of a non-symmetric operator. The salient feature of the considered methods is a low
computational cost and memory complexity as compared to alternative solutions. This paper also presents
implementations of the investigated algorithms in parallel distributed memory systems, based on the
message-passing parallel programming model and providing portable parallel eigensolvers. The
discussion of the applied designs of the parallel algorithms is supported by the presentation of the results
of performance tests in selected distributed memory environments, including scalable parallel
supercomputer systems and networks of workstations. The results of these tests confirm high efficiency
of the eigensolvers in the considered parallel environments. In this study attention is also drawn to the
question of the applicability of the eigensolvers to problems of modelling of electromagnetic fields in
dielectric waveguides. The results of numerical tests validating the methods in these applications
determine the scope of problems which may be most effectively solved using the specific eigensolvers.

Keywords: operator eigenproblems, parallel numerical methods, computational electromagnetics,
boundary value problems

1. Introduction

1.1 Motivation and background
The rapid development of the methods of functional analysis has brought about

important changes in the mathematical treatment of a huge number of both
theoretical and engineering problems from various disciplines of science. With
revolutionary changes occurring in physics, related in general to the success of
wave mechanics and the theory of quanta, the operator formalism has gained very
special importance. Solving operator eigenproblems, i.e. finding eigenvalues and
eigenfunctions of given operators and investigating spectral properties of entire
classes of operators have become a central issue addressed by the mathematical
physics. The classical eigenproblems formulated in physics, such as the famous 1

1 This paper is entirely based on the author’s M. Sc. Thesis

mailto:mrewiens@task.gda.pl

612 M. Rewienski

Schrodinger equation, have served to solve numerous problems including e.g. finding
eigenfrequencies of the electron waves in an atom or determining energy
eigenstates in various quantum systems. The extremely dynamic progress in the
mathematical methods of theoretical physics has resulted in adopting the operator
formalism to many scientific fields beyond quantum physics, including classical
optics, solid state physics and the theory of electromagnetic field. Throughout the
years the mathematical formulations involving integral or differential operator
equations and eigenproblems have become dominant in such disciplines as the
theory of optical resonators and lasers or the theory of guided electromagnetic
waves ([1], [2]) and have served to solve such problems as investigating
fluctuations of amplitude of laser oscillations or describing modes of
electromagnetic field in dielectric waveguides.

Application of the operator formalism in a broad spectrum of research areas of
science and engineering has generated the necessity of further intensive
developments in the methods of solving operator eigenproblems. It has turned out
that the analytical methods of operator calculus, which were initially most widely
used, are capable of dealing only with the simplest systems and operators.
Consequently the growing need for solving more complex problems formulated in
terms of operator equations has resulted in the development of approximate,
numerical methods of functional analysis.

Several classical techniques, including variational calculus [3] or basic iterative
methods, have been investigated and successfully applied to various operator
problems. Soon, a clear division in the development of approximate methods of
functional analysis has emerged, related to investigation of either methods valid for
general linear operators or methods which could only be applied to finite-
dimensional linear operators, namely the numerical methods of linear algebra.

The latter research area has gained a very special importance with the advent of
computers, which enabled one to model physical systems of an unprecedented scale
of complexity. A very large number of novel numerical algorithms of solving
eigenproblems for finite-dimensional linear operators (matrix operators) have been
developed. At the same time many classical approaches toward solving
eigenproblems for matrix operators had to be rejected or at least revised due to the
problems with their application in computer-based calculations, related e.g. to the
numerical instability of the algorithms which was causing unacceptable
accumulation of errors while using floating-point arithmetics. Still, by the mid
eighties, the developments in scientific computing enabled one to solve routinely
matrix operator eigenproblems of order a hundred or, at most, a few hundreds using
available algorithms and hardware platforms. At the same time the efforts to
standardize the linear algebra computer algorithms were undertaken and resulted in
the development of portable libraries of subroutines, such as E1SPACK (the
package of Fortran77 routines for solving symmetric and non-symmetric matrix
operator eigenproblems), BLAS (Basic Linear Algebra Subprograms) or LAPACK
(Linear Algebra Package), providing very efficient implementations of various

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 613

algorithms from numerical linear algebra. This successful standardization has
greatly contributed to broadening application of the numerical methods of linear
algebra in scientific modelling and popularization of computer modelling in
general.

The success of the numerical methods of linear algebra applied to solving
eigenproblems of finite-dimensional linear operators has caused a rapid
development of strategies or techr iques of discretization (finite-dimensional
mapping) of infinite-dimensional linear operators. In this way the methods of
numerical linear algebra could have been applied to solving eigenproblems for
a much broader class of operators, including e.g. all integral and differential
operators playing a crucial role in many scientific and engineering applications.
While investigating the finite-dimensional mapping methods several problems had
to be taken into account, including quality of the approximation of a given infinite-
-dimensional linear operator by a finite matrix operator and the cost of the applied
finite representation. The issues directly related to the cost of this representation
are: 1) the size of the problem for the emerging finite-dimensional operator and 2)
the characteristics of the representation which often determines a method to be
applied to solve the discrete problem. The problem of finding efficient, cost
reducing fir .te-dimensional mapping strategies for certain operators or classes of
operators is continually one of the most up-to-date problems in modern scientific
computing and has a colossal impact on the scope of possible applications of the
specific numerical algorithms to solving operator eigenproblems.

The introduction of parallel, multiprocessor computer architectures in the recent
years has caused another revolution in scientific computing, affecting also the
approach towards numerical solving of operator and matrix eigenproblems. The
computational power of multiprocessor systems, especially scalable parallel
distributed memory systems, offering now the peak performance of order of
gigaflops or even terafiops could have been efficiently exploited only if the
algorithms had made use of the characteristics of these systems and had taken into
account various additional design problems. These additional problems which have
been found to have a substantial impact on the efficiency of an algorithm executed
in a parallel environment refer mainly to balancing the workload and minimizing
data interchange across a large number of processors. In order to deal with these
issues many existing sequential algorithms have had to be redesigned and many
new, inherently parallel methods have had to be introduced. In this way designing
parallel algorithms which could be efficiently unplemented in scalable parallel
systems has become one of extremely important and challenging issues, making
numerical methods once again a field of intensive research.

In the mainstream of the current research efforts aiming at designing more
efficient (parallel) numerical algorithms one may encounter the dynamically
developing field of computational electromagnetics which deals with numerical
techniques suitable for electromagnetic applications. This research field has
emerged as a response to growing computational needs generated by the

614 M. Rewienskl

electromagnetic community and related to modelling more complex
electromagnetic systems. Moreover computational electromagnetics has started to
address issues in numerical modelling requiring application of non-standard
numerical tools and methods which resulted in developing specialized versions
of general algorithms e.g. for solving operator eigenproblems. An overview of
currently investigated methods of computational electromagnetics applied to
problems of modelling electromagnetic fields in waveguiding structures may
be found in [4], Different approaches towards computational problems of
electromagnetics aiming at decreasing the numerical cost and memory complexity
of the algorithms are presented in the quoted paper and include e.g. finding more
efficient, cost reducing finite-dimensional mapping strategies for the investigated
systems and operators or developing parallel solvers for the considered
electromagnetic problems.

1.2 Scope and goal o f this work
This study tries to join the mainstream of current investigations in the fields of

computational electromagnetics and numerical methods. The approach towards
designing numerical algorithms presented in this work concentrates on choosing
cost-efficient solutions which offer low computational cost and storage
requirements as compared to orthodox algorithms. Consequently, the priority is
given to iterative methods and finite-dimensional mapping techniques which
provide most efficient schemes of solving operator eigenproblems. Although the
reduction in computational cost is often achieved at a price of lipiting generality of
the proposed algorithms, the designs presented in this study try to remain suitable
for solving relatively broad classes of computational problems. An important
approach towards reducing computation time, also widely discussed in this study, -s
the strategy of parallelization, which aims at obtaining scalable algorithms, In this
context another main point addressed within this study clearly emerges, i.e.
designing algorithms suitable for solving large-scale operator eigenproblems.

Having briefly presented basic ideas and approaches applied in this study let us
now outline its scope. This work focuses on a class of ; erative algorithms capable
of finding one or several eigenvalues from the point spectrum of a non-symmetric
linear operator. The iterative algorithms have been selected so that they can be
applied to large-scale problems, with matrices cf the order of thousands or more, as
opposed to the methods based solely on matrix transformations (direct methods)
whose applicability is limited to relatively small problems. Moreover, in most of the
scientific or engineering problems it is necessary to find only one or a few
eigenvalues e.g. those with the largest real part or the largest modulus, rather than
the entire point spectrum of the operator. In this context the iterative methods seem
to be the only suitable tool

Another aspect of sob ;ng operator eigenproblems lying within the scope of this
work is the question of finite-dimensional mapping o r infinite-d'mensional operators.
Although the solutions presented in this work are general and may be applied to
operators with different domains, special attention is dedicated to problems involving

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 615

two-dimensional fields. The main reason for this choice is that these functions have
an application in the modelling of electromagnetic waveguiding structures, being of
the author’s particular interest. Moreover, the non-symmetric operators and
eigenproblems appearing in the theory of electromagnetic fields and waveguides
have served as main examples used to validate the presented algorithms.

Last but not least, the implementor’s point of view has also been thoroughly
discussed in tl :s work with the central question of the design of parallel algorithms,
considered jointly with selected programming paradigms and system architectures.
The work has focused on distributed memory parallel systems which, due to the
scalability of the architecture, seem to be best suited for “grand challenge”
computational problems requiring the largest available memory and processing
resources. Although the major attention is dedicated to massively parallel
processing with parallel supercomputers, some consideration is also given to “poor
man’s’ supercomputers” , namely the networks of workstations in order to discuss
the portability of both designs and implementations of the parallel solvers.
Referring to programming paradigms, this study concentrates on the most popular
one — the message-passing programming model, offering both greatest versatility
in parallel design as well as high performance.

With the scope of interest presented above the following main goals of this
work clearly emerge:

— Present iterative methods which can be used to solve eigenproblems for a general
class of non-symmetric linear operators and discuss the role of some original
modifications of these methods.

— Propose discretization schemes for infinite-dimensional operators, with a special
attention paid to differential operators arising in electromagnetics.

— Present some new methods of solving operator eigenproblems based on the
discussed iterative processes and d' cretization strategies and highlight their
advantages and limitations.

— Desci ioe the parallel designs of the presented methods and discuss their
applica'oi’’ty in distributed memory parallel systems.

— Investigate the aspects of numerical complexity of the algorithms and their
efficiency in given parallel environments.

— Validate the algorithms by showing their application to solving boundary value
problems arsing in the theory of electromagnet c waves and assess the scope
of problems which may be most effectively solved using the specific
eigensolvers.

1,3 Section outline
This work starts with an introduction (in Section 2) of some basic concepts

concerning operator eigenproblems and presentation of operators arising in selected
electromagnetic applications, followed by the description of the two iterative

616 M. Rewienski

algorithms of solving operator eigenproblems. The description of the algorithms is
based on the papers by Sorensen [11], Jabtohski [16], [17] and Mrozowski [181
The author’s extensions to the presented algoiithms involve describing deflation
procedures in the Iterative Eigenfunction Expansion Method and discussing matrix
formulation for this method (Appendix A). Section 3 presents methods of
discretization of infinite-dimensional linear operators, based on the Finite
Difference technique and the Method of Moments representation. The discussed
design of the fast method of calculating inner product for the operators and
functions applying the Method of Moments representation has been first proposed
by Mrozowski [18]. This section also presents the two-dimensional analogues of
theorems published in a book by Briggs and Henson [33] and concerning estimation
of numerical errors in calculation of Fourier coefficients using the Discrete Fourier
Transform. Section 4 presents a general discussion of issues concerning
programming aspects in distributed memory systems, bused on the material from
a book by Foster [29], Section 5 concentrates on describing original parallel designs
and / or implementations of the algorithms of solving operator eigenproblems. Also
a complete description of a new eigensolver (based on the IRAM algorithm and
implicit representation of the input operator) is given. Section 6 discusses
application of the previously described eigensolvers to the problems of modelling
dielectric waveguides with arbitrary permittivity profiles and shows the results of
tests validating the algorithms. It also presents an original modification of the
eigensolver using implicit representation of the input operator, which extends its
applicability to modelling dielectric waveguides with discontinuous, rectangular
permittivity profiles. Section 7 presents a collection of the results of performance
tests in selected parallel distributed memory systems which concludes the analysis
of the proposed parallel eigensolvers, confirming their high efficiency and
scalability in these environments,

2. Algorithms of solving matrix and operator eigenproblems
This begins with presenting some concepts related to operator eigenproblems

and describing briefly eigenvalue problems arising in electromagnetics. Later on
selected methods of solving operator eigenproblems are discussed. The
considerations concentrate on the mein points of the algorithms putting aside to the
following sections the questions referring to specific features of the operators and
their domains, be they finite- or infinite-dimen; ioflal.

2.1 Operator cii'enproblems — basic concepts
Given a normed complete linear space (Banach space) X with complex scalars

and a bounded linear operator A e B(X, X) the eigenproblem (eigenvalue or spectral
problem) of this operator is defined by the equation:

Av = Av (1)

where A e C is in eigenvalue and 0 * v € X is a corresponding eigenfunction
(right eigenfunction) of the operator A. If A is a finite-dimensional space, the

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 617

linear operator A may be represented in the form of a matrix. In this case its
eigenfunctions are most frequently called eigenvectors.

If a scalar product ((•, •): X x X C) is defined in the space X, then A becomes
a Hilbert space and an adjo it operator A* may be associated with the initial
operator A. By definition the operator A* satisfies the following condition:

V.VEA'V>e*'jtA-V,>’) = (^ A*v) (2)

If A = A* then the operator A is called self-adjoint (symmetric). It may easily
be found that if the operator A is symmetric (self-adjoint) then all its eigenvalues
are real. Correspondingly, if the operator is non-symmetric (non-self adjoint) its
point spectrum ap (the set of its eigenvalues) may contain complex values.

The following eigenproblem may be associated with the operator A*:

A*v = Av (3)

The functions v are called left eigenfunctions of the operator A, as opposed to
its right eigenfunctions, defined in equation (1). An important relation joins the
point ap of the operators A and A*:

(a)= {il*: A e o> (a)} (4)

Moreover the left and right eigenfunctions satisfy the following orthogonality
relation:

(A ,.-A /)(v,.,vy) = ° (5)

As it is seen, unless A(= X* , the left and right eigenfunctions of an operator are

orthogonal.

2.2 Operator eigenproblems in electromagnetics
Having described some basic issues concerning operator eigenproblems let us

now turn to a brief presentation of the operators arising in electromagnetics. These
operators will also be discussed in Section 6 which concentrates on validation of
the proposed algorithms of solving operator fgenproblems in electromagnetic-
applications.

Operator eigenproblems are found in various research areas of computational
electromagnetics, including the theory of electromagnetic waveguides being of the
author’s particular interest. Let us consider a dielectric waveguide, shown in
Figure 1 which is homogeneous in the z direction and has an arbitrary electrical
permittivity profile Figure 1 which is homogeneous in the z direction and has an
arbitrary electrical permittivity profile s(x ,y) in its cross-section (x - y plane). The
transverse magnetic field in this structure may be modelled by the following
equation derived from the Maxwell’s equations:

V 2t H t + kle (x ,y)m t + - J —e[v,e(ac,^)x(v, x //,)]= p 2H,
e(x ,y) (6)

618 M. Rewienski

Figure 1. Schematic o f a dielectric waveguide, homogeneous in the : direction and having
an arbitrary' permittivity profile £ (x, y) in the x - y plane.

k0 is the wavenumber in the free space, s(x, v) is the permittivity profile in the
x - y plane and /3 is a propagation constant.

The computational problem which arises at this point is finding the propagation
constant and the form of the transverse magnetic field. In mathematical terms this
problem may be viewed as an eigenproblem of the linear operator T:

with the transverse magnetic field Ht as an eigenfunction and / l 2 as an
eigenvalue to be found. It may be noticed that the operator T is a non-symmetric
vector operator. If the term involving partial derivatives of the permittivity profile

is leaved out one obtains the following scalar non-symmetric operator T :

The eigenproblem of the above operator provides a simplified model of the
waveguiding structure presented in Figure 1.

As it may be seen from the above description, the right eigenfunctions of the

considered operator T (or T) have got a well-defined physical meaning as they
describe the transverse magnetic field in a dielectric waveguide. The question is

whether the left eigenfunctions of the operator T (T) may also be described in
some physical terms. The main problem which has to be solved at this point is

deriving an adjoint operator T* (T *) and an associated eigenproblem. This issue is
broadly discussed in a report by Przybyszewski et al. [5], The results show that the

left eigenfunctions of the operator T (T) are given by the formula:

i, x E, = (- Ey,E X), where E , = (e y , E x ,o) is the transverse electric field and f

where V2(-) = — ,—
,w [dx 8y

j{ \H ,= (H x(x ,y \H y{x ,y^ is the transverse magnetic field,

(7)

(8)

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 619

is a unit vector in the z direction. The most important consequence of the fact that
the left eigenfunction of the operator T is described by the electric field in
a waveguide is that this left eigenfunction may be derived directly from the right
eigenfunction without the necessity of solving an adjoint operator eigenproblem.
This may be achieved by using the following formulas derived from the Maxwell’s
equations:

where p0 is the permeability of the free space, £0 is the permittivity of the free
space and other symbol have the same meaning as above.The fact that the left
eigenfunctions may be so easily derived from right eigenfunctions for the
considered operator T will be applied in the algorithm described in Section 5.5,
which uses both eigenfunctions during its iterative process.

2.3 Overview o f the algorithms o f solving operator eigenproblems
Having presented basic concepts concerning eigenproblems and their

applications in electromagnetics, ir this section we shall b^'efly outline different
approaches towards numerical solving of operator eigenproblems before discussing
in detail two algorithms being the main object of this study.

We shall start this overview with iterative methods of solving operator
eigenproblems which currently prov’de the only efficient strategy for finding
eigenvalues in large-scale eigenproblems. The first method to be mentioned is
a very well known Power Method (the simple iterate n method) [6] which is not
only the simplest but also the most important iterative algorithm for solving
operator eigenproblems due to its numerous implications for modem iterative
eigensolvers. The numerical methods being the main subject this study originate
precisely in the Power Method which serves as a basis for the iterative processes.
Given the operator A the steps of the basic version of the Power Method are given
as follows:

ALGORITHM 1: The Power Method.

STEP 0: Choose an initial function v(such that ||vj| = 1, assume k = 1.
STEP 1: Iterate:

STEP l.l: Calculate w< = Av,.k+1 k
STEP 1.2: Normalize: vkH = wkJ\\w kf \ .
STEP 1.3: k : = k+ 1.

The main feature of the above method is that t converges to the eigenfunction
corresponding to the dominant eigenvalue (the eigenvalue with the largest modulus)
of the operator A. In the case of a symmetr y operator A with its eigenfunctions

(9)

(10)

620 M. Rewienski

forming an orthonormal basis in the operator’s domain it is easy to show (cf. [7]) that

II A* v, |
lim n . ■ j, = lim||A va_, || = |/ lmax | n n
k A v, * v 7

where A.max is the dominant eigenvalue of the operator A. The other important
feature of the above algorithm is that the information on the operator A is passed
to the iterative process only via the Avt operation which allows one to apply any
kind of implicit representation of the input operator. The main drawback of the
above simple method is that it is able to find only a single, dominant eigenvalue
and eigenfunction of the operator. Still, the functionality of this algorithm may be
extended if deflation and shifting techniques are applied within the iterative
process [6] allowing one to find other eigenvalues of the input operator.

Another important aspect of the Power Method is that during the iterative
process a Krylov subspace Km is being constructed:

K m =Span {vl,Av1,.. . ,A ffl- |v1} (12)

At this point it should be noted that the Power Method exploits only the last two
functions from the basis of the Krylov subspace K shown above. This fact
provided a basis for the development of the iterative subspace methods which
exploit the whole Krylov subspace in order to ach'eve quicker convergence than in
the Power Method. These algorithms, which may be used to solve eigenproblems
both for infinite-dimensional linear operators and finite-dimensional matrix
operators, are currently the most dynamically developing field of research in
numerical analysis. The most representative examples of modem iterative subspace
methods are the Lanczos method (for symmetric operators), the Amoldi method
(non-symmetric case) or the Davidson algorithm ([8]) (originally designed for
symmetric matrices). In these highly effective methods the problem, defined usually
for a sparse or structured matrix operator of very large dimension, is reduced to
a much smaller dense matrix operator problem. This smaller problem may then be
solved by any of the standard techniques used for dense matrix operators. Due to
the structure of the three mentioned algorithms they are normally used to find
several eigenvalues from a spectrum of a given operator. Another numerical method
which to a certain extent contains the Power Method is the Iterative Eigenfunction
Expansion Method (IEEM) (described in detail in one of the following sections)
which may be used to solve non-symmetric operator and matrix eigenproblems.

Apart from the algorithms which are capable of solving eigenproblems for
general symmetr : or non-symmetric iinear operators, a huge number of algorithms
designed to deal with matrix operators have been developed, contributing to a rapid
progress in the numerical linear algebra. Historically the development of the
methods of solving matrix eigenproblems starts with symmetric eigenproblems.
One of the first algorithms dealing with symmetric matrices was the Jacobi method
that used orthogonal matrix transformations to find eigenvalues and eigenvectors.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 621

This classical algorithm was gradually replaced in applications by other techniques
e.g. Householder reduction and, above all, by the QR method [6], The above
methods are still common in many applications as they are able to find all the
eigenvalues of a given matrix. Nevertheless, the relatively high numerical cost
which reaches roughly 0{nl) computations significantly reduces the size of the
problem which may be solved by these algorithms using available computer
systems. The quest for finding mere efficient algorithms solving matrix eigenvalue
problems caused the development of more specialized methods aimed at solving
problems for either dense or sparse, symmetric or non-symmetric matrices as well
as banded and highly regular matrix operators. Broad presentations of the
algorithms used to solve matrix eigenproblems may be found in the book by Saad
9] (especially sparse matrices) or the book by Golub and van Loan [6],

2.4 The Arnoldi method

This section presents the Arnoldi method which belongs to a class of iterative
subspace algorithms capable of approximating a few eigenvalues and the
corresponding eigenvectors of a general square matrix. In a classical approach
([10]) the applicability of this technique was strongly limited due to a potentially
unbounded growth in storage as well as the lack of numerical stability of the
iterative process resulting e.g. in a loss of orthogonality of the eigenvectors. These
problems have been successfully solved by Sorensen [11] who proposed
a modification of the initial Arnoldi algorithm called the Implicitly Restarted
Arnoldi Method (IRAM). Exploiting the analogy between the Arnoldi process and
the QR iteration the IRAM provides an iterative scheme which has a fixed memory
complexity if the number of eigenvalues to be sought is pre-specified. The other
advantage of the method is that it preserves the orthogonality of the Arnoldi basis in
the Krylov subspace (compare the previous section) if the number of the
eigenvalues to be found is not too large.

The Implicitly Restarted Arnoldi Method was found to be a highly efficient tool
for solving eigenproblems, capable of reducing both storage requirements and the
computation time for a very wide class of large structured non-symmetric matrices .
in different fields of applications, (cf. [12], [13]) The problem which was found to
occur with the IRAM (presented later on in the work) is the significant increment in
the number of update iterations with the increasing size of the input matrix.

2.4.1 The Arnoldi factorization

In the approach proposed by Sorensen ([11]) the Arnoldi factorization may be

treated as a truncated reduction of a given square matrix A to a form of an upper
Hessenberg matrix. This operation is performed in an iterative process and the Ar-th
step of the factorization may be described by the following formula (cf. [6]):

A V k = V k Vk + f k ekT (13)

622 M. Remehski

where

A is the input n x n matrix,

Hk is a k x k upper Hessenberg matrix (k < n),

Vk is an n x k matrix whose columns are Amoldi vectors,

fk_ is a residual vector of size n, satisfying the relation _ fk_= 0.

The idea of Amoldi factorization is illustrated in Figure 2. From equation (13) it
may been noticed that the process is a truncation of the complete reduction to the
Hessenberg form and if the vector h_ becomes zero the eigenvalues of the

Hessenberg matrix will equal the eigenvalues of the given matrix A . The columns

of the matrix Vk = [v,,v2,...,vA] constructed in the Amoldi process form an

orthonormal basis in the Krylov subspace Kk:

K k = Span jv, A_y, A 2 y ,. . . , A k-1 v j

where v e R" (v e C"). The basis {v.} k is formed in k iterations of the basic
Amoldi algorithm, which may be implemented in a few ways, including the most
common, known as the Amoldi Modified Gram Schmidt algorithm. The steps of
this algorithm are given as follows (cf. [9]):

— +

A v k Vk H k f k ek
Figure 2. The schematic o f the Arnoldi factorization

ALGORITHM 2: Arnoldi-MGS.

. STEP 0: Choose an initial vector vx such that ||v | | ' = 1
STEP 1: Iterate: For j = 1,2, k do:

STEP 1.1: w := Avj

STEP 1.2: For i = 1,2, . . . , j do:
STEP 1,2A: h.. = (vv, v),
STEP 1,2B: w = w - h.. y.

STEP 1.3: hjA J = I|vv||2
STEP 1.4: v. = w / h. , .-j+i — j*\.j

where h.. are the elements of the upper Hessenberg matrix / / .

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 623

It has to be noted that d u f 'g the factorization process the information on the

input matrix (A) is passed to the algorithm only via the matrx-vector product

A v j . This is an extremely important feature since A does not have to be known
explicitly.

2.4.2 Polynomial filters in the Arnoldi method

In the basic Arnoldi algorithm presented in the previous section two main
problems appear. The first is an undefined number of iterations k necessary to
obtain a desired accuracy of the eigenvalues (estimated by calculating the residual
norm) which leads to unbounded memory complexity. This problem may be solved
by restarting the iterative process after a given, fixed number of iterations with
a suitably updated initial vector v [9], The other problem is forcing the algorithm to
converge to the eigenvalue from the desired part of the matrix spectrum. This may
be achieved by “filtering-ouf’ the “unwanted” eigenvalues at each restart of the
algorithm using e.g. polynomial filtering, as proposed by Sorensen [14], In this
technique, after initial k steps of the basic Arnold' algorithm, additional p iterations
are performed. Next, k + p eigenvalues are found as the eigenvalues of the upper

Hessenberg matrix (the Ritz values) and p “unwanted” eigenvalues are then

being filtered out using the implicit shift algorithm with an appropriate filtering
polynomial. The algorithm is then restarted with an updated initial vector v» and the
subsequent p basic Arnoldi iterations are being performed.

2.4.3 Numerical and memory> complexity o f the algorithm

As it has already been told in the previous sections, the Implicitly Restarted
Amoldi Method (IRAM) demonstrates a fixed memory complexity. If the number
of the eigenvalues to be found equals k, the number of additional eigenvalues to be
computed is p and the input matrix size is n then, denoting l = k+ p , the algorithm
requires n ■ 0(l) + 0(F) storage. Lehoucq et al. suggest ([15]) that p should equal
k in order to obtain an efficient algorithm with good convergence rate. Then the
memory complexity equals n ■ C(k) + 0(k2). If one keeps in mind that k is much
smaller than n, it results that the IRAM itself requires very little storage. (Obviously

some extra storage may be required to perform the matrix-vector product A-v
operation, but it should not exceed n2.)*

The numerical complexity may only be assessed for a single update ;n a p-step
IRAM algorithm. If the cost of the matrix-vector product (step 1.1 of the
factorization) is excluded then the complexity equals 0(p2n). If one assumes that

* Other authors [13] indicate that the choice p = k may not be the optimal one and propose
a choice of the value of p as a function of the problem dimension n in order to obtain
quicker convergence. In this case the theoretical complexity becomes a function of n, still
in the applications presented in [13] it does not result in high memory requirements.

624 M. Rewienski

p = k(p = 0(k)) then the numerical cost becomes of 0(k2ri). Once again, as the
number of eigenvalues k to be found is normally much smaller than the problem
size n, a linear complexity is obtained. Obviously the cost of the operation of
matrix-vector product may be significantly higher, reaching 0(n2) in the worst case
and result in a quadratic overall complexity. Still, as shown later in this work, this
cost may be reduced if the matrix is sparse or does not have to be represented
explicitly by all its elements.

2.5 The Iterative Eigenfunction Expansion Method
The Iterative Eigenfunction Expansion Method (IEEM) was first proposed in

1986 by Jablonski [16], [17] and later improved by Mrozowski [18]. Originally it
was presented and investigated as a method of solving eigenproblems for a certain
class of differential operators being of special interest in the theory of
electromagnetic waveguides. This section starts with the topic of the decomposition
of a given input operator which is a main point of the IEEM. Later on, the original
operator formulation is discussed and deflation techniques extending the
functionality of the method are presented. The formulation of the method for finite-
dimensional linear matrix operators whTh shows the relations between IEEM and
the simple iteration method (the Power Method) is described in Appendix A.

2.5.1 Decomposition o f the operator

Given an operator T, defined over a certain Hilbert space X, it may be
represented in a follow u g form:

T = L — F (14)

where the operator L is a symmetric (self-adjoint) operator with a discrete
spectrum and its eigenvalues form an orthogonal basis in the given operator’s
domain X. The above decomposition is known from the perturbation theory [19],
with the operator F bung a “small” (in a sense of operator norm) perturbation of
the operator L. However, in the itera.ive eigenfunction expansion method, the
perturbation operator F does not have to be “small" but only relatively compact
(in an appropriate domain) with respect to L. This relaxed assumption constitutes
a significant generalization as compared to the classical perturbation technique,
although, as proved by Jablonski irt [16], it is sufficient to construct an iterative
process which converges to an eigenvalue of the operator T. Below the original
operator formulation of the simple iterative process capable of finding a single
eigenvalue of the input operator is described.

2.5.2 Operator formulation o f the iterative process

We start the description of IEEM with the formulation suitable for solving
eigenproblems for general linear operators. In this original formulation which has
been successfully applied to problems of electromagnetics (cf. [16], [17] and [18])
the concept of “eigenfunction expansion” clearly emerges.

Let us assume that the input operator T is decomposed as described in the

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 625

previous section (cf. equation (14)). Given the sets of known eigenvalues of the
operator L, denoted as {A.} and the corresponding eigenfunctions {h.} forming an
orthonormal basis in the Hilbert space X, any function u from X may be expanded in
terms of these functions:

U (15)
i

where f. are the coefficients (Fourier coefficients) of the linear combination of
{h.}. Denoting as A a certain eigenvalue of the operator T the following formula
for the coefficients f. may easily be derived:

(Fu.h,)
< ‘ 6)

where h. is an eigenfunction of the operator L corresponding to the eigenvalue A.
and (•,•) denotes an inner product defined in the Hilbert space X. The above
formula is a basis for the iterative process which may be defined as follows:

ALGORITHM 3: IEEM.

STEP 0: Choose an arbitrary initial function «(0) such that ||u(0)|| = 1, k = 0
STEP 1: Compute A(0) from the Rayleigh quotient:

A(0) = (TW(0)y 0))
V ° v o))

STEP 2: Iterate:

STEP 2.1: y V ^ V i k
4 " A; -A (*-‘)

STEP 2.2:
u{k) iil| |

STEP 2.3: Assuming u^ compute the Rayleigh quotient as:
j /

i i

STEP 2.4: k\= k+ 1.

As already explained in the previous section, if the operator F is relatively
compact with respect to L then the iterative process presented above converges to
an eigenvalue of the operator T. main advantage of the above method is a very fast
convergence rate. In electromagnetic applications it has been found [18] that IEEM
provides a basis for an extremely efficient eigensolver, offering very fast

626 M. Rewieiiski

convergence for an entire general class of differential operators investigated in this
research area. Still, the main drawback of the original algorithm is that it may be
used to find only one eigenvalue from the operator’s point spectrum. Moreover, this
eigenvalue has not been identified within the spectrum of the input operator. In
other words it is not known which eigenvalue is being found in the method.
Nevertheless, although no rigorous proof exists for this fact, it was found that IEEM
applied to eigenproblems arising in dielectric waveguide modelling converges to
the fundamental mode in a waveguide, which is of particular interest in this
application area (cf. [18]).

2.5.3 Deflation techniques

As already mentioned the original algorithm described in the previous section
may be used to find a single eigenvalue of the input operator. In order to be able to
find more than one eigenvalue of the operator certain modifications have to be
introduced to the basic Iterative Eigenfunction Expansion Method. These include
the deflation techniques, i.e. the methods of modifying the operator’s spectrum, so
that the iterative process may converge to a different eigenvalue and the
orthogonalization procedures assuring that the orthogonality is sustained between
the appropriate left and light eigenfunctions (cf. equation (5)).

IVieland’s deflation. The most widely known techniques of modifying the
spectrum are based on the Wieland’s deflation. Let {A.} = it (T) be the point
spectrum of the operator T. Let A, and iq be an eigenpair of the operator T found
by a certain iterative process. The deflation procedure can be used to modify the
spectrum of the operator by replacing A, with another eigenvalue, e.g. A - a,
where a e C. This is done by modifying the operator itself:

where v is an arbitrary function such that (iq, v) = 1. The spectrum of the operator T is:

where A,, A2, A , ... are the eigenvalues of the operator T. Moreover, the
eigenfunction iq and all the left eigenfunctions {wq}. of the operator T are

preserved as corresponding right and left eigenfunctions of the operator T . There
are many possible choices for the function v, still the most popular ones are:
1) v — tq. In this case the right eigenfunctions of the operator other than iq are not
preserved; 2) v = uq. In this case the right eigenfunctions are preserved. Still, the
disadvantage of this choice is that it is necessary to know the left eigenvector wq
corresponding to the eigenvalue A ’ of the adjoint operator T*. The left
eigenfunction may be found by either explicit solution of an adjoint eigenproblem
or, at a lower cost, by exploring the foim of the operator and deriving left
eigenfunctions directly from right eigenfunctions which is possible in some of the
applications (compare Section 2.2).

Below we present the modified version of IEEM iteration assuming that

T(') = T(-)-m q(,v) (17)

Methods o f Solving Operator Eigenprohlems in Parallel Distributed Memory Systems... 627

v = w..The algorithm is restarted after the subsequent eigenvalues are being found.
If also assumed that 5 - 1 eigenvalues Ap A (with the corresponding right and
left eigenfunctions {vp } and {wp ws_,}) have already been found the
k - th step of the iteration may be described by the following steps:

ALGORITHM 4: IEEM-deflation.

STEP 1: Compute the eigenfunction approximation

" --T T F * -------------------------------

STEP 2: Normalize:

k

.(*) ;= u(*)

STEP 3: Compute eigenvalue approximation:

i i r=l

where n ̂ ^ fj-k 'lhi and ur = ^ / r/z, for / = 1, (5 - 1).
i i

The main problem occurring within the procedure presented above is that at
each restart of the algorithm the deflation term introduced to modify the operator’s
spectrum contains a numerical error. This error is related to the approximation of
the eigenvalue, and, more importantly, to the approximation of the right and left
eigenfunctions. After the subsequent restarts the errors from all previous
computations will accumulate in the modified operator and this can be disastrous if
the currently computed eigenvalue is poorly conditioned. Another problem which
may immediately be seen ,s the numerical cost and storage requirements growing
after each restart of the algorithm. These two drawbacks limit the applications of
this technique and make it a tool capable of finding only a few eigenvalues and
eigenfunctions from the operator’s spectrum.

Orthogonal projections. In the previous section it has been noted that one of the
key factors which limit the deflation technique is the error introduced by the
approximations of right and left eigenfunctions (eigenvectors). This error
demonstrates itself in the loss of orthogonality between right and left
eigenfunctions. More precisely the right eigenfunction u ceases to be orthogonal
to the left eigenfunctions tv,, ..., w

This fact suggests that introducing a re-orthogonalization phase to the iterative
algorithm may result in a reduction of the numerical error and improvement in the
stability of the iterative process. The orthogonalization may be performed using the

628 M. Rewiehski

modified Gram-Schmidt (MGS) algorithm [6] while calculating the subsequent
approximation of the eigenfunction u[k). It should be noted that the
orthogonalization may be performed every few iterations or even should not be
performed at each iteration in order to allow the convergence of the method. At the
same time it has to be stressed that the re-crthogonalization should be used jointly
with the deflat;nn procedures. Otherv se the iterative process will not converge at
all or will converge to the eigenvalue which has been found as a first one.

2.5.4 Numerical ami memory’ complexity o f the algorithm

If an input matrix operator of size n s considered, then the numerical cost of
a single iteration of the IEEM consists of the following items: 1) The cost of
calculating the approximation of the eigenvector — This cost equals O(n) if we

assume that the values of scalar products (F irk l ,h l) are known from the previous

iteration. 2) The cost of normalization — 0(/i) and 3) The cost of calculating the
subsequent approximation of the eigenvalue — This cost is dominated by the

complexity of calculating the matrix-vector product F it, which may reach 0(rr) in
the worst case but may be significantly reduced (to 0(n log(n)) or 0(n)) for certain
types of matrices (sparse or structured matrices) or if an implicit representation of
the matrix is used.

As it is seen the computational complexity of a single iteration of the IEEM
largely depends on the numerical cost of calculating the matrix-vector product for
a given matrix operator and may range from O(n) to 0(n2).

The storage requirements of the Iterative Eigenfunction Expansion Method may
be extremely low, although once again they depend primarily on the form of matrix,
e.g. for sparse diagonal or banded matrices and/or highly regular matrices the
storage cost of the matrix may be reduced from 0(n2) to O(n). The same can be
achieved if an implicit matrix representation is applied. The other memory
requirements include the space needed to store eigenvalues of the operator L
(n memory locations) and the subsequent approximations of the eigenfunctions of
the operator T (O(n) memory locations).

If the deflation procedure is applied the memory cost increases significantly and
depends on the number of the eigenvalues to be found. If assumed that
s eigenvalues are to be found and the deflation involves both right and left
eigenvectors then the method will require: 1) In the worst case additional tr
memory locations to store an operator adjoint, to T which may be necessary to solve
the adjoint eigenproblem; 2) Addi onal 2(s - 1)n memory locations used to store
formerly found left and right eigenvectors. The storage described in point 1) may be
reduced to zero if the left eigenvectors may be derived directly from right
eigenvectors avoiding the necessity of solving an adjoint eigenproblem.

The computational complexity of the IEEM iteration with an additional
deflation procedure applied increases w th the number of eigenvalues which have
already been found. If assumed that 5 is the number of eigenvalues previously

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory’ Systems... 629

found, the additional cost due to the appliiation of deflation equals roughly 2sn
operations. In this assessment the cost of calculating the left eigenvectors has not
been taken into account, but it has to be kept in mind that it may even double the
algorithm’s execution time. Another item which ncreases the numerical cost of the
algorithm is the re-orthogonalization phase whose complexity (for the MGS
procedure) is of order O(sn).

Summing up, both the memory complexity and the computational cost of the
Iterative Eigenfunction Expansion Method depend considerably on the
representation of the matrix operator and the cost of computing of the matrix-vector
product. (An analogous situation occurs in the case of the Amoldi (IRAM) method)
Consequently, i f the input matrix yields any kind of special structure, including
a regular pattern of distribution of its non-zero elements, sparsity or specific
representation these costs may be very significantly reduced. Nevertheless, the
application of deflation procedures will inevitably increase both the storage
requirements (even by a few times) and the numerical cost, not to mention the
increment in the number of iterations required to obtain convergence for each next
eigenvalue being sought,

2.6 Other methods o f solving operator and matrix eigenproblems
Having presented the two algorithms of solving operator and matrix

eigenproblems pla ̂ ing a central role in this study let us only mention some recent
developments in this research area. The most important include modifications in the
Davidson method leading to algorithms suitable for non-symmetric matrices,
including the Jacobi-Davidson algorithm or the introduction of look-ahead strategy
to two-sided Lanczos algorithms. The investigations also include the designs of
algorithms which inherently assume parallel computations. An example for such
method is the divide and conquer algorithm ([20]) with extensions exploiting the
relationship between a certain matrix algebra and complex polynomials ([21]).

The detailed description of the methods outlined above is clearly far beyond the
scope of this limited study and may be found in many excellent books, including
classical book by Wilkinson and Reinsch [22], the monograph by Golub and van
Loan [6] which broadly covers the questions of non-symmetric eigenproblems, the
book by Saad [9] or the paper by van der Vorst and Golub [7] which presents
a review of recent developments.

3. Cost reducing discretization of infinite-dimensional operators
The previous section described selected iterative methods of solving operator

eigenproblems putting aside the Questions of the form of the linear operator or its
domain. In the case of a finite dimensional domain and a general linear operator
represented in the matrix form both the Amoldi method and Iterative Eigenfunction
Expansion Method give recipes ready for use in order to calculate numerically
eigenvalues and eigenvectors of a given matrix. However, in1 the discussion of the
computational complexity of both methods it was found that this complexity is
determined primarily by the cost of calculating the matrix-vector product. This cost,

630 M. Rewienski

in turn, depends on representation (implicit or explicit) of the matrix and the form
of the operator (sparse or dense matrix with regular or irregular distribution pattern
of non-zero elements). Clearly little can be done to reduce the cost of the matrix-
vector product if the given input finite-dimensional linear operator is already
represented e.g. by a dense matrix. This S iuation is very different if initially one
has an infinite-dimens, rnal operator which is inherently unsuitable for any
numerical treatment. The problem which appears is finding the discretization or
finite-dimensional mapping of the operator so that it may be approximated in
a finite space by a different linear operator. As various discretization methods exist,
it means that one may control the form and representation of the emerging finite-
dimensional operator and consequently influence (reduce) the numerical cost of
performing the Av operation, where A should be understood as a finite
approximation of the initial operator and v should as perceived as a corresponding
representation of the function from the operator’s domain.

The problem of defining a finite-dimensional mapping refers not only to
operators but also to the funct'ons belonging to the operator’s domain. There is
a great variety of finite representations of functions, with an emphatic majority
based on expansions in terms of a chosen set of basis functions. Obviously, even
a short description of the most popular functional bases lies far beyond the scope of
this work. Nevertheless, some general classes of representations may be
distinguished, starting from simple representations based on regular or irregular
sampling of a function in its domain to the entire domain expansions, entire-
subdomain expansions or domain subdivision expansions in which accuracy of the
representation depends correspondingly on the number of expansion terms or (in
the third case) the number of subdomains or sampling points within the domain.
(The Finite Difference (FD) discretization method presented later on in this section
belongs clearly to the domain subdivision methods, while the Method of Moments
or Discrete Fourier Transform (DFT) based representa ion (also discussed later in
this section) are entire dom..,n expan! i an methods.) Apart from different finite
mappings of functions also various operator representations may be chosen which
gives rise to a number of numerical procedures. If, for instance, the operator
projection is achieved by calculating scalar products, as in the Method of Moments
(the Galerkm Method) then for different representations of functions various
methods are obtained e.g. the Finite Element Method (FEM) with a resulting sparse
operator matrix having usually an irregular distribution of non-zero elements or the
collocation (or point matching) technique with a resulting sparse or dense matrix.
The discussion of functional expansion and discretization techniques may be found
in a number of books — cf. [23], [24], [25], [1], [26].

The rest of this secfion concentrates on two finite-dimensional mapp.' tg
methods in which very different and to a certain extent opposing approaches
towards approximating both functions and operators are applied. Although these
discretization methods produce approximate finite-dhnensional operators with
entirely different properties, the specifics of both representations enable one to 1)

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 631

reduce the cost of performing the Av operation,, which has a substantial impact on
the efficiency of numerical solving of given eigenvalue problems; 2) efficiently
implement operations involving the discref :ed operators in parallel distributed
memory em ironments.

Before describing in detail the two selected discretization methods we shall
discuss some aspects of finite-dimensional mapping which play an important role if
the algorithms invob mg discretized operators and functions are to be implemented
in scalable parallel systems. The general conclusions drawn from this discussion
substantiate to a certain extent the choice of the operator discretization methods
applied in the parallel eigensolvers presented in Section 5 which implement
selected iterative algorithms of solving non-symmetric operator eigenproblems in
distributed memory environments.

3.1 Discussion o f discretization aspects in scalable parallel systems
Before presenting some finite-dimensional mapping strategies let us make a few

remarks on the mutual relations between the efficiency of parallel matrix
computations and the choice of a finue-dimensional mapping technique for a given
operator. The uiscussion will concentrate on the general issues concerning data
locality and closely related computation locality postponing the detailed description
of the specific parallel designs and implementations in selected parallel systems to
the following sections.

Designs of the numerical methods performing various matrix calculations, such
as computing the matrix-vector product, matrix-matrx product or deriving matrix
transposition, are determined primarily by the form of the input matrix operator.
Application of these algorithms in the environment with multiple processing
elements (PEs) requires developing suitable mapping techniques of both data and
computations to the processors in order to achieve the main goal of parallel
processing, i.e. minimization of the total execution (wall-clock) time. Although
these mapping techniques certainly depend on the representation of the input matrix
operators and the specifics of the matrix computations to be parallelized, the basic
two strategies will certainly be applied: 1) Place the computational tasks on
different processing elements in order to enhance concurrency, 2) Place the
computational tasks which make use of the same data on the same processor to
increase the locality.

These strategies may sometimes turn out very conflicting which would require
trade-offs ;n design of the mapping techmques. At the same 'me an inadequate
exploitation of any of these strategies will usually reduce or even eliminate the gain
in performance of the numerical algorithms implemented in a parallel environment.
This fact is particularly true for scalable parallel systems where often a large
number of processing elements is involved in the computations.

Let us consider the simplest, still up to now the most important parallel
mapping technique, i.e. the static domain decomposition technique. In this mapping
method all the data (e.g. matrix or vector elements or a grid in the spatial domain)
as well as computational tasks are distributed among the processing elements in an

632 M. Rewieiiski

fixed manner. In the method the properties of the domain being decomposed
determine whether a computational task may be efficiently mapped to the available
processing elements. Concentrating on the techniques of distributing matrix
operators let us discuss the specifics of parallel decomposition for some classes of
matrices:

1. Matrices with a block structure. In this case an ideal locality of data and
computations (within a single PE or a group of PEs) may be achieved if all the
elements of a given block in the matrix are local to a single processor or a group
of processors. The most favorable case occurs if the number of PEs equals or
divides the number of blocks of the matrix and all the blocks have equal sizes.
Then all data (e.g. necessary to perform the matrix transposition) may be stored
locally and the amount of computations may be perfectly balanced across the
processors. The problems with balancing the computations will occur if the sizes
of the blocks are not equal and/or the number of processors does not correspond
directly to the number of the matrix blocks. In this case the assignment of matrix
blocks to PEs has to take into account the numerical complexity of the operations
performed on each block in order to obtain balancing of the workload. (Still,
the workload balancing may cause an imbalance in the local storage
requirements.) The question that emerges is: Which operators may be discretized
to produce an operator matrix with a block structure? The first group of such
operators are scalar operators acting on multidimensional vector fields.
Separating the field components in a finite-dimensional representation may give
a block structure of the resulting matrix. The other group of operators may be
defined as operators modelling short-range, local interactions in a number of
disjoint subsystems. Applying e.g. the Finite Difference (FD) discretization may
then result in a block-structured matrix or a banded matrix.

2. Banded matrices also have a very favorable structure while investigating their
parallel distribution using domain decomposition method. In most cases the
amount of non-local data which is used by the processing elements is of order
0{bT) or O(b) (depending on the mapping and computational task), where b is
the matrix bandwidth. If the bandwidth is small relatively to the matrix size then
the emphatic majority of necessary data is stored locally by each PE and most
of the computations involve only local data. Banded matrices are frequently
obtained by using the Finite Difference (FD) discretization scheme. The FD
technique has also the advantage of producing a highly regular matrix with an
even distribution of its non-zero elements This has a very positive impact on
workload balancing which may be easily achieved by applying regular domain
decomposition. 3

3. Sparse, non-banded matrices are the class of matrices which may be encountered
if the Finite Element Method (FEM) is used to discretize the operator’s domain.
Although the matrices are usually sparse, the irregular distribution of their non
zero elements may result in problems while seeking for an efficient parallel

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 6 33

mapping using static domain decomposition. The first problem is that potentially
large amount of non-local data has to be used by each processing element in order
to perform parallel matrix operations. One of the solutions to this situation is
designing spec:Tc procedures of accessing or communicating non-local data in
order to avoid bottlenecks and reduce the number of non-local data accesses.
The other problem is the irregular non-zero element distribudon which may
cause an imbalance in the workload across the PEs. Summing up, in the case of
sparse, non-banded matrices the static parallel domain decomposition schemes
may turn out unsuitable if high performance in a scalable parallel execution
environment is to be achieved.

4. Dense matrices appear when entire domain or entire subdomain expansion
discretization techniques are used. (The example of such technique - the Method
of Moments representation will be described in one of the following
subsections.) The parallel decomposition of dense matrices may potentially
result in very large amount of non-local data which has to be accessed by the
processing elements while performing such operations as e.g. matrix
transposition. There is usually little that can be done to avoid a great deal of
computations involving non-local data. Si 11, in order to maintain high level of
parallel performance one may increase the computation time involving solely
local data as compared to the time spent on accessing or using non-local data
by applying appropriate scaling of the problem size. Unfortunately this cannot
be done if the complexity of operations involving non-local data is higher than
the numerical cost of the local computations. The positive feature while dealing
with dense matm es is that the workload balance may be achieved by applying
a simple regular domain mapping scheme.

Summing up, the characteristics of different types of matrices obtained in
various methods of finite-dimensional mapping of li ear operators may affect
positively or negatively the performance of parallel algorithms involving operating
on distributed matrices. With'” the limits of the static domain decomposition
parallel mapping techniques the positive features of matrices to be distributed
nclude block structure, sparsity of the matrix, relatively narrow matrix bandwidth,

while the negative ones include irregular non-zero element distribution in sparse
matrices or dense non-zero element packing. Some of these negative factors may
even exclude the static domain decomposition technique if an efficient
parallelization of a given computational problem is to be achieved.

In this case different parallel mapping techi. ques have to be applied. At this
point the following mapping schemes may be ment oned:

— load balancing algorithms which include:probabilistic load balancing or cyclic
mapping — the static methods which exploit structure of the computations and
data to di stribute the dom n of computations and may be used e.g. to problems
involving matrices with an irregular distribution of non-zero elements or
irregular distribution of computations; dynamic load balancing in which the

634 M. Rewienski

parallel mappings change during execut, on of the algorithm — this method may
be applied e.g. in the multigrid algorithms (cf. [27], [28]).

— task scheduling algorithms which explore the potential for functional parallel
decomposition of the computational tasks and may be applied to obtain parallel
mapping of problems with FEM-based discretization, mult’grid approach, etc.

A much broader discussion of parallel mapping strategies with various case
study presentations may be found in a book by Foster [29] or the teaching materials
from the Edinburgh Parallel Computing Centre [30] (in which mainly static domain
decomposition techniques are described).

This section presented general issues concerning parallel mapping techniques of
discrete matrix operators and related computational tasks. In the above description
some potential problems occurring during parallel mapping of different classes of
matrices obtained during discretization of linear operators were discussed. In the
above approach we tried to answer whether a suitable parallel mapping may be
found for a given type of matr' (. Still, these general guidelines may be applied in
a somewhat inverse approach. This second approach consists of exploring the
possible parallel mapping techniques for a given parallel system architecture before
choosing discretization and fin;te representation scheme for a given input linear
operator. In this way the fip'te-dimensional representations of operators which will
not fit any efficient parallel mapping technique may be immediately excluded.

As already mentioned the following sections discuss two different finite
dimensional mapping techniques in which very different and to a certain extent
opposing approaches towards approximating both functions and operators are
applied. Although these discretization methods produce approximate finite-
dimensional operators with entirely different properties, the specifics of both
representations enable one to reduce the cost of calculations involving these
discrete operators.

3.2 The Finite Difference discretization

The Finite Difference (FD) method is one of the simplest and very commonly
used algorithms of operator discretization. In this method the functions from the
domain of the given operator are represented either as simple sets of values sampled
over a certain region or as expansions with simple (usually piecewise linear)
expansion functions defined over rectangular subdomains. As already mentioned
this method belongs to a class of domain subdivision expansions which become
more accurate with a growing number of subdomains or sampling points.

The FD method is most frequently used to discretize various differential
operators, e.g. those involving Laplace operator, and consists in substituting the
differentials by the finite-dimensional difference operators. The finite difference
operators may yield various fonns, starting from simple 2-point stencils valid for
approximating the first order derivatives in one dimension to complex multipoint
stencils used to obtain higher accuracy or deal with higher order derivatives.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 635

Figure 3. Distribution o f non-zero elements in operator matrix obtained using the FD discretization.

directional derivatives and so forth.
The FD procedure applied to linear differential operators inevitably results in

a finite-dimensional operator represented by explicitly computed elements of its
matrix. This is an important feature of this approach affecting both memory and
computational complexity of the eigensolvers based on the FD technique. The
common feature of all the matrices generated by the finite difference scheme is
a highly sparse structure and a usually very regular pattern of distribution of non-
-zero elements. Moreover, these matrices usually yield very large dimensions in
modem applications that equal the number of sampling points (which is of order
102- 103 or more in every spatial dimension).

An example of a structure of the operator matrix obtained using the FD
discretization has been shown in Figure 3. The Figure presents the distribution of
non-zero elements in the matrix approximafng the following second order non-
-symmetric differential operator (introduced in Section 2.2)

Av = V,2v + - A - t [V(e(x,y)x (V, x v)]

where V;(-) = A J L

3 / 5 ,
;),e(x,y) is a fixed, arbitrary function defined over two-

dimensional space and v is an appropf ate two-dimensional vector field defined
over a 2D spatial domain

This matrix shown in Figure 3 has a dimension of approximately 40000, which

636 M. Rewiensk '.

corresponds to a discretization of a 2D vector field v = (vx,vv) over a 200 * 100

regular spatial grid and the number of the non-zero matrix elements equals
approximately 200000. Although the matrix is non-symmetric it has a highly
regular structure with 95% of its elements located on 5 diagonals: 0 (main
diagonal),+2,-2,+199,-199. These five diagonals reflect the 5-point finite
difference stencils replacing the appropriate derivatives. At this pc int it should be
noted that the bandwidth of the discussed matrix depends substantially on the
ordering of the elements of vector functions, obtained from discretizing the vector

field v = (vt ,vv). With an inappropriate ordering of elements one may obtain

a matrix with a substantially increased bandwidth (or even a non-banded matrix).
In cur example the bandwidth equals approximately 400 and is minimal for the
applied ordering, wFch puts first all the elements of the v field component before
all the elements of the v field component. Still, the bandwidth could easily be
increased if the elements of the vx and v field components are mixed.

In any case the resulting matrix is sparse. Consequently, it may be noted that,
although the dimension of the matrix n is large, the memory requirements are not of
order 0{n2) but of order O(n) and the matrix may be stored in one of the sparse
matrix storage formats, e.g. Compressed Sparse Row (CSR) or Compressed Sparse
Column (CSC) which save memory and enable efficient handling of sparse matrices
using specifically designed numerical procedures (cf. the description of the
SPARSK.IT numerical library — [31]). In the above example the storage
requirements may be further reduced ;f the five diagonals are stored separately and
solely the irregularly located elements are stored using e.g. the CSR format
Another optimization may be achieved if the equal values of matrix elements
associated with five-point finite difference operators are excluded from the stored
elements and included imp"’v ;tly only while calculating e.g. a matrix-vector
product. If regularities of the matrix are exploited a more efficient algorithm for
calculating the matrix-vector product may be designed, with the numerical
complexity approaching the cost of performing 5n multiplications and additions.

The above example shows the possible optimizations due to specific form of the
matrix obtained in the Finite Difference discretization. — It is found that although
the size of matrix is inevitably large both the memory and numerical complexities
may be kept linear. The following section piesents an opporte approach in which
a dense operator matrix is obtained and consequently a different technique has to be
applied to lower the cost of both the matrix storage and the computation of the
matrix-vector or matrix-matrix product.

3.3 Method of Moments formulation
The method of finite-d'mensional mapping described in this section is based on

the representation of an operator by ts products with chosen basis functions
spanning a given functional space. This approach is known from the Method of
Moments or its most important version — the Galerkin method.

Let us start the description of this discretization method with discussing the
finite representation of functions. Let the domain A" of a given operator T be

a functional Hilbert space with a properly defined scalar product and be
a complete orthonormal set of functions in the space X. According to the definition
of completeness every function u e X is convergent to its Fourier series, being the
expansion of u in terms of the basis functions:

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 637

« - 2 M ' - W l = 0 (18)
j=i

Consequently any function from the space X is represented by a sequence of

the Fourier coefficients {/■}” ,= ■)}” ,. Truncating this sequence to a finite
number of terms gives a wanted finite mapping of the function u:

lim
n

IL = (u,h2), ..., (u, hn)]T (19)

The method of discretization of the operator T immediately follows from the
above representation of the functions. Defining the elements of the n x n matrix

I = W j -, as:

Cj = a h p A.) (20)

we obtain a finite-dimensional linear operator being a mapping of the operator T
which has the following property:

Tu = Tu = [(Tu,hi),(Tu,h2\...,(T u ,h n)]T (21)

As already mentioned, the representation of the operator involving the matrix of
scalar products given by the equation (20) is used by the method of moments in
which this matrix is constructed explicitly. Unfortunately this may bring about
a series of negative effects. Firstly, the matrix (20) may be dense and its explicit

storage may require n2 memory locations. Secondly, the matrix-vector product Tu
can involve 0(n2) operations which may cause the computation time in the methods
which are based on this representation to blow up for the increasing problem size n.
(This effect is widely known e.g. from the Galerkin method.)

The question which emerges is whether it is possible to find an orthonormal
basis (a complete set of functions) in the Hilbert space X such that either the storage
cost of the discretized operator or the cost of calculating the discussed matrix-

vector product may be significantly reduced even if the matrix T_ (cf. equation (21))
is dense. The answer is positive for a certain class of functional Hilbert spaces
chosen for the operator’s domain. This wide class, being the most important one in
a variety of application fields, may be defined as the space of square integrable

638 M. Rewiensk'

functions defined over a bounded region Q, namely the L2(Q) space, with the scalar
product defined as follows:

(«,v)= J hvVQ (22)

If, without significant loss of generality, we shall limit our discussion to the
case of the L, space defined over a two-dimensional bounded rectangular region
Q = ([0, b\ x [0, a]) c R2 then the orthonormal bases which have the desired feature
are the trigonometric complete sets of functions:

or

hy = A j sin
 ̂inx ^

V b J
cosf jn y ' (23)

H = B y COS
^ inx ^sin (24)

where A.. and B are properly defined normalization constants. If we consider e.g.
a two-dimensional vector field u = (ux, uy), where ux, uy e Z, ([0, b] x [0, a]), then
u may be represented e.g. by the following series:

ij

If the above series are truncated then the emerging finite approximation of the
function u is a vector of the Fourier coefficients:

■x r * r y r y r y' H) L | 2 , . . . , C m n , C n , C | 2 , . . - ,L-m n }
(25)

The most significant observation about the above vector is that it is simply
a vector of samples of the two-dimensional Fourier transform of the function
u = (if*, uy). Consequently, keeping in mind that the inner products are given by the
integrals (22), the approximat 'ons of the vector elements may be numerically found
using the two-dimensional Discrete Fourier Transforms (DFTs). In turn, the two-
dimensional DFTs may be very efficiently computed by applying the Fast Fourier
Transform (FFT) algorithm, proposed first by Cooley and Tukey (cf. [32]). The
following section shows how this observation may be used to reduce both cost of

calculating the Tu product as well as cost of storing the operator matrix by
apply i lg the implicit, instead of explicit, matrix representation.

3.3.1 Calculation o f the scalar products

According to the previous section computing of the Tu product may be viewed
as calculating the inner products (in the finite space) of (Tu, h f) and (Tu, h f) with
the given vector of Fourier coefficients (25). This kind of approach enables one to

develop a procedure of computing the Tu product which does not require the

explicit storage of the dense matrix T . Thanks to this both memory and
computational cost may be reduced. The discussed operation may be performed in
the following steps:

1. Using the given Fourier coefficients (refeqfour) calculate the values of the function
u for a discrete set of points from the Q spatial domain by computing a two-
dimensional backward FFT.

2. Calculate the values of the 'Yu function at the gridpoints of the domain f2 using
the previously calculated values of u.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 639

Fourier coefficients Space domain

2D FFT
------ >
backward

I (Thij,hij)(.)

V
Fourier coefficients

(0,0) (0,256)

H

(256,256)

(0,0) (0,256)

TH

(256,256)

Figure 4. Calculation o f the matrix-vector product fo r the DFT domain operator formulation.

3. Compute the inner products (the Fourier coefficients) (Tu, h f) and (Tu, h f) by
performing a two-dimensional forward FFT.

The above scheme has been illustrated in Figure 4 if the function u = H is a two-
dimensional vector field. In the Figure, the function H = (Hx, Hy) is represented in
the DFT domain by 200 Fourier coefficients, which corresponds to 10 expansion
functions in every spatial direction for both Hx and Hy. (Referring to equations (23)

640 M. Rewienski

and (24) the indices run as follows: i = 1, 2, 10 and j = 0, 1, Then the
discrete values of the function H are computed using two 2D backward FFTs. In the
example we obtain two 256 * 256 arrays of samples of the function H in the 2D
spatial domain. Then the operation T on H gives a matrix of samples of the TH
function which is subsequently transformed using forward 2D FFTs to obtain the
desired Fourier coefficients. One should note at this point an important relation
which joins the discussed discretization (based on finite expansion series) and the
Finite Difference (FD) method. In Step 2 of the above scheme one calculates the
values of the Tu function at the discrete gridpoints in entirely the same way as in the
FD method. The additional Steps (1 and 3) are required to move back and forth
between the spatial domain and the DFT domain

Another aspect of this computation shown in Figure 4 is the difference in the
dimensions of the matrices of Fourier coefficients (10 x 10) and the matrices in the
spatial domain (256 x 256). In the presented scheme the function is oversampled in
the spatial domain, which means that a reduced number of Fourier coefficients is
calculated using more samples than necessary. This allows one to compute the first
e.g. 100 Fourier coefficients with greater accuracy, while omitting all the other,
containing larger (and often very serious) numerical error. The issue of estimating
the numerical error of the Fourier coefficients is discussed in the following section

The other question is: What is the numerical complexity of the algorithm? If K
and Ky denote the lengths of the Fast Fourier Transforms, i.e. the number of sample
points in the spatial domain in the x and y directions, respectively and the numbers
of expansion functions used to represent the functions in the DFT domain equal N
and N in the respectful directions then the cost of performing the steps 1 and 3 in
the calculation of the matrix-vector product equals (9(4 N K log Ky + 4K Kx log AT).
(The cost of performing a one-dimensional FFT of the length N is 0(N log N) — cf.
[33]). Denoting K = Kx Ky and Aj=yV - N , this cost may be estimated at a level
0(K log K) since the length of the FFTs (the number of sampling points in the
spatial domain) should be proportional to the number of expansion functions. The

next issue is estimating the cost of the Tu product, where the function u is
represented by N samples in the spatial domain. It is hard to evaluate this cost in the
case of a general linear operator, still if only differential operators are considered
(just as in the previous section) then the cost is given by 0(N). It is now seen that
the overall cost of calculating the matrix-vector product in this representation
equals 0(K log K).

One may ask what are the advantages of this representation as compared to the
FD finite-dimensional mapping in which the matrix-vector product could be
calculated within the linear time cost. Clearly, in the DFT representation only the
step 2 involves a similar number of computations as the entire matrix-vector
product in the FD discretization. The advantage of the DFT representation may be
seen if one compares the dimensions of the resulting operators. The size of the
vectors in the DFT domain equals K which, due to the oversampling, is usually
considerably smaller than the vector size resulting from the FD mapping, (e.g. For

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 641

the FFT length which equals 256, the number of applied expansion functions
usually equals 20,40 or at most 60. Consequently in two dimensions the problem
size equals e.g. 3600 in the DFT space as compared to approximately 66000 in the
spatial domain.) So, the DFT representation usually reduces the problem size which
has a very significant impact on the execution time the program solving the
eigenvalue problem. Summing up, if the DFT representation is applied, the extra
time spent on calculating in matrix-vector products is then regained by spending
less time on solving the eigenproblem.

Reffering to the memory complexity, this method needs relatively little space to
be able to calculate the matrix-vector product. The memory requirements include
the space necessary to store the samples of the function u = (if, u f in the spatial
domain whose size equals 2N N - IN and the space needed to perform Fourier
transforms. In the Winograd version of the FFT algorithm (cf. [34] or [35]) the
extra workspace needed to perform the one-dimensional transform will equal
approximately 3Nx (3N). If the space needed to store the input/output vectors of
Fourier coefficients is taken into account then the overall memory complexity

equals: o ifK + 2N + 6s[n) (assuming that Nx~0(N jl). In this estimation the cost

of storing the operator matrix T is not taken into account as the implicit storage is
assumed. Clearly, if this matrix is stored explicitly, the memory requirements may
increase dramatically.

3.3.2 Estimation o f the numerical error in DFT integration

One of the difficult questions while dealing with the Discrete Fourier Transform
is estimating the numerical errors introduced to the Fourier coefficients obtained in
the computations and the quality of approximation of the input function by a finite
Fourier series. The detailed discussion of various aspects of DFT error estimation
may be found in the book by Briggs and Henson [33]. This section extends the
discussion of Briggs and Henson to the case of functions defined over a two-
dimensional rectangular region applying some of the results presented in the quoted

Figure 5. The illustration o f the spatial 2D domain and the DFT domain
with the corresponding reciprocity relations.

642 M. Rewienski

reference. The following discussion focuses on compactly supported functions, that
is, the functions which vanish except a compact (bounded) region in the 2D space.

For such functions the numerical error i '. calculation of the Fourier coefficients
while using DFT may easily be found if the relation between the DFT and the
Fourier transform are explored. The following Fourier transform is associated with
a given function / / e L2([-AI2, At2] x \-B/2, 5/2]):

H x(co,a)= [f H x exp(-2i7zcox-2inoy)dxdy (26)
J —ooJ-oo

(In order to simplify the derivations the complex, exponential version of the
transform has been applied in this section). If the function f i has a compact
support, (e.g. it vanishes outside the rectangular region [-A/2, AH] x [-5/2, 5/2])
a simple relation joins the Fourier transfonn and the coefficients of the Fourier
series of a periodic extension of the function H :

c7 = ~ H x(pm,o„) (27)

where com = ml A and <r = n!B define the discrete gridpoints in the Fourier transform
domain. Apart from a continuous Fourier transform the function f i also has
a Discrete Fourier Transform. Denoting Hxmn = Hx(xm, yn), with x =mA/M and
y n = nB/N, the vector (H "n)mn where m = (-M l2+1), ..., Ml2 and n = (-N/2+1), ...,
NI2 defines the given function at the discrete gridpoints in the spatial domain. The
DFT of the function Hx is then given by the formula:

d (h A =V x Jmn

M/ 2 N! 2
pmn _

MN Z Z H > exp
s= -M !2 + \t= -K l2+\

- l -

. 2urns . 2flat
M

-i-
N (28)

where m = —M/2+1, ..., Ml2, n = -A72+1, ..., M2. The relation between the spatial
domain and the DFT domain, together with reciprocity relations, has been shown
in Figure 5.

In order to estimate |F " - c s'| — the error of computing the Fourier coefficients
by using the DFT, the Poisson summation formula has to be applied. Briggs and
Henson [33] give a derivation of this formula in one-dimensional case. Using an
analogous approach results in the following 2D Poisson summation formula:

Z Ej=-r-O k=—TO

6 ■ i \J « co~-— ,<j ------
Ax Ay

V - J

AxAy J] ^ H mx n exp(-i2nxmco - i2nyma) (29)
m=-<c n=—x>

where Ax = AIM and Ay = BIN (cf. Figure 5).
By applying the rela Ions (27), (28), (29) one gets a formula which may be

applied to estimate the error (which is in fact the error due to aliasing):
In order to estimate the above error, it is necessary to find a bound for the

• c l ' - ^ ^ C s+‘̂ ,t+^
i——cc j =—oo

(30)

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 643

Fourier coefficients c " In other words the main issue is estimating the rate of
decay of the coefficients with the increasing indices 5 and t. This can be done if
some additional assumptions are made about the function Hx defined over the
region Q = [-At2, A/2] x [-5/2, B/2]. We assume that: 1) Hx has a finite number of
discontinuities (i.e. discontinuity points or planes) in the region Q, 2) H is
differentiable (except the discontinuity points or planes), 3) For any curves lying on
the surface 3H (x, y)!8x or 8H(x, y)!dy these curves are piecewise monotone. Note,
that the condition 3) is in fact not too restrictive and is satisfied by virtually all
functions which arise in applications. Under these assumptions the 2D analogue of
the theorem presented in [33] (p. 187) may be written:

c f C
I |2i |25 m

s t 0, t t 0 (31)

< C, t * 0 (32)

lc'° i - - 2 s'* ° (33)

where C, C, and C2 are constants independent of 5 or t (but they depend on the
number of discontinuity points or planes and the extreme values of H and its
erivative at Q). Now we are ready to estimate the error (30)
using the above bounds together with formula (30):

\F! ■c\’ C,
■I V

C2 C3
\t\2 M 2 N 2M 2

t t 0, s it 0 (34)

< Q
' M :

C 5

m 2n 2
s t 0 (35)

\f : 0t< Q
N 2

C7
m 2n 2

11 0 (36)

In the numerical tests we have compared the values of Fourier coefficients
computed analytically with those computed using Discrete Fourier Transform. The
tests included calculation of the Fourkr coefficients of the matrix of a chosen
differential operator T represented by the scalar products (compare formula (20)) in
the DFT domain. The analytical values were calculated by explicit computation of
appropriate values of sines and cosines combined accordingly to form of the input
operator. In this way the matrix of Fourer coefficients was explicitly created. While
using DFT, the calculation of the coefficients was based on computing the matrix-
vector product for a given input vector, which involved calculating backward and

644 M. Rewiehski

Average relative error in the calculation of the Fourier coefficients using FFT,

Figure 6, Average error in calculating the Fourier coefficients using the DFTfor two different input
operators: the vector operator, given by formula (7) and the scalar operator, given by formula (8).

2

1.8

1.6
1.4

S
V 2<D3=-o 1 <0 CD
2
2 0.8 -
<

0.6 -

0.4 -

0.2

0-

x10*
Scalar operator

• Vector operator

500 1000 1500
FFT length

2000 2500

Figure 7. Average absolute error in calculating the Fourier coefficients using the DFT
fo r two different input operators: the vector operator, given by formula (7)

and the scalar operator, given by formula (8)

forward Fourier transforms, just as described in Section 2.1. The comparisons of
the Fourier coefficients were made in two kinds of tests:

1. In the first approach we have calculated the DFT-based matrix-vector product
for the input vector which had only one (e.g. i th) non-zero element. The outcome
of the product was simply the i-th column of the operator matrix, which could
immediately be compared to the analytically computed values of the

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 645

Maximum relative error in the calculation of the Fourier coefficients using FFT

— Single coefficients
~ Arbitrary field

_251-*

Q:.... -.......... ;................*............... *..........-......................
0 500 1000 1500 2000 2500

FFT length

Figure 8. Maximum error in computing Fourier coefficients using the DFT
fo r two different input vector fields.

Average relative error in the calculation of the Founer coefficients using FFT
2 .5 ?--------------------- T-----------------T---------------------r---------------------r-----------------

I — Single coefficients
' - - Arbitrary field

2[- \

0------------------------------------L----------- ‘------------
0 500 1000 1500 2000 2600

FFT length

Figure 9. Average error in computing Fourier coefficients using the DFT
fo r two different input vector fields.

corresponding Fourier coefficients.

2. In the second approach the DFT-based matrix-vector product was calculated for
an arbitrary input vector. Consequently, the outcome had to be compared with
outcome of the matrix-vector product for the analytically derived operator matrix
and the same input vector. This test was intended to investigate the quality of
the DFT approximation for a more realistic case.

646 M. Rewiensk'

Average relative error in the calculation of the Fourier coefficients using FFT
3 ----------------- ------------------ T----------------- 1— ----------------- ---------------

£ 1- ; i i\

I •. I ---- cx(0.1) i
♦2 h i I - - 100.0 * cx{10.11) j

-3 1----------- — --------------------- 1-----------------1--- -------------- *-----------------
0 500 1000 1500 2000 2500

FFT length

Figure 10. Errors in computing the Fourier coefficients using the DFT
fo r two chosen coefficients.

In the tests the errors for the first 100 coefficients (with indices ranging from
0 to 9 or 1 to 10 in every spatial dimension) were calculated for different lengths of
the Fourier transform, ranging from 128 to 2048 (both in x and y dimensions).
Figure 6 shows the average relative errors in calculating the first hundred
coefficients for different lengths of the DFTs. The average errors were computed as
arithmetic mean of the absolute values of the relative errors. The DFT lengths were
equal in both directions and were changed simultaneously. The Figure presents the
results for two different operators: for the first one only FFT is used to compute the
matrix-vector product; for the other one a hybrid algorithm using FFT and
numerical integration (IRAM-FFT-NI), described in Section 6.1.1 is applied.
Referring to absolute error, Figure 7 shows a graph presenting average absolute
errors (computed as arithmetic mean of absolute values of differences between
Fourier coefficients computed analytically and computed with FFT). In the Figure
an approximately quadratic decrease (for A and M< 1024) in the average absolute
error is observed which stays in accordance with the estimations (36). (As s « M
and t « N the estimations give a quadratic decrease of the error with the increasing
M a N). The decrement in the average absolute error becomes slower
(approximately linear) for larger FFT lengths which may be due to the increasingly
important error due to floating-point arithmetics computations.

Figure 8 and 9 show a comparison of the results for the two different types of
tests described above. Figure 8 presents a maximum relative error observed for the
first hundred Fourier coefficients. As it rs seen this error is higher in the case of an
arbitrary mput field than for the field with only one non-zero component. Still, if
the average error is considered (1 igure 9) the situation is contrary. The average
relative error for an arbitrary input field is continually smaller. Moreover, the

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 647

approximately quadratic decrement in this error observed with the growing DFT
length appears to be very stable. It is an optimistic result which shows that for
general input the DFT-based algorithm may produce an outcome with a very
predictable size of the error. The graph shown in Figure 10 presents the values of
the relative error (in this case the original signs of the errors were maintained) for
two different Fourier coefficients — one of them is a low order coefficient (c 0>1)
and the other one is a higher order coefficient.^9’10). In both cases the error
decreases approximately in a quadratic order.

An interesting observation is that the relative error for the high order coefficient
is approximately by a hundred times smaller than the corresponding error for the
low order coefficient.

The general conclusion which may be drawn from the above tests is that the
approximately quadratic decrement in the relative error is observed with the
increasing (in both dimensions) length of the 2D Discrete Fourier Transform for N
and M< 1024. Referring to the values of the relative errors, the average error for
the first hundred coefficients stays at a level of a few percent for the transform
length that equals 128. If the acceptable level of error equals 0.5 % then the DFT
length should be increased to at least 1000. The results refer only to the first 100
coefficients and with more coefficients taken into account while representing
a given operator in the DFT domain the average relative error will inevitably
increase, so that longer transforms will be necessary to obtain the desired level of
numerical error.

4. Characteristics of the distributed memory systems
Flaving presented the numerical algorithms being in the scope of interest of this

study we will now discuss some issues in high performance computing which are
crucial to the process of designing parallel algorithms, concentrating on the
relations between scalable parallel system architectures and programming
paradigms. We shall also briefly describe the specific features of parallel
programming environments and answer how they influence the implementation of
the algorithms expected to deal efficiently with large scale scientific and
engineering computations.

4.1 Massively Parallel Processing
In the recent years the term of “Massively Parallel Processing” has gained

a tremendous popularity among the users of hi-end computer systems who perform
highly demanding numerical computations as it comprises the realized hopes for
a platform suitable for large-scale simulations. The technology of parallel distributed
memory supercomputers (including the virtual shared memory architectures),
provided the only truly scalable environment offering computation speedup of tens or
hundreds times with an adequate increment in memory storage capabilities.

At the same time many questions referring to programming techniques or data
handling in distributed memory environments had to be resolved. The development
of programming methods in the scalable parallel distributed memory systems has

648 M. Rewiehski

led to defining certain dominant programming models, described later on. The
growing understanding of the scalable parallel architectures also resulted in setting
forth the key factors influencing the performance in distributed memory systems
and creating a number of highly efficient parallel numerical libraries and parallel
programming environments. The following sections discuss these issues in more
detail, presenting the relations between the distributed memory architectures and
parallel programming aspects.

4.2 Programming paradigms and parallel data decomposition
The formulation of new programming models or paradigms has always been

closely related to the developments in computer system architectures, now
classified by the Flynn’s taxonomy which is based on the distinction of systems
with single and multiple data and instruction processing streams (cf. Figure 11).
The progress in computer technology brought about the dominance of the Multiple
Instruction Multiple Data (MIMD) systems. This <n turn resulted in rapid
development of parallel programming techniques in MIMD systems. Two of them
have gained a particular importance and have recently become dominant in parallel
programming of MIMD systems. These are the data parallel programming and the
message-passing programmmg.

Starting with the data parallel programming one has to mention that this model
originates in vector supercomputers where programs applied highly efficient vector
or matrix operations which inherently involved parallel data processing and
distribution. The data parallel model assumes that a programming language offers
intrinsic functions and mechanisms which enable the processors (processes or
computational threads) to operate on global data. Consequently, this paradigm was
a basic programming model in virtually all Single Instruction Multiple Data (SIMD)
systems, such as architectures based on transputer matrices e.g. Connection
Machine CM-200. In these machines a program defined the operations performed
on global data, without specifying the data interchange scheme among the

Flynn’s Taxonomy

S1SD SIMD
CM-200
ICL DAP

MISD MIMD
SM: SGI Power Challenge

DM: IBM SP2
VSM: Cray T3D, T3E

Figure 11. Flynns taxonomy. In the scheme: S = Single, M = Multiple, I = Instruction stream and
D = Data stream. Within the MIMD machines the following architectures may be distinguished:
Shared Memory (SM), Virtual Shared Memory (VSM) and Distributed Memory (DM) systems.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 649

processors and so the parallelism was obtained by the parallel data distribution. One
thing has to be stressed about the data parallel paradigm in SIMD machines: the
model assumes here that continuous synchronization occurs between the processors
during parallel data processing. The situation is different in the case of modem
MIMD systems, where the processors are said to be “loosely synchronized” with
the same operations being performed on analogous data approximately at the same
time. This constitutes one of the generalizations of the data parallel programming
model on MIMD machines. The other important generalization ic the possibility of
defining local, private data whose distribution is handled by the compiler and which
allows e.g. replicating some calculations on all the processors involved in the
computations.

The data parallel programming model as described above seems to be inherently
attributed to computer systems equipped with the global storage e.g. vector
supercomputers or true shared memory systems. This is no longer a valid point of
view while some novel parallel system architectures gain growing importance. These
architectures include the virtual shared memory systems being n fact distributed
memory scalable parallel systems equipped with efficient global addressing software
and hardware mechanisms, which favour them from other MIMD systems for use
with the data parallel programming paradigm. (The examples of such architecture is
Cray T3E parallel system described in Section 7.1.2.)

The example of a parallel programming language which applies the data
parallel paradigm is the High Performance Fortran (HPF). (An overview of the
characteristics of this language may be found in [36] or [37], One of the HPF
implementations is described in [38].) In High Performance Fortran, which is
a superset of Fortran77 and Fortran90, the parallelism of matrix and vector
operations is obtained solely by defining parallel data distribution. HPF may be
therefore considered a high level parallel programming language offering a simple
platform for writing parallel codes which frees the programmer from issues
concerning optimization of non-local data access patterns or design specifics of
parallel matrix operations.

The other popular parallel programming model is the message-passing
programming which is often considered a low-level programming paradigm.
Indeed, this programming style offers great freedom in the design of a parallel
algorithm at the price of the necessity of dealing with various programming issues
concerning e.g. the design of interprocessor communication schemes. The message
passing programming paradigm assumes that the parallel computation takes place in
an environment of interconnected multiple processing elements with each element
having its own local memory. This model further assumes that there is no globally
addressable memory (as in the data parallel paradigm) so that only one processing
element may directly access its local memory. As it is seen this programming model
is inherently attributed to distributed memory parallel MIMD systems, although it
may also be ported to shared memory architectures. The other fundamental
assumption about the model is that processors (processes, computational threads)

650 M. Rewienski

cooperate by explicit data exchange / communication using messages sent and
received across the interconnection network. The process synchronization also
occurs via message-passing.

In the message-passing model the programmer defines all details of the parallel
design including e.g. the modes and the sequence in which the messages will be
sent and received. (In the case of collective communication procedures the specific
design schemes of message-passing may often be resolved on a lower level which
explores the characteristics of a given parallel distributed memory environment in
order to obtain higher efficiency.) The programmer is particularly responsible for
designing correct communication e.g. avoiding deadlocks, livelocks or assuring the
determinism in a parallel computation (unless specified otherwise). The necessity
of dealing with all the above issues inevitably complicates the implementation of
a message-passing based parallel program. On one hand this programming
complexity is the main drawback of this paradigm and on the other hand it offers
the programmer a free choice from a variety of solutions in order to make use of
any potential parallelism enclosed in the problem being solved. Consequently the
output parallel programs may result more efficient in a given parallel environment
than their analogues constructed using the data parallel programming paradigm.
The other fact is that the message-passing model allows one to implement various
parallel data and computation mapping techniques (described in Section 3.1). While
the data parallel model applies solely the static domain decomposition scheme, the
message-passing programming may be used to implement e.g. functional parallel
decomposition of a given problem or a dynamic load leveling scheme.

The two main standards which are most widely used in the distributed memory
parallel systems and support the message-passing programming model (or rather
provide a standard interpretation of this model) are the Message Passing Interface
(MPI) standard specification and the Parallel Virtual Machine (PVM)
communication system. The domination of these two programming instruments is
a result of their versatility and portability which allows one to run the same codes
on a variety of parallel systems ranging from massively parallel supercomputers to
networks of workstations. A great number of publications is devoted to both MPI
and PVM (cf. [29], [39], [40] (MPI), [41], [42] (PVM)) describing the capabilities
and implementations of these message-passing systems.

4.3 Performance issues in parallel distributed memory systems
Some of the basic features and elements of parallel distributed memory systems

have a decisive impact on the design and performance of parallel programs which are
to be run in these environments. They are briefly described in the following items:

— The cost o f accessing non-local data significantly higher than the cost of
accessing local data. This very substantial feature of distributed memory systems
is a result of using the message-passing mechanisms and protocols in order to
transmit non-local data to the processor requesting a remote access by another
processor. The message communication time which is composed of the
communication startup time (related to the topology of a given network, network

Methods o f Solving Operator Eigenprohlems in Parallel Distributed Memory Systems... 651

protocol and the routing algorithms applied) and the transmission time (related
to the physical bandwidth of the communication channel joining the units
interchanging data) exceeds the analogous local memory access time by tens,
hundreds (in the case of highly efficient interconnection networks in parallel
supercomputer systems) or thousands times (in the case of standard networks
connecting workstations). The situation is more balanced in virtual shared
memory (VSM) systems where additional hardware circuitry supports software
procedures handling non-local memory access requests (cf. [43]). Still, in any
case the amount of inter-processor communication determines the performance
of parallel programs in these systems and if this communication is not optimized
the parallel bottleneck is inevitable. The parallel bottleneck demonstrates in the
increment of the processors’ idle time and the degradation of speed-up and
efficiency with the increasing number of processors involved in computations.

— Topology o f the interconnection network. The network topology may importantly
influence the performance of collective communication operations and balancing
of the execution times across the processing elements (PEs). In the case of
a network of workstations the network topology may favour some processing
elements which will result in a quicker communication between selected
processing elements, in the imbalance in the execution time and eventually in
a decrement in the overall efficiency. In the case of the interconnection networks
applied in supercomputer systems, the uniform topologies of connections
between the PEs are usually used. Nevertheless, in a certain topology some
collective communication or reduction schemes may be favoured, e.g. algorithms
involving only nearest neighbour (systolic) communication or algorithms
applying global broadcast operations. The specifics of the interconnection
topology are widely exploited in the design and implementation of parallel
communication and numerical libraries provided for use in given parallel
systems.

— Relatively small local memory storage. This fact is a consequence of distributing
the memory resources across a number of processing elements. In distributed
memory systems the memory usually equals about 128-256 MB per PE, while
in the case of medium size shared memory systems the usual size of the global
storage equals 4 GB. Consequently the designs of parallel algorithms have to
assume balanced memory requirements for the processes to be executed on
different PEs.

— Local and global disk storage. Different kinds of disk storage organization
schemes are used in parallel distributed memory systems. In some designs the
disk memory is attached locally to each processing element while in others there
is only a single processing node that manages the entire disk storage system. In
this case all the access requests have to be processed by this single node. In the
case of tasks which have to use disk memory intensively or periodically it is
advisable e.g. to distribute the disk read or write requests across the PEs in case

652 M. Rewienski

of many local disks or if all the processors (processes, computational threads)
have to access a single disk storage system, the access requests should be
distributed in time as to avoid bottlenecks,

The above points presented selected issues which have to be addressed while
designing parallel programs in distributed memory parallel systems as they may
greatly influence the performance of parallel programs. Typically, as many of these
issues require conflicting design solutions, various trade-offs appear. Let us recall at
this point the classical form of the Amdahl’s law which imposes an upper bound on
the speed-up S achieved by a program executed on P processors:

5 “ a + (l-a) /T * “ a (37)

where a is a fraction of the single-processor execution time of a given program,
spent on operations which cannot be parallelized. In the original interpretation of
the Amdahl’s law the value of a was determined solely by the structure of the
sequential program to be parallelized. Still, the process of parallelization involves
modifications of a given sequential program wh;ch include e.g. introducing inter
processor communication. Consequently the value of a is modified (incremented)
by these parallel overhead operations. In this context the value of a starts to
depend on the applied paralle’'zatiGn strategy and also typically becomes
a function of the number of processors P. At this point the role of the mentioned
parallel design trade-offs, which aim at decreasing the value of a at least for
a certain range of the number of applied processors P, becomes clear. A very
typical parallel design trade-off arises e.g. when the amount of communication is
being reduced by applying the replication of some calculations on all the
processing elements. If the amount of replicated calculations becomes too large
the problem of serial bottleneck appears. So, a kind of trade-off has to be applied
in order to avoid both parallel and serial bottlenecks in parallel design of a given
algorithm. The trade-offs also appear while dealing with distributed memory
resources. For instance, some output data produced by a single PE may either be
stored locally wh'ch saves inter-processor communication but increases imbalance
in memory requirements per PE or may be distributed among all the PEs which
requires communication but allows one to achieve better management of memory
resources.

Many more examples could be given with different design solutions. Still, quite
often the general solutions that could produce highly efficient parallel programs
cannot be given due to the diversity of parallel distributed memory systems. In this
case achieving efficient, scalable parallel programs often requires application of
various programming tools available in particular systems offering highly optimized
parallel solutions for many computational tasks.

4.4 Parallel programming environment - discussion o f the available tools
In this section we would like to outline the role of parallel programming tools,

especially parallel libraries n developing parallel codes and enhancing their

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 653

efficiency in scalable distributed memory environments. Let us address these issues
in the following points:

— Compilers. The role of compilers in distributed memory systems depends
primarily on the programming model applied to develop a target parallel
program. If the data parallel programming paradigm is used then the role of the
compiler is principal as managing the issues of non-local data access, process
synchronization and communication is left to the compiler, while the
programmer defines only a parallel data distribution pattern. In turn, if the
message-passing programming model is applied, the role of the compiler is rather
limited. As in this programming style all the inter-processor communication is
handled by the library routines (e.g. MPI or PVM routines) and the entire parallel
design is left to the programmer only a serial compiler is needed and its role is
reduced to performing standard serial optimizations. Obviously in this case the
role of the message-passing libraries becomes particularly important.

— Inter-processor communication libraries. Focusing on the two most important
libraries, i.e. Parallel Virtual Machine (PVM) library and communication system
and the implementations of Message Passing Interface (MPI) it is important to
indicate some significant differences between these two parallel programming
tools. First of all, PVM is mainly designed for use in parallel network
environments. This fact has the following consequences: 1) PVM contains
features which are particularly useful in the network environment e.g. the
dynamic task creation or defining relative speeds of the processing elements
forming the virtual machine. 2) The PVM communication routines are not
optimized for use with any particular network topology. This second point
indicates that if the portable versions of PVM library implementations are
applied in parallel supercomputer systems, the capabilities of usually highly
efficient interconnection networks in these systems may not be fully exploited.
This especially refers to collective communication procedures whose
performance may be significantly enhanced if the characteristics of the network
topology are taken into account in their design. Although there exist
implementations of PVM library for massively parallel distributed memory
systems (e.g. the PVMe library for IBM SPx [44]), this library offers very little
in the supercomputing environment as compared to the MPI library. In turn, MPI
appears to be specifically designed for use in supercomputer systems offering
a great variety of communication modes and types, including various collective
communication or global reduction operations. In this case the role of
implementation which exploits the network capabilities (e.g. the capabilities of
switches applied to connect the processing elements or specifics of the protocols
applied in a given interconnection network) becomes crucial and consequently
the optimized communication libraries supplied by the hardware vendors may
provide much higher performance than the analogous portable implementations.
Lastly, one has to mention that the original MPI standard assumes a static

654 M. Rewienski

communication system. Therefore, if sophisticated parallel systems involving
dynamic task creation or parallel input / output operations are to be developed,
some newer solutions and tools should be applied e.g. PVM v. 3.4 [45] or MPI-
2 [46], Summing up, all the above facts have to be taken into account while
designing and implementing a parallel application. In the process of porting
parallel codes to specific parallel systems the appropriate choice of tools,
including parallel inter-processor commur:cation libraries, should be made
which may result in a seriou: improvement of the parallel performance.

— Parallel numerical libraries. The role of parallel numerical libraries in the
process of designing computafonal applications to be run in distributed memory
parallel environments cannot be underestimated. With the development of
parallel algorithms in such application areas as basic linear algebra, differential
equations, FFT and signal processing or eigenproblem analysis various parallel
numerical libraries emerged. Among the most important portable libraries
covering a large number of basic algorithms used in linear algebra one has to
mention PBLAS (Parallel Basic Linear Algebra Subroutines) and ScaLAPACK
(Scalable Linear Algebra Package) which extends PBLAS. Both the libraries
depend also on the BLACS (Bas -’ Linear Algebra Communication
Subprograms) (cf. [47]) library which serves as a base for inter-processor
communication and provides a parallel programming interface. Apart from
public, portable implementations of the numerical libraries also a number of
native 'mplementations associated with given parallel systems have been created.
The most widely known libraries fiom this group, implementing many BLAS
and LAPACK routines, are: LibSci (provided by Cray Research) [48], Parallel
Engineering and Scientific Subroutine Library (PESSL [49]) (IBM) or NAG
library (from Numerical Algorithms Group [50]). The librar:3S cover many
application areas in scientific computations and provide its users with interfaces
to different inter-processor communication systems: e g. BLACS or HPF (in case
of PESSL - cf. [49]), PVM or MPI (in case of NAG — cf. [50]). Apart from these
most widely known products many smaller parallel programming libraries which
cover more specific areas of applications are available, including PARPACK
library (widely described in the following section) or PIM (Parallel Iterative
Methods package used to solve large systems of linear equations using
conjugate-gradient approach [51]). (A much broader overview of available
parallel numerical libraries may be found in the repoit [52].) The principal role
of parallel numerical libraries is facilitating the process of development of
numerical solvers in parallel environments. While the parallel libraries provide
the ready designs and implementations of numerical algori thms, they also offer
ready parallel data distribution schemes. Consequently, if we choose a certain
numerical library, we also have to accept the ava;iable parallel interface which
can be more or less suitable for our parallel system as well as incorporate the
parallel data d'stribut'on or mapping model supported by the library. This

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 655

important aspect of using parallel numerical libraries has to be taken into account
as, although in most cases it simplifies the process of design, it also limits the
possible parallelization strategies.

5. Implementation of the operator eigensolvers in parallel
distributed memory systems

This section describes parallel design and implementation of the algorithms of
solving operator eigenproblems presented in Section 2. The implementations of the
iterative solvers are discussed jointly with the parallel designs of matrix-vector
products for the discretization schemes discussed in Section 3, as to provide the
reader with a description of complete methods which can immediately be used to
solve eigenproblems for a wide class of operator:

Three parallel solvers will be presented in this section:
— IRAM-FD solver, based on the 1RAM iterative process and the Finite Difference

(FD) discretization of the 'nput operator.
— IRAM-FFTsolver, based on the IRAM iterative process and the implicit discrete

representation of the operator, applied jointly with the FFT algorithms to enhance
the efficiency of the method.

— IEEM-FFT solver, providing a parallel implementation of the IEEM-FFT
algorithm, described ;n [18] and based on the Iterative Eigenfunction Expansion
Method presented in Section 2.

The base for the implementation of the two first parallel solvers (IRAM-FD and
IRAM-FFT) is the PARPACK library, descr.oed in the following section and
offering portable parallel implementation of the IRAM iterative algorithm, ready for
use in distributed memory systems. The tasks which have to parallelized
independently include:

— The matrix-vector product operation for the matrix operator discretized using
the FD mapping technique.

— Two-dimensional backward and forward Fast Fourier Transforms.
— The m at‘ix-vector product in the IRAM-FFT algorithm which requires

calculation of the appropriate inner products, involving computation of 2D FFTs.
— The basic iteration of the IEEM-FFT algorithm, involving computation of the

inner products (as described in the prew >us item) and global norms (requiring
inter-processor communication in a parallel i nplementation).

5.1 The P_ARPACK library — The Arnoldi solver for MPP platforms
This section presents a description of the Parallel ARnoldi PACKage

(PARPACK.) — a portable library implementing the Implicitly Restarted Arnoldi
Method (IRAM) for distributed memory parallel systems.

The P_ARPACK software has been developed at Rice University (cf. [53]) and
provides a versatile package of Fortran77 subroutines for solving either symmetric

656 M. Rewiensk,

or non-symmetric, real or complex matrix eigenproblems. The important feature of
the Amoldi algorithm which has been exploited in the design of the library routines
is that the method does not require any explicit form of the ;nput operator matrix to
be used. Instead, all the information on the considered operator is passed via the
matrix-vector product. This has teen used by introducing the reverse
communication interface. On one hand, this interface enables the subroutines that
perform the Amoldi algorithm iteration to be independent of the input matrix
storage format and, on the other hand, it makes the user of P_ARPACK free to
choose the most appropriate method of compufing the matrix-vector product for
a specified input matrix operator. The general framework of a parallel program
calling P_ARPACK routines in a reverse communication loop is shown in Figure
12 and constitutes a basis for the solvers presented in the following sections.

The central point of the presented program is a call to the pd n au p d ()

------------- Parameter selection for p d n a u p d () ----------

comm = MPI_COMM_WORLD ! Set the communicator
call MPI_Comm_size(comm, ! Determine the number of

nprocs, ierr) ! processors used
n = N t size of the problem
nev = NEV 1 number of eigenvalues to be computed
ncv = NCV 1 number of orthogonal columns of V
nloc n/nprocs 1 Determine local size of the problem
bmat = ’I' 1 standard eigenvalue problem
which = ' LM' t find eigenvalues with largest magn.
tol = 1. e- 8 ! set the desired accuracy-
ido = 0 1 first call to reverse communication
info = 1 1 resid contains the initial vector
do 100 i = 1, nloc 1 initialize resid as a vector

r e s i d (i) = 1 ,d0 1 with 1's as all elements
00 continue
i p a r a m (1 = 1 ; exact shifts with respect to H
iparam (3) = 1000 ; maximum number of updates
iparam(7) = 1 t Mode set to 1

----------------- Reverse communication loop -----------------

200 continue
call pdnaupd(comm, ido, bmat, nloc, which, nev,

& tol, resid, ncv, v, ldv, iparam,
& ipntr, workd, workl, lworkl, info)

if (ido .eq. -1 .or. ido .eq. 1) then
Compute matrix-vector product: A*v
call Av(nloc, w o r k d (i p n t r (1)) , w o r k d (i p n t r (2))

go to 200 ! Loop back to call pdnaupd () again
endif

Figure 12. Calling pdnaupd () P_ARPACK subroutine, solving a non-symmetric
real eigenproblem in a reverse communication loop.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 657

subroutine which implements the IR.AM algorithm for a non-symmetric real
eigenproblem. This call is preceded by the initialization of various parameters
defining the problem, including: n — the global problem size, n lo c — the local
problem size for a given processor (process), nev — the number of eigenvalues to
be found, bm at — type of the eigenproblem (standard/generalized), w h ich -
- which part of the operator spectrum is to be considered (e.g. eigenvalues with the
largest real part or the largest modulus). The in f o parameter determines whether
an initial vector v will be submitted. If in f o = l the initial vector is stored in the
r e s i d parameter. Otherwise, the initial vector is random. The t o l parameter
determines the stopping criterion for the Amoldi factorization. The algorithm stops
if the condition:

is satisfied for all A.. Parameters i p a r a m (l) - ip a ra m (8) define various
options of the algcTthm including the maximum number of Amoldi updates
allowed or types of shifts used in the polynomial filtering process. A detailed
description of all the parameters of P ARPACK routines may be found in [15],

Another important design feature of the P_ARPACK library is the possibility of
applying the Single Program Multiple Data (SPMD) programming style, regarded
the most efficient and transparent in the parallel message-passing programming.
This programming technique allows one to write a single code (such as shown in
Figure 12) .to be executed on all the processors. Once again the reverse
communication interface to the P_ARPACK subroutines allows the user to choose
a convenient parallelization strategy for the matrix-vector product operation.

Last but not least, the P_ARPACK library offers portability across a wide range
of distributed memory parallel systems (including networks of workstations) by
implementing its parallel routines using standard inter-processor communication
libraries: the Message Passing Interface (MPI) ([39]) and the Basic Linear Algebra
Communication Subprograms (BLACS) ([47]).

5.2 Parallel design of the Amoldi factorization
Apart from knowing the functional characteristics of the routines implementing

the Implicitly Restarted Amoldi method in the P_ARPACK library, it is important
to be conscious of the parallel design features of the basic Amoldi factorization
proposed in this library by MaschhofF and Sorensen ([53]).

If, once again, the formula for the Amoldi factorization is examined:

where the symbols have the same meaning as in Section 2.4.1, then the
parallelization scheme illustrated in Figure 13 may be described as follows:

— the A x A upper Hessenberg matrix H k is replicated on every processor,

Au, < tol -|Af| (38)

A Vk - Vk Hk + j (39)

— the matrix Vk is block-distributed across a one-dimensional processor grid,

658 M. Rewienski

— fk_ and workspace are distributed accordingly,

— parallel data distribution in the input matrix A is chosen by the user. Still, as
the outcome of the matrix-vector product has to be distributed analogously

Figure 13. Parallel block data distribution during the Arnoldi factorization applied
in the P_ARPACK library.

as the matrix H k , the decomposition of the matrix will typically be

commensurate with this block distribution.
According to the conclusions obtained in Section 2.4.3, the memory storage

requirements for the applied data distribution equal nhcO(l) + O(P) per processor,
where nhc ~ n/P (P equals the number of processors) and l = k+ p equals the sum of
the number of eigenvalues to be found and to be filtered-out.

A crucial aspect of parallel implementation in distributed memory systems is
the size of messages communicated between the processors during the execution of
the algorithm. Referring to P_ARPACK and Arnoldi factorization there are only
two communication points. One of them is computation of the norm of the

distributed vector f k and the other is the orthogonalization of f k to Vk using the

MGS algorithm, where the global scalar products of a given vector with the

columns of the matrix Vk have to be computed. In the MPI implementation these

global norms and sums are calculated using a global reduction procedure
M P I_ A llred u ce (.). For a single iteration in the Arnoldi factorization, the
overall size of elements communicated across the processors is extremely low and
is of order 0(Pk), where P denotes the number of processors and k equals the
number of eigenvalues to be found.

A certain kind of trade-off may be observed in the parallelization strategy
applied in the IRAM iteration. As all the operations on the upper Hessenberg matrix

H k are replicated on each processor, the communication of the results is not

needed. Nevertheless, this introduces some redundancy to the algorithm that may

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 659

lead to a serial bottleneck as the size k of the matrix increases. This may eventually
cause the lack of scalability of the method.

According to the results obtained in Section 2.4.3 the numerical complexity of
the parallel version of a single update in a p-step IRAM algorithm equals 0(p2 «)
or (if p = 0(k)) 0(k2nhc) per processor, where nhc is the local dimension of the
problem., in the above estimations the costs of performing the parallel matrix-
vector operation and storing the operator matrix, which largely depend on the
choice of finite-dimensional mapping method, have been excluded. This problem
will be addressed in the following sections.

5.3 Parallel Arnoldi solver for FD operator discretization
This section presents two portable implementations of a parallel solver of a non-

-symmetric linear operator eigenproblem based the Implicitly Restarted Arnoldi
Method (IRAM), for operators discretized using the Finite Difference method.

The implementations are based on calling the P_ARPACK library routines
which perform the IRAM iteration. Consequently, according to the description of
P ARPACK from the previous section, the implementation of the solver follows the
reverse communication scheme shown in Figure 12. Therefore, the implementation
of the solver may concentrate on only two aspects: 1) Defining parallel data
distribution, which includes distribution of the vectors and the discrete operator and
2) Implementing the parallel operation of matrix-vector product which corresponds
to the applied parallel data distribution.

5.3.1 Implementation o f the matrix-vector product in parallel

As discussed in Section 3.2 the matrix obtained in the FD mapping is a highly
sparse matrix with very regular structure. Consequently, a simple parallel block data
distribution scheme may be applied. In this distribution each of the processors

.Matrix operator A Vector v

Needed by
Processor 1

N eeded by
Processor 2

Needed by
Processor 3

Figure 14. Schematic o f a block distribution among the processors o f a quasi five-diagonal
sparse matrix and the corresponding vector. The Figure shows that in order to calculate

the matrix-vector product with such distribution the grayed parts o f the vector y need
to be communicated between the neighbouring processors (processes).

660 M. Rewienski

(processes) stores a specific range of rows of the operator matrix and a corresponding
range of elements of the input vectors. This has been illustrated in Figure 14.

The matrix presented in the Figure shows the discrt 'zed differential operator
discussed as an example in Section 3.2. With most of the non-zero elements located
on five diagonals, the presented distribution minimizes the inter-processor
communication necessary to compute the matrix-vector product. The regions of the
input vector y which have to be communicated between the pairs of neighbouring
processors have been shown in the Figure as grayed regions. In our example, as the
matrix (and the vector) size equaled 39700, the number of the vector elements to be
communicated between each pair equaled approximately 400.

In order to investigate the importance of the matrix-vector product operation on
the overall parallel performance of the solver this operation has been implemented
using three different methods, including different formats for storing the operator
matrix:

— In the first implementation all the non-zero elements of the local part of the
matrix belonging to an appropriate processor are stored using the Compressed
Sparse Row (CSR) format. In this representation the information on the regular
quasi five-diagonal structure of the matrix is not used. In this case the overall
number of memory locations needed to store the matrix equals 2 • nnz + n + 1,
where n is the matrix dimension and nnz is the number of the non-zero matrix
elements. In order to perform the matrix-vector product all the elements of the
vector v are communicated, so that the entire vector is “known" to all the
processors. In the case of the MPI-based implementation this communication
may be performed by applying a single high level collective communication
routine, such as M P I_ A llG a th e r (.) . Clearly the overall memory
requirements have to be incremented by P ■ n, where P is the number of
processors used. Another issue which has to be addressed in a parallel
implementation is the overall size of the messages communicated between the
processors. In the convdered case, this size is relatively high and equals
approximately (P - 1)n elements. After the communication has been completed
each of the processors calls a general purpose SPARSKIT library ([31]) routine
amux (.) which calculates the matrix-vector product for the appropriate range
of rows of the distributed matrix. As it is seen, the procedure presented above
may be used to perform a parallel matrix-vector product for an arbitrary block-
distributed sparse matrix. The two other implcmentati .ms use the characteristics
of the matrix to reduce both complexity of serial operations and storage, as well
as the size of the inter-processor communication.

— In the second implementation a serial optimization is performed. If the matri?
discussed in Section 3.2 is considered, then on each of the processors a hybrid
type of storage may be applied. The five diagonals are stored separately in the
5 x /j matrix and the remaining 5% of the elements are stored in the CSR format.
The resulting storage requirements are lower than in point 1 and (assuming that

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 661

5n ~ 0.95nnz) equal approximately 0.95nnz + 2 • 0.05mmz +.n + 1 = 1.05nnz +
n + 1 elements. Similarly as in the first implementation the entire vector y is
communicated across all the processors. The algorithm of calculating the matrix-
vector product is also a hybrid one and consists in computing the product of the
matrix elements located on the five diagonals with the vector elements and
computing the product of the remaining matrix elements with the vector using
the amux (.) routine.

— In the third implementation the serial part of the computations and the matrix
storage scheme remain the same as in the previous implementation. Instead, the
inter-processor communication is significantly optimized. Once again the
information on the structure of the matrix operator is used. In the considered
example the band of the matrix (understood as the maximum difference between
the row indices for non-zero elements located in the same column) equaled 400.
Consequently, only 400 elements had to be communicated as to enable every
processor to compute its part of the matrix-vector product (cf. Figure 14). In
consequence, no collective communication routines are necessary and a simple
two-step inter-processor communication scheme shown in Figure 15 may be
used. This Figure shows how the necessary parts of the input vector y are
communicated using a series of simple blocking send and receive procedures.
The pseudo-Fortran77 code of this operation is shown in Figure 16. In our
example the overall size of the data communicated between the processors
decreases dramatically and equals approximately (P - 1) ■ 0.01m elements, as
400 = 0.01 • 40000 ~ 0.01«. This means the size of communication is reduced
by a hundred times! Clearly, the presented scheme of communication may be
applied to arbitrary banded matrices provided that b < (2 • n/P), where b is the

Step 1

Step 2

MPX_Send(.) MPI_Send(.)
- MPI Recv(.) - MPI Recv(.)

L iT

P E I PE2 PE3 PE 4 PE5

P E I PE2 PE3 PE 4 PE 5

S __ ? !
MPI_Send(.) MPI_Send(.)

- MPI Recv(.) - MPI Recv(.)
Figure 15. Two-step communication scheme used in the parallel matrix-vector product calculation.

662 M. Rewiehski

bandwidth of the matrix of size n, block-distributed among P processors. If this
condition is not satisfied more complicated schemes have to be applied involving
not only pairs of neighbouring processors.

call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)
call MPI Comm rank (MPI COMM_WORLD, rank, ierr)

if (mod(rank,2) .eq. 0) then
if(rank .It. (size-1)) then

call MPI_Recv() # receive data
- call MPI_Send() # send data to

end if
if (rank .gt. 0) then

call MPI_Recv() # receive data
call MPI_Send() # send data to

end i f
else

if (rank .gt. 0) then
call MPI_Send() # send data to
call MPI_Recv() # receive data

end if
if(rank .It. (size-1)) then

from 'rank+l'-th processor
'rank+l'-th processor

from 'rank-1'-th processor
'rank-1'-th processor

'rank-1'-th processor
from 'rank-1'-th processor

Figure 16. Pseudo-code involving MPI calls showing the optimized inter-processor
communication scheme during the matrix-vector product operation.

call MPI_Send() it send data to 'rank+l'-th processor
call MPI_Recv() # receive data from 'rank+l'-th processor

end if
end i f
The implementations discussed above used Message Passing Interface (MPI) as

an inter-processor communication platform and exploited the MPI interface
provided within the P_ARPACK library. These programs may be ported to var .us
parallel systems, still itis recommended to use them in scalable distributed memory
supercomputer systems. The main reason is that the vendor supplied
implementations of the MPI standard provide library functions, containing hi~h-
level collective communication and global reduction routines which are highly
optimized for use in, specific system architectures. Therefore, while designing and
implementing the parallel solver using MPI, part of the complexity may be hidden
in high-level inter-processor communication routines without loosing any
efficiency.

5.3.2 PVM-BLACS implementation

Apart from the MPI-based parallel functions, the P_ARPACK library also
provides routines supporting Basic Linear Algebra Communications Subprograms
(BLACS) inter-processor communication platform. Availability of the BLACS
version of this parallel library extends its functionality and enables its users to
apply high level (as compared to MPI) designs of communication schemes in their
parallel solvers. Generally speaking, using BLACS gives simpler and faster

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 663

implementation at the price of giving up the versatility offered by MPI.
The BLACS version of the P ARPACK library not only does allow one to

implement the entire solver using this communication library but also provides
means to use concurrently different inter-processor communication platforms on the
implementation level. This somehow non-standard use of BLACS-P_ \RPACK
library has been presented in the rest of this section.

The parallel MPI-based solver described in the previous section may also be
implemented using two communication platforms simultaneously. Firstly, the
BLACS interface to P_ARPACK routines may be applied and secondly Parallel
Virtual Machine (PVM) (cf. [42]) library functions can be used to implement the
solver, including the routine for calculating the parallel matrix-vector product.

program parpackfd

include 'fpvm.h' # Include the PVM header file

call pvmfmytid (mytid) # Enroll in the virtual machine

call pvmfjoingroup ('solver', me) # Join a group of processes

if ((me .eq. 0) .and. (NPROCS .gt. 1)) then
t i d s l (0) = mytid
call pvmfspawn ('parpackfd', PVMDEFAULT, '*' , # Spawn
NPROCS-1, t i d s l (1), info) # processes

end if
#
Synchronize all the processes
#
call pvmfbarrier ('solver' , NPROCS, info)
#
Communicate the array of tids among all the processes
#
if (me .eq. 0) then

call pvmfinitsend (PVMDEFAULT, info)
call pvmfpack (INTEGER4, t i d s l (0), NPROCS, 1, info)
call pvmfbcast ('solver', 1, info)

else
call pvmfrecv (-1, 1, info)
call pvmfunpack (INTEGER4, t i d s l (0), NPROCS, 1, info)

end if
#
Initiate pvm processes in the BLACS domain
#
if (NPROCS .eq. 1) then
call SETPVMTIDS (NPROCS, mytid)
else
call SETPVMTIDS (NPROCS, t i d s l (0))
end if
#
call BLACS_PNFO (mypinfo, nproc)
#

664 M. Rewienski

#
Get the BLACS context
#
call BLACS_GET (0, 0, context)
#
Initiate the block data distribution by rows
#
call BLACS_GRIDINIT (context, 'R ' , nproc, 1)
#
Obtain information on the distribution
#
call BLACS_GRIDINFO (context, nprow, npcol, myprow, mypcol)
#
Synchronize all the processes
#
call pvmfbarrier ('solver', NPROCS, info)
#
Call the main solver routine
#
##
#
call solver (me, context, NPROCS, tidsl)
#
######################*#################
#
Leave PVM group and the virtual machine
#

Figure 17. This fragment o f Fortran77 code presents main points o f an SPMD program
in which both PVM and BLACS communication subsystems are initialized to be used

jointly in an arbitrary parallel solver (called by the solver (.) subroutine).

call pvmflvgroup ('solver', info)
call pvmfexit (info)

stop
end
The combination of the two commurf cation platforms requires constructing

a certain kind of a “wrapper” for the parallel numerical solver in which both
systems are coherently initialized. Such general construction has been shown in
Figure 17 which presents an SPMD (Single Program Multiple Data) parallel
Fortran77 code. In the Figure, the call to the s o lv e r (.) routine, which performs
all numerical calculations, is preceded by several initialization steps:

1. The first processor (process) enrolling in the virtual machine creates the group of
processes named “solver” and spawns a given number of processes (NPROCS-1).

2. All the spawned processors (processes) executing the program enroll in the
Parallel Virtual Machine and join the “solver” group.

3. After these steps, all the processes are synchronized u s in g p v m fb a rr ie r (.) .

4. The array of tids containing task ids of all the members of the “solver” group is

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 665

communicated to all the processes from process 0. In this way, all the processes
may identify other processes involved in the parallel solver.

5. Following is the BLACS ii Itialization which starts with a call (executed by all
the processes) to the SETPVMTIDS (.) BLACS library function. (The
SETPVMTIDS (.) routine belongs to “unofficial” functions of the BLACS
library and is available only in the PVM-BLACS implementat! m of this library.)
This function establishes processes with provided task ids as processes which
take part in the BLACS communication.

6. The next nnportant step is obtaining the BLACS context by the processes by
calling the BLACS _GET (.) routine. The BLACS context (an equivalent of the
MPI intra-commurlicatojr) establishes a “commurnV.uion universe” for the
processes involved in the solver.

7. The following step (optional at this point) defines the parallel data distribution
type used by the solver, by calling the BLACS_GRIDINFO (.) routine. In the
presented program the block distribution by rows has been applied (cf. Figure 17).

Afterwards the s o l v e r (.) routine is called with parameters defining the
number of processes involved in the computation, their tids related to ordinal
numbers in the “solver” PVM group (and commensurate with the ordinal numbers
of the processes established by BLACS), the BLACS communication context and
the ordinal number of the process calling the routine. This set of parameters is
sufficient to estabbsh a coherent communication using jointly BLACS and PVM.

The i nplementation of the actual parallel Amoldi solver using BLACS and
PVM is entirely analogous to its MPI implementation. In the calls to P_ARPACK
library routines the MPI communicator is replaced by the BLACS context and in
the implementation of the matrix-vector product (the optimized version) the same
communication scheme from Figure 15 is applied with p v m fs e n d (.) and
pvmf r e c v (.) function calls and additional data packing and unpacking routines
replacing the MPI blocking send and receive functions.

The main advantage of the presented implementation is that it extends the
functionality of P ARPACK which originally does not have a PVM version of its
library routines. Consequently, using the scheme shown in Figure 17, the programs
which applied PARPACK routines can also make use of the capabilities of the
Parallel Virtual Machine communication system. As PVM remains the most
popular "brary for parallel network computing, the P_ARPACK based solvers
implemented in PVM may be efficiently ported to the environment of networks of
workstations (NOWs). In th is way, many of the PVM features, specifically oriented
for use in parallel network environment, may be exploited tc improve performance
of the solvers in the network systems. Although BLACS is a static system and
consequently the P_ARPACK routines may be used with a constant number of
processors (processes), the reverse communication interface to these routines
enables one to introduce dynamic process creation to the solvers implemented in
PVM while computing in parallel e.g. the matrix-vector product. In this way, if the

666 M. Rewienski

time spent on computing the Av product is suitably longer than the ti ne spent in

the P_ARPACK routines, then the design involving dynamic process creation may
produce in some cases more efficient solvers, fully exploiting the potential of
a given network environment.

5.3.3 Numerical and memory complexity o f the method

The memory complexity of the parallel solver may be easily derived if the
results of the discussion from the previous sections are applied. In the case of
a general'sparse matrix the overall memory requirements per processor equal the
sum of the storage needed by the solver 0(k2nhc) and the storage size used by the
matrix in the CSR format 0(2 ■ nnz. + n, +1), where nnz, is the number of non-
-zero elements in the locally stored part of the matrix and n « n/P, where P is the
number of processors. It may be seen that a very undesirable situation will occur if
the non-zero matrix elements are not distributed evenly in the matrix. In this case
the memory requirements will vary very significantly among the processors.

The numerical complexity of the parallel solver estimated for a single update in
a p-step IRAM algorithm consists of the cost of performing the Arnoldi
factorizations which equals 0(p2n) and the cost of calculating p matrix-vector
products with the sparse matrix stored in the CSR format. The latter cost equals
0(p ■ nnzl). Consequently, the overall (per processor) cost of a single update in the
iterative solver equals O(p2nloc + p ■ ««$,). Once again, this shows that the
workload imbalance may result from a non-uniform distribution of non-zero
elements in the input sparse matrix.

The size of messages communicated among the processors is determined
primarily by the data sent and received during the matrix-vector product. In the case
of a general sparse matrix with a highly irregular distribution of non-zero elements
this size may be as high as 0(p(P - 1)/?) for a single update in a p-step IRAM
algorithm. If the matrix is a banded one with a bandwidth b then (assuming that
b < (2n/P)) this message size is reduced to 0(p(P - 1)b) and becomes independent
of the problem size n.

5.4 Parallel Arnoldi solver with implicit discrete representation of the operator
This section presents a parallel program which exploits the Method of Moments

representation of both functions and the input operator in order to solve the given
operator eigenproblem using the Implicitly Restarted Amoldi Method, implemented
in the P ARPACK library. The salient feature of tin discrete representation is that
the operator matrix is stored implicitly, resulting in reduced storage requirements
and allowing much more efficient implementation of the matrix-vector product
operation.

The description concentrates on presenting the MPI implementation of the
solver wlfch may be ported to various distributed memory systems and deals with
real non-symmetr:; eigenproblems of operators whose domain are 2D vector fields

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 667

defined over two-dimensional space. This choice of the operator domain is guided
by numerous applications in which such vector fields play an important role. The
chosen 2D domain also generates some non-trivial issues concerning parallel design
of the algorithm which make it an interesting research subject.

Analogously as in the previous section, the implementation of the solver is
based on the reverse communication scheme (presented in Figure 12) in which calls

Fourier coefficients Space domain

I
N

0
<H,hij)

(Hx,hij)

(Hy.hij)

2DFFT
------->
backward

(0,0)

1

' (0,256)

1
1

H |

1
1 ' (256,256)

(0,0) | (0,256)

1

I TH
1

1

1
1
1

1
1
1 (256,256)

Figure 18. Schematic o f parallel data distribution in matrix-vector product design for
the DFT-based operator and function representation. The dashed lines mark

the block data distribution pattern among the processors.

to P_ARPACK library routines (mainly the pdnaupd () routine) performing the
Amoldi factorization are followed by calls to user-supplied routines calculating the
matrix-vector product.

The following section presents the parallel implementation of the matrix-vector
product jointly with the description of the parallel distribution of the elements of
the input vector.

5.4.1. Parallel implementation o f the matrix-vector product using two-dimensional
Fast Fourier Transform

Assuming that the domain of the given linear operator T is the space of 2D

vector fields H = {h x, H }') where Hx, FF e L2([0, b] * [0, a]) the following

668 M. Rewienski

representation for the functions in this domain has been defined in Section 3.3:

H = r > r x r v r > 1
(40)

c x and c jij kl

= i / / ', /7-) (/ / ', /?1',) (/ / " ,) (/ / v, /7,v2) . . . , (/ /1, /r;,,,) (/ / ',)]

where H is a finite representation for the vector field H = {h x, H y \
are Fourier coefficients defined by appropriate inner products and {h*} and {hj)
form orthonormal bases in the Z,̂ ([0, b] x [0, a]) functional space.

As described in Section 3.3, calculating the matrix-vector product in the case of
the discussed representation may be performed using an efficient method which
dramatically reduces the computational cost of this operation, as compared to the
classical approach used in the Galerkin Method (GM). In this unorthodox approach
the operation of calculating matrix-vector product involves three steps: 1)

calculating the backward 2D FFTs, 2) calculating the TH product in the spatial
two-dimensional domain and 3) calculating forward 2D FFTs. This has been
illustrated in Figure 18.

This Figure also shows the main idea of parallelization of this matrix-vector
product, which is based on block-distributing (by rows) of the input elements of the
vector H. given by the equation (40). In other words, each processor stores a range
of rows of the matrices of coefficients [c *] and [c.J]. The number of rows stored by
each processors is balanced, as to assure a similar workload for all the processors.
After completing the computation of the matrix-vector product each processor

stores the same range of rows of the Fourier coefficient matrices for the TH field.
In the Figure 18 it may also be noted that after computing the two-dimensional

backward FFTs, the elements of the matrices Hx and Hy are block distributed by
columns and not by rows. This is the effect of the parallel design of the two-
dimensional FFT algorithm. Let us look in more detail at the parallel algorithm of
computing the backward two-dimensional FFT. The schematic of this operation has
been shown in Figure 19. The computation involves three steps:

1. As the matrices (from which only one was shown for simplicity) of the Fourier
coefficients are distributed by rows, each processor computes a backward one
dimensional FFT in the x-direction for a locally stored range of rows.

2. In order to perform the backward one-dimensional FFT in the y-direction the
processors need to have access to a full range of coefficients from specified
columns. Consequently, a parallel transposition of the distributed matrices
obtained after completing the backward FFTs in the x-direction has to be
performed. This operation involves mainly the inter-processor communication,
as each processor has to send (P - 1) blocks of the locally stored part of the
matrix and has to receive also (P - 1) different blocks from other processors.
In the MPI implementation of the solver this operation may be performed by
using a high-level collective communication routine M P I_ A ll to a l l (.) (or

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 669

M P I _ A l l t o a l l v (.) for non-equal sizes of the transmitted matrix blocks)
which sends from all the processors to all the processors the specified blocks
of data. Clearly, this operation may also be performed by using simple send and
receive operations by scheduling these operations appropriately. Still, if the
high-level message-passing routine is applied, the programming complexity is
passed to the library implementation. Another advantage of such approach
is that we may achieve better performance if a native implementation of the MPI
library which optimizes collective communication routines for a specific
interconnection network topology is applied in a given testing platform. In the
actual implementation this approach has been successfully used, producing

Processor 1
Processor 2
Processor 3

(H hij)

m m backward FFT 0,0 ; ; j
-----------— -----=► ‘ t f ;

x-direction ' / . ; 256,lOj

Transposition

V

Communication:
MPI_AllToAllv(.)

backward
FIT

<--------
y-dircction

o, o r 1 m
i i j
i i

, ,______ 256,101
Processor 1 | | Processor 3

processor 2 j

Figure 19. Idea o f the parallel backward two-dimensional FFT algorithm design.
The scheme o f performing a forward 2D FFT is entirely analogous.

a highly efficient parallel routine as shown in Section 7.

3. After the transposition each processor computes a one-dimensional FFT in the
y-direction for a locally stored range of columns.

This completes the parallel operation of computing the two-dimensional FFT.
One may ask whether the elements of the output matrices should be block distributed
among the processors by rows rather than by columns. The answer is negative. The
main reason is that there is no need to perform an extra transposition operation
(which involves a considerable amount of inter-processor communication) in order to
obtain a parallel block distribution by columns. As may be seen from Figure 18, after

computing the backward 2D FFT and performing the TH operation a forward 2D
FFT is performed. During the forward 2D FFT the parallel block distribution by rows
is restored. The forward FFT involves analogous steps as those shown in Figure 19,
namely: 1) Computing one-dimensional FFTs in the y-direction, 2) Performing
a parallel matrix-transposition using the M P I A l l t o a l l v (.) routine,

670 M, Rewienski

3) Computing one-dimensional FFTs in the x-direction.
By reversing the order of computing one-dimensional FFTs, two unnecessary

(and costly) transposition operations are avoided. The numerical tests performed by
the author comparing the two versions of the algorithm for computing the matrix-
vector product — the one described above and the older serial implementation
which performed additional transpositions (applied e.g. in [18]) show that for
a single-processor execution the first algorithm was by about 30 % faster than the
second serial algorithm. Even the overheads due to initiating the MPI
communication and additional computations needed to establish the parallel data
distribution scheme did not prevent the parallel algorithm from running faster on
one processor than the second algorithm. This fact implies that the execution times
of the solver, given in [18] may be further reduced by up to 30 %.

So far nothing has been told about the operation TH performed in the spatial
domain during the matrix-vector product. This step is entirely dependent on the
form of the operator T. Still, in many applications this operation may be completed
in a linear time with respect to ./V = ./V • N , where N and N denote the FFT lengths
in the x- and y-directions respectively. Before discussing in detail the memory and
computational complexities of the presented version of the parallel matrix-vector
product computation let us present a special case of the algorithm which results
important in certain application fields.

5.4.2 Special case o f the FFT-based matrix-vector product implementation

Let T be a given infinite-dimensional linear operator and its domain is the same
space of 2D vector fields as defined in the previous section. It is assumed that this
operator may be decomposed (analogously as in the IEEM method - compare
Section 2.5.1) as follows:

T = L - F (41)
where the operator L is a self-adjoint adjoint operator. Furthermore it is assumed
that L is a scalar operator and its eigenfunctions are the functions from the
trigonometric bases {hf} and {hj} (which form the orthonormal bases in the
discussed functional space) and the corresponding eigenvalues {A.*} and {A^}
are known.

Let v = [vx, vy ̂ s X be an eigenfunction of the operator T corresponding to the

eigenvalue A:
Tv = L v -F v = Av (42)

The above equation may be written in the following form:

i f , • Lv - n , Fv = m xv

U y ■ Lv - II ̂ • Fv = AII^v

(43)

(44)

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 671

where TLx([qx,q f i) = qx and I I , ([<?,, qy]T) = qy. Denoting IT F = Fx and
11 ̂■ F = Fv and taking into account that L is a scalar operator the above equations
may be rewritten as:

LVj - Fvv = AVj (45)

Lvv - F^v = Xvy

Expanding the field v in the series of the h x and h.y functions:

- W -
1T

(46)

(47)

and inserting the above expansion into equations (45) and (46) gives:

u 0 (48)

(49)

Taking the inner product of both sides of the above equations by h* and h
correspondingly one gets:

Ckl h-kl A hi) - kcu

C'kH\t ~ (^VHi)= ̂ ckl

(50)

(51)

Consequently, if the already discussed finite approximation of the operator T is
applied the elements of the emerging operator matrix are given by the following
formulas:

- (fX j , h xu) (u h (k , i)

A '-(F ^ ,^) (ij)=(k,l)

(tH , h ,)= -(fyH , h i) {ij)*(k,i)

a^-(fva ,a) (ij)=(k,l)

(52)

(53)

(54)

(55)

Consequently the modified steps of the parallel FFT-based matrix-vector

product 7 7 /, where T is a finite representation of the operator T and H denotes

the finite representation of the field H , are given as follows:
1. Given the vector of Fourier coefficients c x and c j compute two 2D backward

FFTs in order to obtain H and H ,x yr 2

2. Compute FXH and FyH

672 M. Rewienski

3. Compute two 2D forward FFTs in order to obtain (f v// , h*) and (f vH, hy")

4. Compute c~ = AxyCy - (f xH , h*) and c£ = Ayklckl - (f vH, hyk,)

Note that an additional step 4 of the above algorithm does not involve any
communication, as all the necessary data is stored locally be each processor.
Therefore this step is “perfectly parallel”.

5.4.3 Numerical and memory complexity o f the method

In this section the numerical and memory complexity of a single p-step update
of the IRAM algorithm involving the FFT-based matrix-vector product will be
investigated. Applying the results from Section 2.4.3 and Section 3.3.1 one may
estimate the overall memory storage needed by the parallel solver as the sum of the
storage needed by the IRAM procedure {{NIP) ■ 0{k) + 0{k2)) and the memory

required in the matrix-vector product computation {p{lK / P + 2N / P + 6-/^)),
where P is the number of processors, k is the number of eigenvalues to be found
(p = 0{k)), K - K y AT, where Kx and A" denote the FFT lengths in the x- and
y-direction respectively and N is the problem size. (A= Ar • A , where A and A
denote the number of expansion functions used to represent the functions in the
respectful spatial dimensions.)

The numerical complexity of a single update involves the time cost of
perfonning the Amoldi factorizations (0{p2N/P)) and the cost of computing
p matrix-vector products which equals pO{KiP log K). The overall cost is given by
the formula:

^ o (p 2N + p K \o g K)= ^ o (k 2N + kK\ogK) (56)

with all the symbols having the same meaning as above.
Another aspect which has to be addressed is the size of messages communicated

in the algorithm which in this case is dominated by the size of the messages
communicated during the matrix-vector product computation. In a single matrix-
vector product the communication occurs during the two transposition operations.
The size of the communicated data equals 0{{KNy + K N) { P - \) I P) elements.
Consequently in a k-step IRAM algorithm the communication size equals:

o(p{KxNy+KyNx){P-\)IPyo(p4KN{P-\)p) (57)

assuming that Ky = 0{K) and Ny = 0{Nf.

5.5 Parallel Iterative Eigenfunction Expansion Method with the FFT
integration

This section presents a parallel algorithm solving operator eigenvalue problems
based on the Iterative Eigenfunction Expansion Method described in Section 2.5.3.
The finite dimensional mapping of the input operator is based on the implicit

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 673

operator representation as discussed in Section 3.3. In this representation
calculation of the scalar products may be implemented using Fast Fourier
Transform, resulting in the reduced numerical cost. Such parallel implementation
has already been presented in the previous section for the case of operators whose
domain is the appropr'ately defined space of two-dimensional vector fields. As all
the considerations concerning computing the scalar products (the matrix-vector
product) and the discussion of the parallel design of the computations and parallel
data distribution are entirely the same as in the previous sections (5.4.1 and 5.4.2)
we shall now limit to presenting the explicit steps of the IEEM method in the basic
version and :.i the modified version, which applies the deflation techniques
(Compare Section 5.4).

5.5.1 Parallel implementation o f the basic algorithm

As discussed in Section 2.5 the basic IEEM is capable of finding a single
eigenvalue from the point spectrum of a given operator T. We will assume that the
domain of the input operator is the Z,, space defined over a two-dimensional
bounded rectangular region Q = ([0, b] x [0, a]) e R2 and the appropriate
decomposition of the operator (as discussed in Section 2.5.1) may be applied. In
this case all the results from the previous sections (especially the Section 5.4.2) may
be applied. In this context, a single Z-th iteration of the IEEM-FFT may be
described by the following steps ([26]):

ALGORITHM 5: IEEM-FFT.

STEP 1: Applying the Fourier coefficients:

v (A - l) y (k - 1) r(A-l) y (k - 1) „.t(*-l) ..v(A-l)
11 ’ c l l >C I2 >C I2 ’ c m«

obtained in the previous iteration, apply the parallel procedure
involving 2D backward and forward FFTs to compute the following
inner products:

(fs

where / / ^ ' l = il l ll'~

and //'(*-') = Y.FPX.« = £ cy(k- \)
kl h V

kl

STEP 2: Compute the new values of Fourier coefficients c f {k) and ckf k):

,(o M * ~ W)
“ A J -A " - '1

A i - i * - "

674 M. Rew iehski

STEP 3: Normalize the Fourier coefficients:

S,
, cu

(k)

IH (*) i

r y(k)
a v - __
gkl ll'lfN

STEP 4: Compute the k-th approximation of the eigenvalue A:

Assuming that a parallel block distribution by rows of the matrices of Fourier
coefficients [c***] and [ckf k)] has been applied, the following inter-processor
communication has to be performed during the iteration. Apart from inter-processor
communication arising in Step 1 of the method additional communication is
performed in Steps 3 and 4. The communicaii an in Step 3 is necessary to compute

the global norm of the field H^'1. In the MPI implementation this operation
involves a single call to the M P I_ A llred u ce (.) routine. After this call all the
processors know the value of the squared global norm. The size of messages sent in
this step is very small and equals about 2P elements. An entirely analogous
situation occurs in Step 4 where also a global sum has to be computed and an MPI
global reduction procedure is used to this end. Summing up, the intensive
communication appears solely in Step 1 of the presented algorithm.

Applying the results obtained in the Section 5.4.3, one may easily assess the
complexity of the parallel version of the IEEM-FFT method. The memory

complexity equals: oif-K / P + 2N / P + 6 J~K), where P is the number of processors
used, K = Kx - Ky is a product of the FFT transform lengths in respectful directions
and N = Nx - N is the problem size. The computational complexity of a single
iteration consists of computing the inner-products which involves 0(K/P log K)
operations and the complexity of the steps 2-4 which is linear (0(N/P)). The overall
computational complexity may be estimated at the level 0(K/P log K). The size of
messages is roughly the same as in the previous method and equals:

O
P -1 ■Ik n

\

5.5.2 Implementation o f the deflation procedures

This section presents a modification of the IEEM algorithm described in the
previous section. In this algorithm the deflation procedures, introduced in Section

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 675

2.5.4, are incorporated in the iteration loop allowing one to find a few eigenvalues
from a given operator’s spectrum. It is assumed that (s - 1) eigenvalues (together
with corresponding right and left eigenvectors) have already been found in the
previous stages of the algorithm. This assumption requires an additional comment.
Generally speaking finding left eigenfunctions (eigenvectors) of a given operator
may become a problem which is equally complex as the problem of finding right
eigenvalues, as it may require solving the adjoint eigenproblem. In this case the
complexity of the presented method may even double. Still, in some applications,
including some problems arising in electromagnetics, computation of left
eigenvalues may be performed in a different way, as described in Section 2.2. If this
is the case, then deriving left eigenvalues is a fairly inexpensive operation which
only slightly increases the computational complexity of the method. With the above
assumptions the steps the &-th iteration of the algorithm are summarized in the
following pcints:

ALGORITHM 6: lEEM-FFT-deflation.

STEP 1: Applying the Fourier coefficients:

(-1) 1) „*(*-!) n y { k -1) „ * (* - !) v (* - l)]'11 ’ G l ’ C12 ' C \2 ’ Cmn

obtained in the previous iteration, apply the parallel procedure
involving 2D backward and forward FFTs to compute the following
inner products:

iFxH k~',h;) (FyH k-" M)

where H {k~x) = {$ix{k~x) ,H y{k~x)\ M x'y{k~x) = ijC$'y{kAfo*'» .

STEP 2: For r = 1, ..., (s - 1) compute the following scalar values:

tr = a ,\{E r,H {kA])
wheie a. are the deflation coefficients, A previously computed
eigenvalues of the input operator and Er are the corresponding left
eigenvectors.

STEF 3: Compute the new values of Fourier coefficients c*(k) and c j (k):

cu -■

Ctrl —

STEP 4: Normalize the Fourier coefficients:

r *(k)
x ij

Stj = ITHTTiWII

676 M. Rewiehsk

Su
ri (*)||

STEP 5: Once again, for r = 1, (5 - 1) compute the following scalar
values:

t.

where ar are the deflation coeffic ents, Xr are previously computed
eigenvalues of the input operator and Er are the corresponding left
eigenvectors.

STEP 6: Compute the k-th approximation of the eigenvalue A:

r= \

5-1

M *-1, v h jL ''<
r = l

After the convergence of the above iterative process is obtained, the 5-th left
eigenvector has to be computed. This may be done by either solving the adjoint
problem or, if possible, deriving this vector from the ~ght vector (as shown in
Section 2.2). After the left eigenvector is found it has to be normalized as to obtain
the following relation:

Figure 20. Cross-sections o f the waveguiding structures used during numerical tests.
In the Figure all dimensions are given in millimeters.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 677

& > £) = !
In order to enhance the stability of the iterative process involving the deflation

procedure the orthonormalization procedure (MGS algorithm) is introduced to the
iteration after Step 3 (and is executed every few iterations). In this procedure is the

vector field is re-orthonorma'ized with respect to (5 - 1) left eigenvectors

Ey-->Es-\

6. Application and validation of the algorithms
This section presents application of the algorithms presented above to solving

operator eigenproblems arising in electromagnetics or more specifically in the theory
of electromagnetic waveguides. The eigensolvers are used to find propagation
constants in selected dielectric waveguides, shown in Figure 20. The tested structures
include a slab waveguide (A) and image guides (B,C) with discontinuous permittivity
profiles as well as an elliptical guide (D) with a continuous permittivity profile s (x, y).

The numerical tests presented wthin this study include validation of four
algorithms of solving operator eigenproblems: 1) IRAM-FD algorithm, 2) IRAM-FFT
algorithm. 3) IEEM-FFT-deflation algorithm and 4) IEEM-FFT-NI algorithm. The
last algorithm is a modification of the IEEM-FFT algorithm which extends
applicability of this method to modelling waveguides with discontinuous pennittivity
profiles and will be presented in the following section.

The results obtained using the mentioned algorithms are then compared to the
results produced by 1) the Transverse Resonance Method (TRM) which is regarded
one of the most accurate algorithms for finding propagation constants, suitable while
dealing with certain relatively simple waveguiding structures; 2) the Galerkin Method
(GM) in which the operator is represented by the appropriate inner products, as
described i.i Section 3.3. Although the idea behind the representation of the operator is
the same for the Galerkin Method and for the IRAM-FFT ar.d IEEM-FFT algorithms,
the two extremeh important differences occur: 1) In GM the operator matrix is stored
explicitly as compared to the implicit storage applied in the two latter algorithms and
2) For the Galerkin Method the analytical integration s used to compute matrix
elements (Fourier integrals) as opposed to the FFT integration applied in the two other
algori hms. In the case of the eigensolver implementing the Galerkin Method used in
comparative tests the eigenproblem for the generated operator matrix has been solved
using the QR algorithm.

Before presenting the results of numerical tests let us address a few issues
concerning operators which arise in numerical modelling of electromagnetic
wavegT ides.

6.1 Modelling electromagnetic waveguides using operator formulation
The forms of differential operators, derived from Maxwell’s equations, which

model electromagnet!1, fields m dielectric waveguides have already been discussed in
Section 2.2. The first of the menticned operators was a vector d'Yferential operator:

678 M. Rewiensk'

t (-)=v ,20 + * oM*,>OQ-
s(x >y)

[v,£(x,y)x(v,x(.))] (58)

f 5 5 U
where V, (•) = £0 is the wavenumber in the free space and £(x,y) is

the permittivity profile of a waveguide in the x - y plane. The simplified, scalar
version of the above operator was given by the formula:

T(-)=V?(.)+*oM * ,t X-) (59)
The domain of both operators i 5 defined as the space of 2D vector fields

H = {h x,H y\ where Hx and fP are square integrable functions defined over
a bounded rectangular region containing the cross-section of the examined
waveguiding structure. In the presented formulation, the eigenfunctions of the

operator t (t) correspond to the transverse magnetic field and its eigenvalues
correspond to squared propagation constants p 2.

Let us now consider problems which arise if some kind of numerical treatment
is to be applied to solving an eigenproblem of a differential operator T given by the
formula (58). The initial issue which has to be addressed is finding the finite
dimensional mapping of the operator T. One of the immediate choices is the Finite
Difference (in this case the Finite Difference Frequency Domain (FDFD)) mapp, lg
technique. This case has already been discussed n Section 3.2 and it has been
found that the resulting operator matrix is a sparse, banded matrix with a highly
regular non-zero element distribution. (In the discussion we have applied data
refening to the discretization of the operator modelling a dielectric waveguide with
a discoiiD nuous, rectangular permittivity profile (cf. structures A-C in Figure 20).)
Consequently in this case the parallel solver implementing the IRAM-FD algorithm
described in Section 5.3 may be applied to find eigenvalues of the input operator.
The following section presents eigenvalues computed using this solver for selected
waveguiding structures.

The other finite-dimensional representation — the Method of Moments
representation with implicit operator storage, uiscussed within this study (Section
3.3) may also be applied. Still, in this case it is necessary to find out whether this
representation is suitable for all the operators in the form given by Equation (58).
As described in the previous sections, in the considered finite mapping technique
the operator is represented by certain inner products - the Fourier coefficients, such
as (Th.j, h j) . These coefficients are in fact 2D definite integrals whose values are
computed numerically by using the Discrete Fourier Transform. Using the DFT we
calculate approximate values of these integrals using a regular g .;d of samples of
the integrated 2D function. The numerical error in the integration depends on the
class of the integrated function. If the form of the operator T given by formula (58)

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 679

is examined, one may note the term V ,f(x,y). If the permittivity profile is a O class
function then the operation T on an arbitrary function from the C2 class results in a
continuous function. In this case one may expect that the DFT-based representation
of the operator will provide an adequate finite approximation of the operator. In fact,
as shown in the section presenting results validating the discussed numerical
methods, in the case of continuous permittivity profiles the solvers applying the DFT-
based approach produce correct results.situation may change drastically if the
permittivity profile has a discontinuity. This situation may case is considered in the
following subsection.

6.1.1 Discontinuous permittivity profiles and the DFT representation.

In the case of a waveguide shown in Figure 21 the permittivity profile s (x ,y) is
a discontinuous function which is given by the following formula:

e(x,y)= (e - \)h{x2 - x)h(x - x,)h(y2 - y)h(y - y ,)+1 (60)

where h{x) denotes the Heaviside function. Only the derivatives in a generalized
sense exist for e(x, y):

— e(x,y) = (s ~ l> (x2 - x)h(x - x,)h(y2 - y)h{y - y, X<5(x - x ,) - 8 (x2 - x)) (61)

where 8 (x) denotes the Dirac distribution.

Figure 21. Schematic o f a dielectric waveguide with a rectangular, discontinuous
permittivity profde e (x, y).

Obviously applying “sampling” to a distribution is impossible. Consequently
calculating the Fourier integrals by using the Discrete Fourier Transform does not
have any correct mathematical meaning in this case, which results in severe
numerical errors which are indeed observed in many applications (including the
currently discussed one) if this kind of approach is applied.

The solution which may be proposed is a modification of the solvers which use
the discussed implicit representation of operators (e.g. IRAM-FFT or IEEM-FFT
algorithm). The modification refers to the method of calculating the matr' :-vector
product which implicitly contains the form of the operator. The proposed method is

6 X 0 M. Rewienski _____________________

a hybrid algorithm which uses both DFT (FFT) and numerical integration to
calculate the matrix-vector product. The method starts with decomposing the initial
operator T given by the equation (58):

T = L - F (62)

where:

l O = v 7Q +<:o£(^ t X-) (63)

(64)

Denoting as Fx and F the projections of the vector operator F into x- and

y- directions, the inner products (f xHt ,h*) and for the structure shown

in Figure 21 are given by the following ID integrals.

where the term 2(£-l)
£ + 1 is obtained while integrating the permittivity profile,

under the assumption that the Heaviside function is given by the formula:

0 x < 0
h{x)=- 0.5 x = 0

1 x > 0
(65)

The above linear integrals may be computed using any standard method of
numerical integration. If we denote by Lx and Ly the projections of the operator L
(cf. equation (63)) then the steps of the hybrid algorithm calculating the inner

products and (t M t,hyk̂) may be given as follows:

1. Gi\ en the Fourier coefficients {cf} and {c j} compute the values of the vector

field H t - 1 /* ,H y) in the spatial dom; n by applying backward 2D FFTs.

2. Applj nig numerical integration (NI) compute the following inner products:

g*=[FxH ',h ;) yM ^)

3. Derive the Fourier coeffit ients (Lx/ / , h •r) i QL Hy, h j) using the 2D FFT

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 681

Table 1. Comparison o f the normalized propagation constants f /k0 calculated fo r a slab guide
(structure A in Figure 20) with a discontinuous permittivity profile. In the tests the frequency

f equalled 15 GHz. the number o f expansion functions used equalled 10 in every spatial direction, the
FFT length equalled 256 in both directions, NEV = 4, NCV = 20 (IRAM-FFT).

TRM [18] 1EEM-FFT GM IRAM-FFT

1.2353 1.2352 1.2344 1.2339
— 1.0756 1.0813 1.0818
— 1.0622 1.0648 1.0641

4.1570-01 4.1563-01 4.1146-01 4.1412-01

algorithm.

4. Compute the final Fourier coefficients:

(T\ H „ h f) = (L xH x,hf}+gfj

(TyH „ h ^ yHy,h>’,)+gu
where Tx and Ty denote the projections of the initial operator T onto x- and
^-dimensions.

Apart from the obvious advantage of being able to deal with discontinuous
permittivity profiles, the above algorithm also has a very substantial drawback of
increasing the computational complexity of the matrix-vector product algorithm by

o {\[k n) (in the worst case this means the increment of the complexity to 0{K?a),
as compared to 0(K log K)), where K is the product of the DFT lengths in the
x-and y-dimensions and N is the problem size (the product of the number of
expansion terms used to approximate functions in the x- and y-dimensions).

Application of the third considered algorithm — the Iterative Eigenfunction
Expansion Method (IEEM) to solving the eigenproblem of the differential operator
T given by equation (58) arises if the following decomposition is applied:

T = L - F (66)
where:

L O =V ;(.)+*02O (67)

f O = -^ o2(^ (^ e)+ 1X O - ^ - ^ [v ,£(^>;)x (v , x0)] (68)

One should note that the above decomposition is different from the one applied
previously (cf. equation (62)). By selecting this kind of decomposition we assure

that the operator L is self-adjoint in the considered functional space and its

682 M. Rewiehsk

Relative error in the calcu lation of the propagation constants u sing FFT.
2 .5 r------------------------------------- -- T---

Figure 22. Relative difference in the values o f normalized propagation constants f /k0computed
fo r a slab guide (structure A in Figure 20) using the IRAM-FFT solver and the Galerkin Method

(GM) as a function the length o f the FFT applied in the IRAM-FFT algorithm. During the tests
the frequency f equalled 15 GHz. the number o f expansion functions used equalled 10 (in every
spatial direction), NEV= 5, NCV= 20 (IRAM-FFT). The errors were computed for the first 5

eigenvalues found by the methods.

eigenfunctions form a trigonometric orthonormal basis in this space. Although it

has not been proven that the operator F is relatively compact with respect to

operator L which is a sufficient condition to ensure the convergence of the 1EEM
method (compare Section 2.5), the numerical tests show that the iterative process
converges to the eigenvalues of the input operator T.

6.2 Validation of the algorithms
Having presented main features of operators used to model magnetic fields in

selected waveguiding structures and specifics of application of the discussed
algorithms to solving eigenproblems of these operators we may now turn to the
presentation of the results of numerical tests.

We start with the presentation of the numerical results with a comparison of the
values of normalized propagation constants p /kQ calculated for a simple slab
waveguide (cf. structure A in Figure 20) using four different algorithms. Although
the number of expansion functions used in discrete representations of functions and
operators is very small and equals 10 in every spatial direction (x andy) (for IEEM-
FFT, IRAM-FFT and GM) a very good convergence of results is obtained, (cf.
Table 1) It may easily be found that the relative differences between the
corresponding eigenvalues do not exceed 1%. Moreover, although the vector
operator T (cf. formula (58)) has been used in these tests, application of a simpler,

scalar operator T (cf. formula (59)) gices entirely analogous results. This effect is
due to a very simple structure of the modelled waveguide.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 683

Table 2. Comparison o f the normalized propagation constants f /k0 computed using the modified
IRAM-FFT algorithm (IRAM-FFT-NI) and the Galerkin Method. The structure used in the tests was
an image guide (structure C in Figure 20). Other test parameters: f = 15 GHz. NEV = 8, NCV = 40.
The relative error was computed using the formula: E = /00|/3 -/3 |/I/JCM|.

GM 20*20 IRAM-FFT-NI 20*20
FFT length 2048

Relative
error [%]

2.3110 2.3132 0.10
1.5947 1.5951 0.03
8.5624-01 8.5142-01 0.56
5.1314-01+2.7998-0 li 5.1403-01+2.7986-01 i 0.16

5.1314-01—2.7998—Oli 5.1403-01-2.7986-01 i 0.16
6.9140—Oli 7.0192-0 li 1.52
1.1278i 1.1276i 0.02
1.2571 i 1.2568i 0.03

A different series of tests performed for the same simple waveguiding structure
compared the values of normalized propagation constants computed with the
Galerkin Method and the IRAM-FFT algorithm for different lengths of the Fourier
Transforms, applied in the IRAM-FFT method and ranging from 128 to 2048 in
every direction. The results of these tests are shown in Figure 22. As one could
expect the relative differences between the computed eigenvalues become smaller
with the increasing FFT length. T f '» means that the approximations of inner
products computed using the FFT algorithm approach the values of the inner
products computed analytically in the Galerkin Method with application of a more
refined dicretization grid (determined by the FFT length).

If a more complex waveguiding structure is considered, e.g. an image guide
with a discontinuous permittivity profile (structure C in Figure 20) then substantial
problems appear with algor'dims which use the DFT-based discretization scheme,
i.e. the IRAM-FFT algorithm and the IEEM-FFT algorithm. The eigenvalues found
e.g. by the IRAM -FFT algorithm for the vector operator T (compare equation (58))
differ significantly (by 10-20%) frcm the corresponding eigenvalues found using
the Galerkin Method. This fact is due to the effects described in detail in Section
6.1.1. The situation improves considerably if a modification of the IRAM-FFT
algorithm (denoted as IRAM-FFT-NI algorithm), described in Section 6.1.1 is
applied. The results of the comparison between the GM and IRAM-FFT-NI
algorithm are presented in Table 2 and Figure 23 and show that the computed
eigenvalues stay very close to each other (especially for lower-order modes). The
results confirm the usefulness of the investigated IRAM-FFT-NI algorithm in
modelling structures with discontinuous rectangular permittivity profiles, such as
the tested image gu ide (cf. structure C in Figure 20).

Although obviously the IRAM-FFT-NI algorithm, instead of the IRAM-FFT

684 M. Rewiehski

Relative error in the calcu lation of the propagation constants using FFT.

Figure 23. Comparison o f selected real normalized propagation constants p /k0 computed using
the modified 1RAM-FFT algorithm (IR.4M-FFT NI) and the Galerkin Method fo r different FFT
lengths applied. The structure used in the tests was an image guide (structure C in Figure 20)
Other test parameters: f = 15 GHz, NEV = 8, NCV = 40. The relative error was computed using

the formula: E = 100(P IRAU~p cJ / (p GJ .

method, should be used to model waveguides with discontinuous permittivity
profiles, the scope of applicability of the basic algorithm does not limit to
investigating only the simplest structures. The IRAM-FFT algorithm may be
effectively used to model waveguiding structures with continuous permittivity
profiles. The numerical tests involving computation of propagation constants for an
elliptical waveguide with continuous permittivity profiles (structure D in Figure 20)
were performed applying the IRAM-FFT algorithms. The tested structure was an
elliptical wavegu' le with the semiaxes ratio 2/1 and the permittivity profile given
by the functmn:

(x ,y)= s0 \ - i l x H a f + { y l a f Y 2^ (69)

An open structure was modelled by taking the screening walls sufficiently far
away from the guide (at the distance of 20a from the centre of the waveguide). The
results presented in Table 3 show a comparison of the propagation constants (for
different profile exponents alpha) computed using ITEM (not IEEM-FFT!)
algorithm [18] and obtained by the author using the IRAM-FFT method. The Table
shows non- ''mens'onal normalized propagation constants Z computed from the
following formula:

s -1
(70)

In the tests the normalized frequency V, given by formula: V = kQ ■ 2a ■ -Je -1

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory’ Systems... 685

Table 3. A comparison o f the normalized propagation constants 2 computed in the IEEM method
and the IRAM-FFT algorithms for the elliptical waveguide with a continuous permittivity profile
(structure D in Figure 20), fo r different permittivity profile exponents alpha. In the tests: V = 3,
NEV = 1, NCV = 20, FFT length - 256,number o f expansion function used to represent
functions = 75 (in every spatial direction).

a IEEM [18] IRAM-FFT Difference [%]

2 0.4894 0.4907 0.27
4 0.6254 0.6258 0.06
6 0.6740 0.6742 0.03
8 0.6976 0.6978 0.03

10 0.7112 0.7114 0.03

Table 4. Comparison o f the normalized propagation constants p /k a computed using the IRAM-FD
algorithm and the Galerkin Method. The structure used in the tests was an image guide (structure
C in Figure 20). Other test parameters: f = 15 GHz, NEV = 8, NCV = 40 (IRAM-FFT). The relative
error was computed using the formula: E = 100\p CII\A:P (.J.

IRAM-FD (200x100) GM 20x20 Relative error [%>]

2.3058 2.3110 0.23
1.5840 1.5947 0.67
8.0878-01 8.5624-01 5.54
4.9398-01+3.2770-0 li 5.1314-01+2.7998-01 i 1.41
4.9398-01-3.2770-01 i 5.1314-01-2.7998-01 i 1.41
7.3406-01 i 6.9140-0 li 6.17
1.1297i 1.1278i 0.17
1.2639 1.2571 i 0.54

Table 5. Comparison o f the values o f the propagation constants computed using the IRAM-FFT
algorithm and the IEEM-FFT algorithm using the deflation techniques with additional re-orthonor
malization performed eveiy 20 iterations. The structure modelled was an image guide (structure B in
Figure 20). The 4-th eigenvalue has not been found in the case o f the IEEM-FFT algorithm due to the
lack o f convergence o f the iterative process. Other test parameters: FFT length = 256, number o f
expansion functions = 7 in eveiy direction, NEV= 4, NCV= 20, f = 15 GHz.

IRAM-FFT lEEM-FFT-deflation Difference [%]

2.5408 2.5408 0.00
1.7205 1.7207 0.01
1.6973 1.6967 0.04
4.3770e-01 — —

686 M. Rewiehski

10 -

5 io si

S

1 10"

of r''

1 st eigenvalue
- 2nd eigenvalue
- 3rd eigenvalue

\ 10

k 10'%

20 40 60
iteration no

80 100 120

Figure 24. Convergence profiles fo r the IEEM-FFT method applying deflation procedures with
additional re-orthonormalization performed every 20 iterations. The relative difference was

computed for the two most recently found approximations o f eigenvalues. The structure modelled
was an image guide (structure B in Figure 20) parameters: FFT length = 256, number o f
expansion functions = 7 in every direction, f = 15 GHz, convergence criterion = 1.0e-06.

equalled 3. The Table shows almost a perfect agreement between the obtained
results, confirming that the IRAM-FFT algorithm may be successfully applied to
deal with the discussed class of structures.

The next series of tests aimed at comparing the IRAM-FD algorithm and the
Galerkin Method. Table 6.2 shows the normalized propagation constants p / k Q
computed using the two considered algorithms for an image guide with
a discontinuous permittivity profile (structure C in Figure 20). One may note that
the differences in computed eigenvalues are significantly larger than in the case of
the comparison between GM and IRAM-FFT-NI (cf. Table 2), although especially
for modes far from cut-off these differences stay at an acceptable level. This may
easily be explained if one takes into account that entirely different discretization
strategies are applied in the compared methods. (In the case of the comparison
between IRAM-FFT-NI and GM the finite-dimensional mappings in both methods
were based on the same concept of representing operators by appropriate inner
products.) In fact we do not know which propagation constants are computed with
greater accuracy, as we do not know whether e.g. the 200 x 100 FU discretization
grid provides a more accurate finite representation of the input operator than the
20 x 20 matrix of Fourier coefficients also representing the same operator. Still,
a simple conclusion which may be drawn is that the IRAM-FD method provides
one of acceptable approaches towards modelling of the considered waveguiding
structures.

The last group of tests, presented in Table 5, shows some preliminary results
obtained using the IEEM-FFT algorithm with deflation and re-orthonormalization

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 687

procedures applied. In the tests the propagation constants for an image guide with
a discontinuous permittivity profile (structure B in Figure 20) were computed as

eigenvalues of the scalar operator T (cf. equation (59)). The comparison shows
almost perfect accordance with the results obtained using the IRAM-FFT algorithm.
The problem which has been found to occur with the IRAM-FFT-deflation
algorithm is the lack of convergence of the iterative process while trying to find the
fourth eigenvalue. Although many different choices of parameters concerning
deflation and re-orthogonalization procedures were made the situation did not
improve. Still, the process of re-orthonormalization was found to play a particularly
important role in stabilizing the iterative process in the algorithm, as excluding this
phase from the algorithm resulted in the lack of convergence to any of the higher-
order propagation constants. Figure 24 shows convergence profile for the discussed
test using th IRAM-FFT-deflation method with additional re-orthogonalization. One
may note that the fastest convergence occurs if the first eigenvalue is being sought.
The convergence to higher-order eigenvalues usually involves more iterations,
although this depends largely on the stai mg point of the iterative process.

7. Numerical results — performance of the parallel solvers
The previous sec' on concentrated on assessing the scope of applications of the

discussed numerical eigensolvers within the theory of electromagnetic waveguides.
This part of the study focuses on performance and scalability of the solvers in
distributed memory parallel systems, including both scalable supercomputer
systems as well as networks of workstations. The tests presented in the following
sections a’.n at determining whether the considered parallel eigensolvers may be
efficiently applied in the mentioned systems and which factors affect their
performance in these environments.

7.1 Characteristics o f the hardware test platforms
We start with a brief description of the characteristic features of distributed

memory systems which served as testing platforms for the proposed parallel
solvers, presented in Section 5. Three environments are described: IBM Scalable
Power2 (SP2) Parallel System, Cray T3E and a network of workstations with
a special attention dedicated to the potential impact of the specifics of system
architectures on the performance of parallel programs based on the message-passing
programming paradigm.

7.1.1 IBM Scalable Power2 Parallel System

The IBM SP2 Parallel System installed in the Academic Computer Centre
TASK in Gdansk, which has been used as one of the platforms for numerical tests,
is a frilly scalable distributed memory system which consists of 15 processing nodes
and a high performance interconnection network. (A maximum of 8 nodes may
have been used to run a parallel task in this system.) Starting from the processing
nodes in the considered system there are 14 “thin” nodes and 1 “wide” node, each

688 M. Rewiehski

node equipped with a POWER2 processor having a 66.7 MHz clock and a peak
performance of 267 Mflops, 64 MB (128 MB in case of a wide node) of the local
RAM memory and local disk storage. The total peak performance of the described
system equals about 4 Gflops.

All nodes have 128 Kbytes of level 1 data cache and 32 Kbytes of instruction
cache. The POWER2 superscalar processor has a four-way set-associative dual-
ported cache with load and store pipes controlled by two fixed-point processors. It
is possible to have cache with 32-byte data paths, so in total four double precision
words can be loaded and four stored in one clock cycle. 15-20 clock cycles are
required to recover from a cache miss. POWER2 has also two floating point
processors each having a pipeline able to do a multiply and add in two cycles.
Summing up, effectively two multiplies and two adds can be performed by the CPU
each cycle provided that loads and stores can be appropriately scheduled by the
compiler [54],

The other important element of the SP2 system, greatly affecting the
performance of parallel applications, is the interconnection network. This
interconnect, named High Performance Switch (HPS) is a low latency switching
network capable of sustaining high transmission bandwidth. HPS may connect 16
nodes and can handle up to 128 communication threads between every pair of
nodes. The bandwidth equals about 40 Mbytes per second in the bidirectional
transmission and the latency equals less than 40 microseconds.

Table 6. Network performance for MPI and MP1L based message communication in the IBM SP2
parallel system [54],

Library Network latency [fas] Transfer rate [MB/s]

MPI (ip) 656 6.26
MPI (us) 71 34.77
MPL (ip) 270 8.38
MPL (us) 44 35.20

The above hardware designs are supported by software solutions which enhance
the performance of distributed parallel programs. The Communication System
Support (CSS) should be mentioned in the first place. The CSS is a set of software
layers that support communications through the High Performance Switch
and includes interfaces with protocols that can be used for inter-processor
communication using HPS. Two protocols are supported by CSS: 1) The Internet
Protocol (IP). If this protocol is used to communicate through the HPS the IP
messages are wrapped in the HPS protocol, so that applications using IP protocol can
transparently apply HPS to achieve high-speed communication and data transfer.
2) The user space (US) protocol. This protocol is used in the message-passing library
subroutines provided with IBM AIX Parallel Environment to develop high-
performance parallel programs. Communication operations are directly executed

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 689

from the user space without any system call (bypassing the TCP/IP layers) which
enhances the communication performance — compare Table 6.

The already mentioned IBM’s Parallel Environment is a set of programming
tools supporting parallel distributed applications. It includes parallel libraries: MPI,
MPL and PVMe, especially tuned for use with the SP2 system nodes and the High
Performance Switch interconnection network to achieve better parallel
performance. The Parallel Environment also provides various tools which support
compiling, running, monitoring and debugging parallel programs, e.g. compiler
scripts (such as m p x lf — message-passing Fortran compiler) which automatically
link in the message-passing libraries and provide environment variables allowing
one to control the run-time environment.

Table 7. All-to-all communication performance on a 32-wide node IBM SP2. m is the message size in
bytes [55],

m [bytes] MPI: Time [s] HPF: Time [s]

128 0.001 0.670
IK 0.016 1.236

128K 0.139 58.360
1M 0.784 355.714

Summing up, the IBM SP2 parallel system is a very typical distributed memory
machine which provides both hardware and software support for distributed parallel
computing. The programming model which emerges as a dominant one in this
system is the message-passing programming due to optimized message-passing
libraries (MPI, MPL) offering truly high-level parallel performance as compared to
alternative solutions. This may be very clearly seen if we quote some performance
data from the paper by Klepacki [55], The results of the tests shown in Table 7 give
the execution time in the IBM SP2 system for the all-to-all global communication
routine implemented using Message Passing Interface and High Performance
Fortran. The performance of MPI implementation is strikingly high as compared to
the HPF version of the program. This indicates that if intensive collective
communication takes place in a given parallel program then using the low-level
message-passing programming model will result in a tremendous improvement in
performance.

7.1.2 Cray T3E parallel system

The Cray T3E is a scalable virtual shared memory (VSM) parallel system. The
term “virtual shared memory” means that although the memory is distributed across
the processing nodes, the system provides a global, shared address space of up to
2048 processors over a three-dimensional torus topology interconnection network,
node of the T3E system contains an Alpha 21164 processor running at 300 MHz

690 M. Rewiehski

(450 MHz) clock, system control chip, local memory and network router. Toms
links provide a raw bandwidth of 600 MB/s in each direction, with payload
bandwidths ranging from 100 to 480 MB/s after protocol overheads (cf. [43]). The
input / output is based on the GigaRing channel with sustained bandwidths of 267
MB/s for every four processors.

The Alpha 21164 processor is capable of issuing four instructions per clock
cycle (with one floating point add and one floating point multiply) which gives it
apeak performance of 600 Mflops (being more than twice as much as for the
POWER2 processor). It contains the 8Kb level 1 data and instruction caches and 3-
way associative 96 Kb level 2 unified cache. The local memory ranges from 64 Mb

Table 8. Network performance for MPI, PVM and Shmem based message communication in the Cray
T3E parallel system. This data has been published in [43],

Library Network latency [pis] Bandwidth [Mbyte/s]

sma (Shmem) 1 350
PVM 11 150
MPI 14 260

to 2 Gb and the transfer rate from memory to processor equals about 1 Gb/s. There
is no board level cache in the T3E nodes. Instead stream buffers are applied
enhancing the local memory bandwidth.

The nominal latency of the network in the Cray T3E system equals 1 fts. Still, if
using various message-passing libraries the effective latency is usually much larger
due to overheads e.g. associated with buffering. Table 8 shows the effective
network latency and the asymptotic bandwidth for different message-passing
libraries. The most impressive result is the minimal latency offered by sma (shared
memory access) Cray library which handles a simple one-sided communication. In
the case of both PVM and MPI libraries the latencies are significantly higher. Still,
in all the cases the bandwidth is similar. At this point a comparison can be made
between the discussed Cray T3E and IBM SP2 systems. In the case of MPI
communication the latency is about 5 times higher for the IBM SP2 and the
bandwidth is about 7.5 times larger for the Cray T3E. In both aspects Cray T3E
provides a significantly more efficient interconnection network.

Summing up, the Cray T3E system offers a highly efficient environment for
parallel distributed programming offering an extremely low latency and high
bandwidth network as well as high performance processing units. Although the
globally addressable memory space, accessible through the calls to Shmem library
routines is not used directly in the message-passing programming model, the native
implementations of message-passing libraries available in the Cray T3E systems
make use of this extremely efficient communication mechanism. It is clearly seen
that the T3E system shows a significant superiority in terms of both the network
performance and the computati, inal capabilities of the processing nodes (600

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 691

MFlops as compared to 267 MFlops per processing node) as compared to the IBM
SP2 system.

The actual Cray T3E system installation in the Interdisciplinary Centre for
Mathematical and Computational Modelling at the University of Warsaw which has
served as a platform for performance tests presented in the following sections
consists of 32 processing nodes (with a maximum of 24 processing elements
available for a single parallel task), with each computational node equipped with
128 MB of local RAM memory.

Table 9. Approximate message startup times (t j and transmission rates (per four byte word) (tw) in
inter-processor communication for selected parallel systems. Data published in [29).

Parallel system tjfts] tw[ps]

IBM SP2 40 0.11
Intel Paragon 121 0.07
Workstations on Ethernet 1500 5.0
Workstations on FDDI 1150 1.1

7.1.3 Networks o f workstations

The third distributed memory system which has served as a hardware platform
for numerical tests is a cluster of 6 workstations connected through the
Asynchronous Transfer Mode (ATM) based network. The workstations used are the
Silicon Graphics Indy systems equipped with the R4400 RISC processors. The
workstations are connected via a standard ATM switch.

Although obviously the performance of the workstations is lower in comparison
to the performance of processing nodes in the IBM SP2 or Cray T3E, the main
differences between NOWs and distributed memory supercomputer systems show
up in specifics of the interconnection network. Generally speaking, NOWs may be
characterized as systems in which there is a very significant imbalance between the
processing capabilities and network communication efficiency. In other words, both
high latency and relatively narrow bandwidth cause that intensive inter-processor
communication which may occur in distributed parallel programs cannot be handled
efficiently. Table 9 shows the comparison of network parameters between parallel
supercomputers (IBM SP2, Intel Paragon) and networks of workstations. One may
note that the network latency for NOWs may be almost 40 times higher than for
supercomputer interconnects. This situation does not improve significantly if
a more advanced network technology is used (e.g. FDDI). The transmission rates
also vary significantly and are lower by an order of magnitude for the networks of
workstations. Clearly, the result is the lack of scalability of such network systems,
so that the number of workstations which can be connected in order to obtain high
speedup and efficiency of the parallel programs is rather limited. An interesting
discussion of a distributed memory network system based on computers with Intel

692 M. Rewienski

Pentium Pro processors connected through Fast Ethernet and its assessment for
different parallel application programs may be found in the paper [56],

7.2 Performance of the solvers
Having briefly described some characteristics of distributed memory parallel

systems which have served as hardware platforms for numerical tests let us now
present the results of performance tests starting with the description of the details
concerning methods of time measurement, compilation options, libraries used and
run-time environment.

The main goal of the performance tests has been determining a few basic parameters
characterizing investigated parallel programs, including the speed-up, efficiency and
scalability. Both speed-up and efficiency have been computed as relative speed-up
(SreiamJ an^ efficiency (Erelalive) which are given by the following formulas:

5 r e l a t i v e
I I
TP (71)

J r e l a t i v e

v r e l a t i v e (72)

where T, is the execution time on one processor of the parallel program and Tp is
the execution time on P processors of the same parallel program. The above
quantities are called relative because they are defined with respect to the parallel
algorithm executing on a single processor. The absolute speed-up and efficiency
are obtained if the time T in the equations (71) and (72) is taken as the execution
time on one processor for the best-known algorithm.

Calculating speed-up and efficiency involve measurements of the execution
time of programs running in a parallel environment. The following general rules
and timing procedures have been applied:

-— The measured execution time was the user time and not the wall-clock time.

— The following routines have been used to measure the user time: 1) In the IBM
SP2 and Cray T3E systems the t im e s () routine has been used. This function
gives the number of clock cycles already used by a given process. 2) In the SGI
Indy systems the e t im e subroutine has been used to measure the user time.

— The time Tp from equations (71) and (72) has been calculated as follows: 1) The
mean execution time (user time) T ‘ for all the P processes involved in the
computation has been calculated for every measurement. 2) Tp has been
calculated as a mean value of the TJ. The number of measurements has typically
equalled from 2 to 5. Only two measurements were performed if the values
obtained in both tests differed insignificantly which indicated that the
measurements were exact and reliable.

Methods o f Solving Operator Eigenprohlems in Parallel Distributed Memory Systems... 693

The following compilers and compilation options have been used in the testing
platforms:

— The x l f IBM Fortran compiler version 3 (jointly with the m p x lf script
providing support for message-passing programs) available with AIX 4.1
operating system has been used to compile the codes in the IBM SP2 system.
The following optimization options have been tested: -0 2 -q a rc h = p w r2 ;
- 0 3 ; -0 3 -q a rc h = p w r2 ; -0 3 -q h o t -q a rc h = p w r2 which perform
different levels of optimization.

— The c f 90 Cray Fortran 90 compiler has been used in the T3E system. The
optimization options considered included: - s c a l a r l ; - s c a l a r 2 ;
- s c a l a r 3 ; -0 2 ; -0 3 . It resulted that for the tested parallel programs there
are only minor differences in performance if using - 0 2 , - 0 3 , - s c a l a r 2
o r - s c a l a r 3 option. A significant decrease in performance was noted if
- s c a l a r l or - g , -g 1 options were applied.

— The f 77 SGI Fortran compiler available with IRIX 6.2 operating system has
been used to compile codes for the SGI Indy workstations. Among the tested
optimization options the simple -0 3 optimization resulted the most efficient both
for the codes and supporting libraries.

A number of message-passing and numerical libraries have been used jointly
with the parallel solver codes written in Fortran 77. These include:

— MPI library. Only native, vendor provided implementations of the MPI standard
were used during the tests, including the IBM’s MPI implementation available
with AIX 4.1 operating system and the Cray Research MPI available within the
CrayLibs package for the Unicos/mk operating system.

— PVM library. The library used in the tests was the public domain, portable
implementation PVM v. 3.3 (cf. [41]) available from NETLIB, compiled for the
SGI Indy workstations.

— BLACS libraty. We have used a portable implementation of the PVM-BLACS
v. 1.1 available from the NETLIB repository. The BLACS library has been
compiled for the SGI Indy workstations.

— P_ARPACK library. The parallel Amoldi package is a library implemented by
Maschhoff and Sorensen (cf. [53]) and available from f t p . caam. r i c e . edu.
The P_ARPACK library depends on a few other libraries: MPI (or BLACS),
BLAS and LAPACK (version 2). Although PARPACK is distributed with
necessary BLAS and LAPACK (version 2) routines, the subroutines from native
implementations of BLAS or LAPACK functions were used, whenever possible.
Consequently the codes which used P_ARPACK were also linked to the ESSL
library (IBM SP2) or LibSci (Cray T3E) library.

— ESSL libraty. The Engineering and Scientific Subroutine Library provides
implementations of many computational subroutines including BLAS routines
optimized for the POWER2 processor architecture (- l e s s l p 2) .

694 M. Rewieriski

— LibSci library is a library of computational routines, implementing some of the
LAPACK and BLAS functions optimized for use in the Cray T3E system.

— FFTPACK library. The FFTPACK library is a portable package of Fortran77
subprograms written by Paul Swarztrauber ([57]) for calculating one
dimensional Fast Fourier Transforms. The implementation is based on the
Winograd version of the FFT algorithm. The library routines have been used to
implement the code performing two-dimensional backward and forward Fourier
transforms.

— SPARSKIT library. The parallel solver based on the FD finite-dimensional
applied the amux (.) subroutine from the SPARSKIT library to compute the
matrix-vector product for a sparse operator matrix. In the implementation a
portable public-domain SPARSKIT code has been used ([31]).

Let us briefly present the run-time environment provided by the three discussed
testing platforms:

— IBM SP2 parallel system. In this testing platform the Load Leveler job
scheduling system and the Parallel Operating Environment (POE) has been used
to run the parallel codes. An important feature of POE is that it allows the user to
define which communication subsystem is to be used for inter-processor
communication (Ethernet or High Performance Switch) and which
communication protocol will be applied (Internet Protocol (IP) or User Space
(US)). In the performance tests only the HPS communication subsystem has been
used, as applying Ethernet resulted in totally unreliable performance results.
Another important fact which appeared was the necessity of placing the
executables in the local (/tm p) disks of every node involved in the parallel
computation. This operation prevented the use of NFS-mounted disks which
offered a rather unpredictable response during the run-time as it has been
observed that if the executables were not copied to local disks the measured times
varied by up to a 100 % which made the results clearly unacceptable. Such
behaviour of the SP2 system has also been reported by Allan ([54]). This implies
that the executables should always be copied to local disks of the processing
nodes in order to obtain a stable execution time. A broader description of the
issues concerning the IBM SP2 parallel run-time environment may be found in
the report [58],

— Cray T3E. In the Cray T3E system the MPI parallel programs were run using the
standard mpirun command. Scripts containing this command were submitted to
the Network Queuing System (NQS). Each time before running the parallel
program its code was copied to the / tmp local file system.

— Network o f workstations. This platform served for tests of the PVM
implementation of the IRAM (Amoldi) solver using the FD mapping of the input
operator. The parallel jobs were run from the PVM console after creating a
virtual machine by adding all available hosts.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 695

7.2.1 Internal scalability o f the P_ARPACK routines
The first group of tests aimed at determining the performance and internal

scalability of selected P_ARPACK horary routines. The influence of different
compiler optimization options and libraries ’inked in the parallel codes on the
performance of PARPACK has also been examined. The hardware platform for all
the tests described in this section v/as the IBM SP2 parallel system.

We investigated mainly the pdnaupd () P_ARPACK subroutine which
performs the IRAM iteration for the non-symmetric real problems. The input
operator with eigenvalues to be found was the square diagonal matrix with random
elements between 0 and 1 located on the diagonal. Four of the diagonal elements
were incremented by 1.1 which allowed them to be easily found by the pd naup d ()
routine. The matrix had the size of 160.000 and was block-distributed among the
Table 10. Performance o f pdnaupd () routine for IP and US protocols, N = 160000, NEV = 4,
NCV = 20, the number o f Arnoldi iterations = 4, Compiler directive: rapxlf -02 -qarch=pwr2
xxx. f; (portable BLAS). All times are given in seconds.

Number o f
nodes Time (IF) Speedup (IP) Time (IP) Speedup (US)

1 51.05 1.00 51.17 1.00
2 25.59 1.99 ' 26.78 1.91
4 17.64 2.89 20.10 2.55
8 7.71 6.62 9.83 5.20

Table 11. Performance o f pdnaupd () routine for IP and US protocols, N = 160000, NEV = 4,
NCV = 20, number o f Arnoldi iterations = 4, Compiler directive: mpxlf -03 -qarch=pwr2 xxx.f
'portable BLAS). All times are given in seconds.

Number o f
nodes Time (IP) Speedup (IP) Time (US) Speedup (US)

1 72.96 1.00 1125 1.00
2 38.52 1.89 39.96 1.93
4 25.33 2.88 25.43 3.04
8 12.73 5.73 12.91 5.98

Table 12. Performance o f pdnaupd () routine for IP and US protocols, N= 160000, NEV = 4,
NCV = 20, number o f Arnoldi iterations = 4, Compiler directive: mpxlf -03 -qarch=p»;r2 xxx. f
-o xxx -lesslp2, (ESSL BLAS). All times are given in seconds.

Number o f
nodes Time (IP) Speedup (IP) Time (US) Speedup (US)

1 72.27 1.00 77.03 1.00
2 38.26 1.89 39.72 1.94

4 21.82 3.31 29.23 2.63

8 13.35 5.41 13.09 5.88

696 M. Rewienski

processors. The p d n aup d O routine was called with the following parameters:
NEV = 4 (number of requested eigenvalues), NCV = 20 (number of columns of the

matrix Vt — cf. equation (39)) and WHICH = ’LM’ (eigenvalues with the largest

magnitude were to be found). The characteristics of the problem presented above
were chosen so that it was independent of the changing problem size and the number
of Amoldi update iterations remained constant in every case.

The code of the parallel solver for the operator described above was compiled
with different optimization options. (The P ARPACK library was compiled with the
same sets of options.) The BLAS routines needed by the P_ARPACK routines were
provided in two implementations: 1) The standard, portable implementation; 2) The
ESSL IBM’s implementation. The different compilation and linkage options are
given below:

— m p x lf -02 -qarch=pw r2 x x x . f -o x x x (Table 10)

— m p x lf -0 3 -qarch =p w r2 x x x . f -o x xx (Table 11)

— m p x lf -0 3 -qarch=pw r2 x x x . f -o x x x - l e s s l p 2 (Table 12)

— m p x lf -0 3 -q h o t -qarch=pw r2 x x x . f -o x xx - l e s s l p 2 (Table 13)

Tables 10, 11, 12 and 13 show the results of performance tests for different
compilation flags used while building both the library and the tested executable. In
the Tables all the times are average user times given in seconds. The time measured
in all the cases is the time spent in the Arnoldi iteration of the pdnuapd routine and
should be considered as the total time needed by the IRAM algorithm to converge to
the wanted solutions. During the tests different communication protocols of inter-
processor communication have been used: the column “Time (ip)” shows the timings
while the Internet Protocol has been used, while “Time (us)” gives times measured
while the User Space protocol has been applied. In all the cases the number of
implicit Amoldi updates equalled 4 and did not change wi:h the changing number of
processors used.

The results of the tests show that for the considered size of the problem
N = 160000, the total time spent in the Amoldi iteration is shorter if the library is
compiled with a lower level of optimization, i.e. the -02 flag and not -03 flag.

Table 13. Performance o f pdnaupd () routine for IP and US protocols, N = 160000, NEV = 4,
NCV = 20, number o f Arnoldi iterations = 4, Compiler directive: mpxlf -03 -qhot -qarch=pwr2
xxx.f -o xxx -lesslp2, (ESSL BLAS). All times are given in seconds.

Number o f
nodes Time (IP) Speedup (IP) Time (US) Speedup (US)

1 76.77 1.00 1 76.66 1.00
2 38.18 2.01 39.26 1.95
4 19.62 3.91 21.60 3.55
8 10.78 7.12 10.05 7.63

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 697

While using only the -0 3 flag the performance degrades by about 30%. This kind
of situation has also been observed by Allan ([54]). Comparing the tests performed
using the IP and US communication protocols it may be noted that the execution
times (user times) are slightly higher. This fact may be explained by the US
protocol characteristics where the calls to communication routines are made
directly from the user space omitting the system calls which are used in the case of
the IP communication. Nevertheless, the results given in the Tables show that
applying US protocol results in a better speed-up if the -0 3 optimization flag has
been used during compilation. This result may confirm that the US protocol
provides a more efficient communication between the nodes of the SP2 system.

Table 13 shows results of performance tests if an additional compiler flag
- q h o t is used during the compilation of both P_ARPACK library and the solver
code. This flag forces the compiler to determine whether or not to perform high
level optimization (-03) on specific loops in the program’s code. Consequently
different parts of the code as optimized with different optimization levels. Although
the measured times are similar to those obtained only with - 0 3 flag, the speed-up
obtained in this compilation method is the highest, e.g. for 8 processors the speedup
exceeds 7.00 (cf. Table 13), while in the former cases it does not reach 6.00 (cf.
Tables 10, 11, 12).

The above tests also examined the influence of choosing an implementation of
the BLAS library routines on the performance of the Amoldi solver. Parallel
ARPACK software uses a number of Basic Linear Algebra Subroutines including
a matrix-vector product subroutine Xgemv (.) or a matrix by upper triangular
matrix multiplication Xtrmm (.). In the first test (Table 11) the routines from the
portable BLAS version 2 implementation provided together with P_ARPACK have
been used, while in the second test (Table 12) the implementations of BLAS
subroutines from the IBM's ESSL library have been linked to P_ARPACK routines.
The results show that the performance of the pdnaupd does not depend much on the

Table 14. Scalability o f the pdnaupd () routine. The size o f the problem equals N = P ■ 200000, where
P is the number ofprocessors, NEV = 4, NCV = 20, compiler directive: mpxlf -03 -qhot
-qarch=pwr2 xxx.f -lesslp2.

Number o f
nodes Time (IP) Efficiency Time (US) Efficiency

1 97.29 1.00 95.81 1.00
2 97.47 1.00 93.64 1.02

3 125.80 0.77 96.53 0.99
4 143.92 0.67 99.99 0.96

5 134.11 0.72 95.92 1.00

6 110.43 0.88 96.95 0.99

7 138.25 0.70 97.92 0.98

8 136.95 0.71 100.98 0.95

698 M. Rewiehski

Table 15. Performance o f pdnaupd () routine for IP and US protocols, N = P ■ 200000, where P is the
number ofprocessors, NEV = 1, 8, 16, 32; NCV = 40, compiler directive: mpxlf -03 -qhot
-qarch=pwr2 xxx.f -lesslp2. All times are given in seconds.

NEV Number o f
nodes

Time
(IP)fsl

Efficiency Time
(US)fsJ Efficiency

1 1 40.96 1.00 40.92 1.00
2 41.05 1.00 40.98 LOO
4 41.90 0.98 42.68 0.95
8 47.00 0.87 43.27 0.94

8 1 83.11 1.00 82.90 1.00
2 105.87 0.78 85.93 0.96
4 100.78 0.82 86.68 0.96
8 131.61 0.63 87.26 0.95

16 1 140.69 1.00 143.14 1.00
2 141.33 0.99 146.62 0.98
4 185.00 0.76 * *

8 240.11 0.58 147.02 0.97
32 1 390.62 1.00 389.61 1.00

2 496.79 0.79 395.85 0.98
4 503.99 0.77 399.45 0.97
8 586.86 0.66 401.66 0.97

version of BLAS library used, as minor differences in the execution times are
observed. Still, the authors of P_ARPACK ([53] and [59]) suggest that the native
BLAS implementations should be linked to the codes whenever possible instead of
those provided with the P_ARPACK software. Consequently in all the following
tests only the IBM’s proprietary ESSL library or the LibSci library in the Cray T3E
system containing implementations of BLAS subroutines have been used.

The following series of tests measured the internal scalability of the
pdnaupd () newline P ARPACK library subroutine. The same solver program as
in the previous tests has been used during the measurements. As it has already been
remarked the input matrix in the parallel solver has been chosen so that its
characteristics was independent of the size of the problem. More precisely, during
the scalability tests with the pdnaupd () subroutine, the number of Amoldi update
iterations remained the same for a fixed number of eigenvalues to be computed
(NEV = 4) and the changing size of the problem. The size of the problem was
chosen to be N = 200000 for 1 processor and increased linearly with the number of
processors. Both IP and US communication protocols have been used during the
measurements and the codes were compiled using the following directive was:

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 699

m p x lf - 0 3 -q h o t -q a rc h = p w r2 x x x . f -o x x x - l e s s l p 2 . The
results of the tests are given in Table 14.

The results of scalability tests show that the efficiency of the pd n aup d ()
subroutine remains relatively high for the available number of processors involved
in the parallel computation. It is well seen that application of the US protocol gives
a considerable improvement in scalability and efficiency of the executed program.
For the number of processors from 1 to 8 and the problem size A =200000,
40000, ..., 1600000 the efficiency stays above the level of 95 %, while in case of
the Internet Protocol it falls below 70 %. The reason for such behavioui is that for
large problem sizes the amount of communication increases, so that both the
network latency and the bandwidth (compare Table 6) start to play an important
role during the run-time. It has to be noted that the above results stay in close
accordance with the scalability results reported in [53] for tests performed in the
Maui HPCC SP2 machine. The obtained scalability ;s high but obviously not
perfect. This effect is due to a serial bottleneck caused by the algorithm in which
the upper Hessenberg matrix and the calculations involving this matrix are
replicated by all the processors during the Arnoldi factorization.

Another series of tests performed using the previously described solver
intended to find out the dependence of the total execution time of the pd naup d ()
P ARPACK subroutine on the number of eigenvalues (NEV) to be computed.
In the IRAM algorithm the increment of NEV = k causes an increment in the
memory storage requirements, the number of computations and the size of messages
communicated among the processors. In the parallel implementation of ARPACK
these factors may affect performance and scalability of the library routines. As
mentioned before, the upper Hessenberg matrix is replicated on every processor and

c<u
*=
UJ

0.7

0.6

0.5

0.4

■ NEV = 1, CSS = IP hep-
NEV = 1, CSS = US
NEV = 8, CSS = IP -s~

NEV = 8 , CSS = US
NEV = 16, CSS = IP

NEV = 16, CSS = US
NEV = 32, CSS = IP -o--

NEV = 32, CSS = US

-■<>
Ml

1 3 4 5 6
Number of processors

Figure 25. Efficiency o f the pdnaupd () P_ARPACK subroutine. The size o f the test problem
equals N = P ■ 200000. NEV = 1, 8, 16, 32; NCV = 40. The number o f Arnoldi update
iterations remained constant fo r a fixed number o f eigenvalues (NEV) to be computed.

700 M. Rewiehski

therefore may cause a serial bottleneck as its size increases. An increasing value of
k also results in the increased communication costs during the re-orthogonalization
phase where more global sums have to be computed and communicated using the
global reduction opera;ions.

Table 15 shows the timings obtained for the p d n au p d () subroutine. The size
of the problem equalled N = P ■ 200000, where P is the number of processors. The
number of eigenvalues to be computed NEV = 1, 8, 16, 32 (NCV = 40). The
number of Amoldi update iterations remained constant for a fixed number of
eigenvalues (NEV) to be computed. Once again two communication protocols were
considered.

It may be noted that in the case of using the Internet Protocol, the efficiency
decreases faster for larger values of NEV, e.g. for 8 processors the efficiency
equals: 0.87 (NEV = 1), 0.63 (NEV = 8), 0.58 (NEV = 16). (The graph of the solver
efficiency vs. the number of processors for different values of NEV is shown in
Figure 25.) This effect has not been observed while applying the US protocol.
A conclusion may be drawn that the degradation in the performance in the first case
is mainly due to communication overhead and not a serial bottleneck caused by

Table 16. Time spent on orthogonalization phase in the pdnaupd () routine. The test were performed
using IP and US protocols, N = P ■ 200000 where P is the number ofprocessors; NEV = I, 8, 16, 32;
NCV = 40, compiler directive: mpxlf -03 -qhot -qarch=pwr2 xxx.f -lesslp2. All times are
given in seconds.

NEV Number o f
nodes

Time (IP)
fsj

Percent o f
total time

Time (US)
fs j

Percent of
total time

1 1 19.72 48 19.75 48
2 19.87 48 24.49 59
4 27.78 53 25.49 59
8 23.86 50 27.78 • 64

8 1 23.86 28 37.78 45
2 53.51 ■ 50 39.32 46
4 49.92 49 49.92 57
8 70.61 54 53.34 61

16 1 54.80 38 55.71 39
2 55.11 39 58.12 40
4 81.19 44 * *

8 112.69 47 77.47 53
32 1 95.C3 r 24 95.14 24

2 135.80 27 94.13 24
4 139.65 28 126.29 32
8 173.65 29 136.61 34

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 701

replicating the H matrix. If this! had been the cause, the efficiency would have

degraded for both communication subsystems.
The next Table (Table 16) shows the user times spent in the orthogonalization

phase during the Amoldi factorization for different numbers of eigenvalues to be
computed. The data were obtained for the same parallel solver as in the previous

Peiformanc3 of the parallel Amoldi solver

Number of processors

Figure 26. Total execution time o f the parallel IRAM-FD solver as a function o f the number o f
processors for different methods o f calculating the parallel matrix-vector (OP*x) product.

Figure 27. Speedup in the total execution time o f the parallel IRAM-FD solver as a function o f the
number ofprocessors for different methods o f calculating the parallel matrix-vector product.

702 M. Rewiensk

paragraph. During the orthogonalizaticn phase global sums have to be computed
and the number of these global reduction operations depends on the number of
eigenvalues NEV to be computed. The test results show clearly that the percentage
of time spent on orthogonalization increases ■with the increasing number of
processors used (for a fixed value of NEV). This effect is due to the communication
costs which appear during computation of global sums. Still, a posit ive fact which
may be noted is that the percentage of time spent on orthogonalization decreases
(for a fixed number of PEs) with the increasing value of NEV. Consequently this
scaling effect may be exploited to reduce the influence of the poorly scalable
orthogonalization operation on the overall performance of the solver.

Summing up the results obtained in this section one may conclude that the
pdn au p d P_ARPACK routine shows high performance and scalability in the
considered distributed memory environment. High efficiency is observed for
different values of NEV and NCV, although it may potentially decrease if the
percentage of time spent on the orthogonalization phase is too large as compared to
the total execution time. The tests also show that the parallel performance may
largely depend on the interconnection network parameters (particularly the network
latency).

7.2.2 Parallel Arnoldi solver with FD operator discretization

The previous sec ion aimed at assessing internal parallel performance of
P_ARPACK routines implementing the IRAM iterative process. Consequently
a trivial diagonal input matrix operator has been used in the tests. This section
presents the results of performance tests of the parallel Arnoldi solver for the input
operator which may be encountered in “real life” applications, discretized using the
Finite Difference (FD) technique. The tests involved the parallel program (whose
implementation was described in Section 5.3) applied to solving electromagnetic
eigenproblems, as discussed in the previous Section. Although a specific
application of the parallel algorithm is being tested the general characteristics of the
parallel performance remain valid for the entire class of operators discretized using
the Finite Difference mapping technique. .

We start the discussion of the characteristics of the parallel IRAM-FD solver
with the presentation of performance of the three versions of the algorithm (with
three different methods of calculating the parallel matrix-vector product) described
in Section 5.3.1.

The following tests were performed in the IBM SP2 system for the MPI
implementation of the algorithm. During the tests the User Space (US) protocol was
normally used to handle the inter-processor communication. The command used for
compiling the P_ARPACK library and the solver code was: m p x lf -0 3 - q h o t
-q a rc h = p w r2 x x x . f -o xxx - l e s s l p 2 . The essential input parameters
defining the tests were as follows:

1. The size of the input matrix equalled N = 39700; the matrix was sparse with

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 703

Figure 28. Speedup in the execution time o f the parallel matrix-vector (OP*x) product fo r different
methods o f calculating the parallel matrix-vector product as a function o f the number ofprocessors.

199538 non-zero elements; among the non-zero elements 95 % were located in
the five diagonals: 0 (main diagonal), +2, -2 , +199, -199; the bandwidth of the
matrix equalled 402.

2. NEV = 4 (number of eigenvalues to be found), NCV = 20 (number of additional
eigenvalues to be filtered out)

3. The stopping criterion — the accuracy of computed eigenvalues equalled
tol= 1.210-16.

Figure 26 shows total execution times of the parallel solver for three discussed
methods of calculating the distributed, parallel matrix-vector product. In the first
method the general routine amux (.) was used to calculate the matrix-vector
(OP*x) product, the second method applied the optimized scheme of the serial
calculations and the third method used the optimized version of the inter-processor
communication, (compare Section 6.3.1) From the comparison of performance for
one processor of the first two implementations (cf. “Using AMUX ...” and “Non-
optimized ...” curves in Figure 26) is it well seen that exploiting the regularity of
the matrix gives some drastic decrease in the total execution time of the solver. In
this way the serial optimization has been performed.

Comparison of other two implementations which use different inter-processor
communication patterns (cf. “Non-optimized ...” and “Optimized ...” curves in
Figure 26) shows that for eight processors the optimized solver is almost twice as
quick as the non-optimized one. More important differences between these two
options of the algorithm are seen in Figure 27. The graph shows the speedup in the
total execution time of the solver for different algorithms as a function of the
number of processors applied. It may easily be inferred from the graph that, except

704 M. Rewiehski

Table 17. Execution times o f the parallel IRAM-FD solver (fully optimized version) while using
two different communication protocols available in the IBM SP2 system. All the tests have been
performed using the IBM ’s dedicated High Performance Switch (HPS) switching network.

Number o f
processors Time [seconds] IP protocol Time [seconds] US protocol

1 375.76 375.42
2 194.17 192.49
3 134.22 133.22
4 103.85 102.66
5 87.00 85.29
6 75.53 73.53
7 66.52 64.82

8 59.15 57.74

the algorithm applying the amux (.) routine, the time spent on calculating the
matrix-vectoris dominated by the inter-processor communication. Consequently in
the incase of non-optimized algorithm the inefficient communication between the
nodes prevents the solver from speeding up for a larger number of processors. Only
the optimized version of the solver is capable of making advantage of the additional
computer power. In this case the program’s speedup stays close to the ideal linear
case.

Even more drastic differences between the implementations may be noticed in
Figure 28 which shows speedups in the execution time of the matrix-vector product
operation alone. As it is seen the speedup of optimized version closely approaches
the ideal linear case, while the non-optimized implementation shows virtually no
speedup with the increasing number of processors used. While comparing Figures
27 and 28 it may also be noted that the speedup of the parallel matrix-vector
product computation is better than the speedup of the P_ARPACK routine
p d n a u p d (.) .

Another conclusion which may be drawn from the above results of performance
tests is as follows: The optimization of inter-processor communication may be
applied only if the input matrix is a banded one. If the input matrix is a result of
discretization using the FEM technique then the distribution of non-zero elements is
highly irregular producing a non-banded matrix. Consequently, in this case the
parallel performance is expected to stay close to the performance shown by dashed
lines in the graph in Figure 27. This shows the advantage of the FD technique over
FEM if this simple static domain decomposition parallelization strategy is used.

Another aspect of parallel performance of the considered solver, specific to the
IBM SP2 distributed memory system, is the influence of the communication
protocol (Internet Protocol or User Space protocol) used to handle the inter
processor communication. In Table 17, the total execution time of the parallel

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 705

Table 18. Chosen total execution times o f the parallel IRAM-FD solver as a function o f the number
o f processors involved in the computation. The tests were performed in the Cray T3E system.

Number o f PEs Total Time [s] NEV=4,
NCV=20

Total Time [s] NEV=15,
NCV=40

1 225.26 631.42
2 118.27 326.33
4 59.38 180.10
8 30.70 90.56

16 16.15 51.05
24 12.52 37.99

solver as a function of the number of processors is shown for the two
communication protocols applied. The results given in the Table show that there is
only a minor difference in the performance while using the two different
communication protocols. Still, the performance is always slightly better for the US
protocol. Nevertheless, no dependence of the number of processors on the relative
performance can be observed.

Let us now present the results of performance tests for the parallel IRAM-FD
solver obtained in the Cray T3E parallel system. The set of input parameters used in
the following series of tests was the same as in the tests performed in the IBM SP2
system. Additionally to the case where NEV = 4 (NEV — number of eigenvalues to
be computed) and NCV = 20 (NCV — number of eigenvalues to be filtered out
during the IRAM iteration) the tests for NEV = 15 and NCV = 40 were performed.
Only the “fully optimized” version of the solver was tested. Both the PARPACK
library and the solver code were compiled using the following directive: f 90 -0 3
-X m x x x . f -o xxx - l s c i - lm p i.

Figure 29 shows the total execution time of the parallel Amoldi FD solve for
a different number of processors involved in the computation. For convenience, the
same results for chosen numbers of processors have also been shown in Table 18.
At this point a comparison can be made between the results obtained in the IBM
SP2 system and the Cray T3E, shown in Tables 18 and 17. It may be calculated that
for a single-processor execution (NEV = 4, NCV = 20) the program runs only 1.66
times faster on the Cray T3E, although the peak performance of a single node in the
Cray T3E system is more than two times (2.25) higher as compared to the
processing node of the SP2 system. The superiority of the Cray T3E system shows
up in the parallel execution. For the IBM SP2 the speed-up in the execution time for
8 processors equals 6.50 while for the Cray T3E this factor equals 7.34. This clearly
indicates that the interconnection network in the latter system _s more efficient.

Figures 29 and 30 show the speed-ups in the execution time of the parallel
calculation of the matrix-vector (OP*x) product and the total time used by the
solver. It may be noted that the speed-up while calculating the matrix-vector
product is almost perfect which is due to the form of the input operator matrix

706 M. Rewiehski

Figure 29. Execution time o f the parallel IRAM-FD solver as a function o f the number ofprocessors
involved in the computation. The tests were performed in the Cray T3E system.

Figure 30. Speedup in the execution time while calculating the matrix-vector (OP*x) product in the
IRAM-FD solver in the function o f the number ofprocessors involved in the computation. The tests

were performed in the Cray T3E system. The dotted line shows a perfect linear speed-up.

obtained in the FD discretization. Analogously as observed in the IBM SP2 system
the speed-up in total execution time is lower as compared to the speed-up for the
matrix-vector product operation, still it reaches 18 for 24 processors applied which
is a fairly good result.

Another thing which may be noted in Figure 31 is a relatively unstable
performance of the solver for NEV = 15 and NCV = 40. Th;s effect, which has also
been observed in the IBM SP2 system, is due to a different number of both Arnold'
update iterations and number of matrix-vector operations performed during the

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 707

2 4 -------- 1---------- r i i i------------------:--------

I | -------- NEV=4 . NCV = 2o!
22- - - - NEV = 15, NCV = 40

2 0: \

Figure 31. Speedup in the total execution time o f the parallel IRAM-FD solver as a function
o f the number ofprocessors involved in the computation. The tests were performed in the

Cray T3E system. The dotted line shows a perfect linear speed-up.

execution of the algorithm with different number of processors applied. This
phenomenon does not occur for the parameters NEV = 4 and NCV = 20. Generally
speaking, it has been noted that a variable number of iterations occurs if the
problem becomes more complex, i.e. more iterations are necessary to obtain the
convergence of the Amoldi process. Still, this does not explain the dependence of
the number of iterations on the number of processors used. A possible explanation
is that during the implicit updates and during the initial iteration of the Amoldi
factorization the vectors submitted to the iterative process are generated by each
processor using only local data. In this case the global form of these vectors can be
different for different numbers of processors applied. Consequently the starting
point of the iterative process before each implicit restart may be different for
different number of processors applied.

If now, for the case NEV = 15 and NCV = 40, we compute the speedups in
computation time per single iteration of the algorithm we shall obtain much more
stable results, presented in Figures 32 and 33, which show a true speed-up in
computations due to parallelization. In fact the graph of the speed-up is almost
identical to the case NEV = 4, NCV = 20.

The following graph (Figure 34) shows the percentage of total execution time of
the IRAM-FD solver spent in the orthogonalization phase. These results cannot be
clearly interpreted. The orthonormalization phase involves inter-processor
communication so the percentage of time spent in this phase of the program should
increase with the increasing number of processors. This happens only in the case
NEV = 4, NCV = 20 while in the other case the effect is opposite. Probably the
effect of scaling of the problem plays here the most important role. The only
comment which can be made at this stage about these results is that the percentage
of time spent in the orthonormalization phase does not change significantly with the

708 M. Rewienski

Figure 32. Speedup in execution time o f a single iteration o f the IRAM-FD algorithm and the single
matrix-vector product computation for the case NEV = 15, NCV = 40. The tests were performed in the

Cray T3E system. The dotted line indicated the linear speed-up.

Figure 33. Execution time o f a single iteration o f the IRAM-FD algorithm and the single matrix-vector
product computation in the function o f the number ofprocessors appliedfor the case: NEV =15,

NCV = 40. The tests were performed in the Cray T3E system.

number of processors which once again may confirm the efficiency of the
interconnection network.

Another thing which has been investigated for the discussed parallel IRAM-FD
solver is the load-balancing achieved for the applied parallel data distribution
scheme. Figure 35 shows the difference of the execution times for the processors
involved in a parallel computation. The investigated task was run on 24 processors
and the differences (in per cent) are related to the execution time for the process 0.
As it may be noted the load-balancing is almost perfect with the largest relative

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 709

38 r
The percentage of the total execution time spent in the orthogonalization phase

37 r

8 |
s 36" •. /

: 3 ■■

- NEV=4 NCV*26
NEV=15. NCV=40

33:-

2 4 6 8 10 12 14 16 18 20 22
Number of processors

Figure 34. The percentage o f total execution time o f the IRAM-FD solver spent in the
orthogonalization phase as a function o f the number o f processors applied. The tests

were performed in the Cray T3E system.

Table 19. Execution time and speedup in the parallel matrix-vector (OP*x) product calculation
and the total execution time for the IRAM-FD parallel solver. The tests were performed in the
cluster o f SGI Indy Workstations connected via the ATM network.

No. o f nodes OP*x time [s] Speedup Total time [sj Speedup

1 118.76 1.00 2118.69 1.00
2 56.70 2.09 1024.81 2.07
3 41.02 2.90 762.09 2.78
4 28.81 4.12 526.27 4.03
5 27.89 4.26 503.71 4.21
6 26.69 4.45 443.22 4.78

difference in execution time equalling 0.4%. Consequently, it may be stated that an
appropriate parallel data distribution scheme has been applied in the solver.

The last hardware platform used to test the Amoldi-FD solver was a cluster of
6 SGI Indy workstations connected via ATM network. This time the
implementation based on BLACS and PVM (cf. Section 5.3.2) was tested. Data
showing both execution time and speed-up in the total computation time and
matrix-vector product calculation time has been given in Table 19 and also
presented in Figure 36. One may note that for 2 and 4 processors used, the obtained
speed-up exceeds the linear speed-up. Once again this effect is due to the number of
algorithm iterations changing with the number of processors. Still, the results show
that in the range from 1 to 4 processors the parallel implementation of the solver

710 M. Rewiehski

involving BLACS and PVM gives a good speed-up n the execution time and
consequently the solver may be efficiently used in the network environment.
Although the asymptotic behaviour of the parallel solver cannot be observed due to
insufficient number of available workstations the results for 6 processors already
indicate that a serious degradation in performance may occur if a larger number of
workstations is used in the computations.

05 —

0.4 •

0 3 -

£ 02[

I ° , j
1
at

I -0 1 i® l© i
S '°-2 r

-0.3 j-

-0.4 J

■0.5 L

n NEV=4. NCV=20
x NEV=15. hJCV-40

10 12 14 16
Processor numoer

18 20 22

Figure 35. The per cent variation in the execution times (as related to the execution time for
process 0) on different processors involved in a parallel computation fo r the IR.4M-FD solver.

The tests were performed in the Cray T3E system.

Figure 36. Speedup in the parallel matrix-vector (OP*x) product calculation and the total execution
time fo r the IRAM-FD parallel solver as a function o f the number ofprocessors involved in the

computation. The tests were performed in the cluster o f SGI Indy Workstations connected
via the ATM network.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 711

Summing up, the results of performance tests for the parallel IRAM-FD solver
obtained in different parallel platforms show a very good scalability of the solver
which is mainly due to an efficient parallel design and implementation of the parallel
matrix-vector product computation.

7.2.3 Parallel Arnoldi solver using implicit operator projection

The performance tests of the Amoldi (IRAM) solver using implicit
representation of operators (described in Section 5.4) have focused on measuring
the speed-up achieved by the program in given parallel distributed memory
environments. All the following tests have been performed in the two scalable
parallel systems: the IBM SP2 and the Cray T3E.

The first Figure (Figure 37) shows the execution times for the IRAM-FFT
solver (number of the eigenvalues to be found NEV = 8, number of eigenvalues to
be filtered out NCV = 40) for deferent Fast Fourier Transform lengths and different
number of expansion terms used to represent the functions in the input operator’s
domain. Analogous results are shown in Figure 38 for the tests performed in the
Cray T3E system. It may be noted that usually the execution times are lower by
about 1/3 for the Cray T3E system, analogously as observed in the previous section.

Figures 39 and 40 show the speed-ups in the total execution times for the
IRAM-FFT solver in the I3M SP2 and Cray T3E platforms. It may be seen that the
results for both platforms are entirely analogous. The best speed-up may be
observed ir. the case when the number of expansion functions equals 256 in every
direction and the FFT length equals 1024 (in both directions). This indicates that
applying a larger, more complex problem gives better performance. In other words,
the solver scales well with the problem size and complexity. The other positive

Total execution tim e for the A rno ld i solver.
10%--r ------------------- 1----------------------------

Figure 37. Total execution time o f the IRAM-FFT parallel solver as a function o f the FFT length.
The tests have been performed in the IBM SP2 system. (NEV = 8. NCV = 40).

712 M. Rewiehski

Figure 38. Total execution time o f the IRAM-FFT parallel solver as a function o f the FFT length.
The tests have been performed in the Cray T3E system.

Figure 39. Speed-up in the total execution time o f the IRAM-FFT parallel solver vs. the number
o f processors. The tests have been performed in the IBM SP2 system.

result which may be noted is that as the ratio between the number of expansion
functions and the FFT length increases, the parallel performance also improves.
This means that although the percentage of time spent on the matrix-vector product
computation related to the total execution time increases and also the size of inter
processor communication during the parallel transposition operation becomes larger
this does not cause a parallel bottleneck.

It may be noted in Figure 40 that the effect of a number of iterations changing
with the number of processors also shows up in the IRAM-FFT solver resulting in

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 7 IS

22\

2 0 -

= 18j-

l 16-

No Ex =60. FFT=256
No Ex =120 FFT=256
No Ex =240. FFT=256

- NO Ex =256 FFT=1C24

S 14 -
S
2 12 tv £
£ 10}

10 12 14 16
Number of processors

Figure 40. Speed-up in the total execution time o f the IRAM-FFT parallel solver vs. the number
o f processors. The tests have been performed in the Cray T3E system.

|
C
S
3
8ts3TDO
Q

I

Figure 41. Speedup in the total execution time o f a single iteration o f the 1R.4M-FFT parallel
solver vs. the number o f processors. The tests have been performed in the Cray T3E system.

more than linear speedup for certain numbers of processors. If the “per iteration”
speed-ups are calculated more stable parallel behaviour of the algorithm emerges,
which has been shown in Figure 41. This Figure also shows that almost perfect
speed-up in parallel computations is obtained in the case of FFT length = 1024 and
the number of expansion function = 256.

Figures 42 and 43 show the speed-ups in the execution time of a pair of
operations: a backward 2D FFT and a forward 2D FFT, as a function of the number
of processors applied. The speed-ups were computed for the average time of
a single operation. It may be noted from Figure 43 that although the speed-ups are
high, they are lower from the total speed-up of the IRAM-FFT solver. This situation
is opposite to the case of the IRAM-FD solver and can be a first signal that
a parallel bottleneck may occur during parallel computation of the inner products,

22 j

20 j
18 j- L
I6f

i
14f

i
12!
10

NO Ex =60. FFT =256
No Ex =120 FFT=256
No Ex =240 FFT=256
No Ex =256 FFT=1024

/ I

61-
4 j-

2 \

/ '
S ' . S ' '

y .

10 12 14 16
Number of processors

714 M. Rewiehski

Speedup in the execu ton tim e for the FFT bT FT f pair calcu lation

Figure 42. Speed-up in the execution time o f a pair o f operations: a backward 2D FFT
and a forward 2D FFT, as a function o f the number o f processors applied.

The tests were performed in the IBM SP2 system.

Figure 43. Speed-up in the execution time o f a pair o f operations: a backward 2D FFT
and a forward 2D FFT, as a function o f the number ofprocessors applied.

The tests were performed in the Cray T3E system.

involving 2D Fast Fourier Transforms, for a larger number of processors applied.
The Figure 44 shows a percentage of :me spent on the orthogonalization phase

during the execution of the parallel IRAM-FFT solver. The results show no
dependence of the number of processors on this relative time which indicates that
the time spent on nter-processor communication occurring in this procedure is
entirely insignificant.

In Tables 20 and 21 the total execution times (for a single-processor execution '
of the IRAM-FFT solver were shown for different number of expansion functions

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 715

Table 20. The total execution time (for one processor) o f the IRAM-FFT solver for different numbers
o f expansion functions used to approximate the 2D fields by the Fourier series. The tests were
performed in the IBM SP2 system. (NEV = 15, NCV = 40, FFT length m 256)

Number o f expansion
functions

Size o f the operator
matrix Total execution time [s]

5 x 10 115 70.74
10 x 10 220 105.33
20 x 10 430 192.09
40 x 10 850 371.52
80 x 10 1690 892.69

160 x 10 3370 2216.21

Table 21. The total execution time (for one processor) o f the IR.4M-FFT solver fo r different discretiza
tion grids (FFT lengths) used to approximate the 2D fields by the Fourier series. The tests were
performed in the IBM SP2 system.

DFT Length Total execution time [s]

256 x 256 444.68
512 x 256 825.52

1024 x 256 1611.83
1024 x 512 4023.25
1024 x 1024 9235.12

Table 22. Comparison o f the execution times (on one processor) between the Galerkin Method (CM)
and the IRAM-FFT solver. In case o f the IRAM-FFT method: FFT length = 256, NEV = 4, NCV = 20.
The tests were performed in the IBM SP2 system.

Number o f expansion functions: Time [s] GM: Time [s] IRAM-FFT:

10 * 10 1.61 8.85
20 * 20 304.92 19.94
30*30 4254.86 38.22

used and different FFT lengths. The results confirm a rather stable behaviour of the
solver which shows up in the linear or linear-logarithmic type of time growth. This
type of growth may be opposed to drastic time increment observed in the GM
method (using the QR algorithm to find eigenvalues of the operator matrix) -
compare Table 22. This last Table shows the substantial difference in performance
of the classical method (the Galerkin Method) in which an explicit representation of

716 M. Rewiehski

the input operator is applied producing a dense matrix and the proposed IRAM-FFT
method which uses implicit operator representation.

Table 23. The total execution time (for one processor) o f the IEEM-FFT solver for different Discrete
Fourier Transform lengths and a fixed number o f expansion functions applied to represent the 2D
fields (the number o f expansion functions equalled 128 in every direction).

FFT length Total execution time [s]

256 x 256 0.58
512 x 256 1.28
512 x 512 2.99

1024 x 512 6.24
1024 x 1024 14.66
2048 x 1024 29.31
2048 x 2048 64.43

Table 24. The total execution time and speed-up o f the IEEM-FFT parallel solver vs. the number
ofprocessors. The tests have been performed in the Cray T3E system. (The number o f expansion
functions equalled 256 in every direction and the FFT length equalled 1024. The number o f the
solver iterations equalled 21 for the tested structure. The stopping criterion equalled le-06.)

Number o f PEs Time [s] Speedup

1 36.96 1.00
2 18.67 1.98
4 9.36 3.95
8 4.81 7.68

16 2.45 15.09
24 1.80 20.53

7.2.4 Parallel Iterative Eigenfunction Expansion Method with the FFT integration

This section shows some preliminary performance results for the solver
implementing the IEEM-FFT method for parallel distributed memory systems, as
described in Section 5.5. The code has been implemented in Fortran77 and MP1 and
has been tested in the Cray T3E system. The results of the tests are presented in
Figure 45 and Table 24 showing very good performance of the parallel solver.
These results of parallel IEEM-FFT solver are not surprising, as the implementation
of this eigensolver is based mainly on the parallel implementation of the method of
computing inner products using the 2D FFTs (cf. Section 5.4.1) which was found to
scale very well. (The results showing performance of the parallel computation of
a pair of a backward and forward 2D FFTs are presented in the previous section.)
The other operations performed by the IEEM-FFT algorithm during its basic

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 717

The percentage of the total execution time spent in the orflhogonalization phase50 ' 145 No.Ex.-60, FFT-256 . No Ex.=120, FFT=256 i -40- ~ No.Ex.=240. FFT=256 -No.Ex.=256 FFT=1024 i -
E 35̂3<52 30
VEs25 _sCO•W 20 <0 E -
| 15i° 10

Sj'
O' --- ---------;------1-------- 1 ; i ------- *------------------ -------- J------1-------- !

2 4 6 8 10 12 14 16 18 20 22
Number of processors

Figure 44. The percentage o f total execution time o f the IRA M-FFT solver spent
in the orthogonalization phase in the function o f the number ofprocessors

applied. The tests were performed in the Cray T3E system.

iteration are almost perfectly parallel with only minor inter-processor communication
occurring, related to the computation of global vector norms. The other tests
(involving single-processor execution), performed using the IEEM-FFT solver show
the character of the execution time growth with the increasing FFT lengths — cf.
Table 23. As it may be noted an almost perfect, linear growth of execution time is
observed.

2 4 6 8 10 12 14 16 18 20 22
Number of processors

figure 45. Speed-up in the total execution time o f the IEEM-FFT parallel solver vs. the number o f
processors. The tests have been performed in the Cray T3E system. (The number o f expansion

functions equalled 256 in every direction and the FFT length equalled 1024. The number o f the
solver iterations equalled 21 for the tested structure. The stopping criterion was le - 06.)

718 M. Rewiehski

Table 25. Comparison o f the number o f updates, the number o f matrix-vector product operations
(OP*x) performed by the IRAM process and the execution times for IRAM-FFT and IRAM-FD solvers.
In the case o f IRAM-FFT algorithm both FFT length and the number o f expansion functions used
equalled 128. For IRAM-FD algorithm the discretization grid equalled 200 x 200 or 128 x 128.
In all cases: NCV = 40 and NEV = number o f eigenvalues to be found.

NEV Problem
size

No. o f
updates

No. o f OP*x
operations

Total time
[seconds/

OP*x time
f,seconds/

IRAM-FFT (128x128)
1 33024 142 2860 112.35 23.07
4 33024 168 5983 171.57 47.91

IRAM-FD (200x200)
1 1 79600 61 1240 80.27 5.56

4 79600 121 4264 191.24 19.10
IRAM-FD (128x128)

1 32512 34 700 18.42 1.31
4 32512 77 2688 50.02 5.03

7.2.5 Comparison o f performance o f the proposed eigensolvers

In this section we shall present a short comparison of execution times of the
three basic algorithms discussed in this study: 1) IRAM-FFT, 2) IRAM-FD and 3)
IEEM-FFT. In the comparison we investigate single-processor execution times for
the considered methods, applied to solve the same problem (in physical terms). The
problem consists of finding propagation constants in one of the waveguiding
structures discussed in Section 6. The test parameters are as follows: 1) For all
algorithms the stopping criterion equalled 1.2e - 16. 2) In the case of the IRAM-FD
algorithm the 200 x 100 discretization grid has been used. 3) In the case of IRAM-
FFT and IEEM-FFT methods the number of expansion functions equalled 40 in
both x- andy- directions. The FFT lengths equalled 128, 256, 512 or 1024 in every
direction. 4) In the case of IRAM-based algorithms the number of eigenfunctions to
be filtered out equalled 20 - NCV = 20 and the number of eigenfunctions to be
found (NEV) equalled 1, 2 or 4. With this choice of input parameters one may
expect that the quality of approximations of eigenvalues computed using the
discussed solvers will roughly be the same.

The graph shown in Figure 46 presents the execution times for the IRAM-FD
algorithm and IRAM-FFT method (for different FFT lengths) as a function of the
number of eigenvalues to be found. One may note that the IRAM-FFT algorithm is
faster if the FFT length equals 128 or 256. Still, if FFT length equals 512 then the
IRAM-FD algorithm appears to be twice as fast as the IRAM-FFT method.
It should be stressed here that the number of update iterations of the IRAM process
did not change at all with the changing FFT lengths in the IRAM-FFT algorithm.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 719

= 40
2

v 30

- -

— IRAM-FD: 200-100
-

- - IRAM-FFT; 128
- - IRAM-FFT: 256

IRAM-FFT: 512

r

— — i
__ ...-------- -- — - —

2 3
Number of eigenvalues to be found

Figure 46. Comparison o f single-processor execution times o f IRAM-FD and IRAM-FFT solvers
fo r different number o f eigenvalues to be found and different FFT lengths applied. The tests

have been performed in the Cray T3E system.

It means that the growth in execution time while changing the FFT length is due
solely to the increasing execution time of calculating the inner products. Another
interesting observation can be made about the presented results. It is apparent that
the execution time grows faster for the IRAM-FD algorithm than for the FFT-based
algorithm with the growing number of eigenvalues to be found. It is not known
whether this tendency is stable or for what range of parameters it occurs, as the
computational complexity of the IRAM-FD solver is lower than the cost of FFT-

40

35 IRAM-FD
I - - lEEM-FFT

30
.... IRAM-FFT

uT
'

* 2 5 r

co
* 20
£

/

0) > ...

2 15 ' s ' ' -
^ ''

10 ̂ " -
„ "

5
'

____- - ' " . . . , ,

200 300 400 500 600 700 800 900 1000
FFT length

Figure 47. Comparison o f single-processor execution times fo r the IRAM-FD, IRAM-FFT and
1EEM-FFT methods. The number o f eigenvalues to be found equalled l fo r all the methods.
The times for the FFT-based algorithms are given as a function o f the FFT length. The tests

have been performed in the Cray T3E system.

720 ■ M. Rewiehski

500 600
FFT length

Figure 48. Comparison o f single-processor execution times for the IRAM-FFT and IEEM-FFT
methods. The number o f expansion terms used to represent functions equalled 40 in each spatial
direction. The convergence criterion equalled 1.2e - 16. In the case o f IRAM-FFT algorithm the

number o f eigenvalues to be found was l, 2, 4 and 8, while fo r the IEEM-FFT method only
a single eigenvalue was found. The tests have been performed in the Cray T3E system.

based algorithms. Still, due to smaller size of the problem solved in the IRAM-FFT
method (as compared to the IRAM-FD method) the growth of the number of
derations of the IRAM process necessary to obtain convergence is not so dynamic
as in the IRAM-FD method and compensates the higher complexity of the IRAM-
FFT algorithm. Table 25 shows a comparison of the number of update iterations and
OP*x operations for the IRAM-FFT and IRAM-FD algorithms if one and four
eigenvalues are to be computed. One may note that while for the IRAM-FFT
algorithm the number of update iterations increases by less than 20 % (for
NEV = 4), it doubles for the IRAM-FD algorithm. The increment in the number of
matrix-vector products (inner products) to be computed also changes more rapidly
for the IRAM-FD algorithm. Consequently the growth in execution time is also
faster for the IRAM-FD as compared to IRAM-FFT solver. Lastly, it should be
noted that the time spent on calculating the matrix-vector product does not exceed
10 % of the total execution time of the IRAM-FD solver, while for the IRAM-FFT
solver this percentage may range from about 20 % to more than 90 %. This fact is
a consequence of transferring the complexity of the solver from the IRAM iterative
process to the operation of computing inner products (using 2D FFTs).

Figure 47 shows a comparison of single-processor execution times for three
solvers: 1) IRAM-FD, 2) IRAM-FFT, 3) IFEM-FFT if only one eigenvalue is to
be found. The execuion time for the IRAM-FD algorithm has been drawn as
a horizontal line, since the algorithm does not depend on the FFT length. The times
for the FFT-based method have been given for different FFT lengths applied. From
the graph one may note that the IRa M-FFT algorithm is faster than IRAM-FD

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 721

method for FFT length that equals 128 or 256. If the FFT length is smaller than 1024
then the execution time for the IEEM-FFT is significantly shorter than for two other
algorithms. It is also interesting to note that the growth of execution time is much
faster for the IRAM-FFT method than for the IEEM-FFT method, although both
method are based on the same representation of the operators and the same method
of calculating inner products. This effect is due to a different number of iterations
needed to obtain convergence, which equals about 700 for the IRAM-FFT algorithm
and about 100 for the IEEM-FFT algorithm. (The numbers of iterations stay
approximately the same for different FFT lengths.) Another comparison of IRAM-
FFT and IEEM-FFT solvers is shown in Figure 48. This Figure presents execution
times while solving a different eigenproblem than in the previous tests. In this case,
if only a single eigenvalue is to be found, the number of iterations equals 620-640 for
the IRAM-FFT and 382-453 for the IEEM-FFT method. Consequently the
execution times for IRAM-FFT and IEEM-FFT are comparable also for larger FFT
lengths. If a larger number of eigenvalues is to be found, the number of iterations
increases up to 1800 iterations for the IRAM-FFT solver which results in an
appropriate growth in the total execution time.

8. Conclusions
In the conclusion we would like to make a general comparison of various

features of the numerical algorithms proposed for solving operator eigenproblems in
distributed memory parallel systems. We will focus on the following issues:

— The numerical complexity, memory storage requirements and the size of messages
exchanged between the processors for the proposed parallel eigensolvers.

— Performance of the solvers in parallel distributed memory systems.

— Assessment of chosen general properties and functional parameters of the solvers,

Table 26. The assessment o f numerical complexity, memory storage requirements and the size o f
messages exchanged among the processors for the discussed parallel eigensolvers.

Algorithm Computational
complexity

Memory
complexity

Size o f the
messages

IRAM-FD 0(k2N/P)+
0{k-nnz/P)

0(k2N/P)+
0(2nnzlP+N/P)

0(k(P-1)b

IRAM-FFT 0(k2N/P)+
O(klPKlogK)

0(2K/P+2N/P)+
0(6\Jk +k2NIP)

O (A -^rV ^A)

IRAM-FFT-NI
0(k2N/P)+
0(k/PK\ogK)+
0(kN\J~K IP)

0(2KIP+2N/P)+
0(6s[K +k2N/P)

O (k ^ r s f K N)

IEEM-FFT 0{KIP\ogK)+
0(12K/P)

0(2KIP+2N/P)+
0(6y/A)

O (k ^ - ^ j K N)

722 M. Rewienski

including e.g. the scope of eigenproblems which may be solved by
a certain algorithm or the portab ility of the .mplementation.

— Applicability of the discussed algorithms to solving eigenproblems arising in
electromagnetics.

The comparison of the complexities of the parallel solvers has been shown in
Table 26. This Table presents numerical cost estimat'Ans for the following
algorithms: 1) The IRAM-FD: The solver based on the IRAM iterative algorithm
and applying the FD finite-dimensional mapping technique in order to obtain
discrete operator representation; 2) The IRAM-FFT: The solver based on the IRAM
iterative algorithm and applying implicit finite-dimensional projection of the input
operator; 3) The IRAM-FFT-NI: The modification of the previous solver which
applies a hybrid algorithm of calculating the matrix-vector product using FFT and
Numerical Integration (NI); 4) The IEEM-FFT: The solver implementing the
Iterative Eigenfunction Expansion Method using implicit projection of the input
operator with FFT-based calculation of inner products in parallel distributed
memory environment.

The following symbols have been applied in Table 26: P — the number of
processors, N — global algebraic size of the problem, K — product of the lengths
of Discrete Fourier Transforms in the x- and y- spatial d;mensions, determining
the grid size in the DFT (FFT) domain (usually N « K, although it may happen
that N=K), nnz — the number of non-zero elements in the input operator matrix,
k — number of eigenvalues to be found and b — bandwidth of the operator matrix

Comparing the results shown in Table 26 the following conclusions may be drawn:
— Assuming that£ = 1, it may be found that the IRAM-FD algorithm has the lowest,

linear numerical complexity. The algorithms involving implicit (DFT-based)
operator projection methods have at least a linear-logarithmic complexity.
Potentially the highest numerical cost occurs for the IRAM-FFI-Ni algorithm
(OfV372)) which may result in a deterioration of performance for larger
problem sizes.

— Although, as mentioned in the previous item, the IRAM-FFT and the IEEM-FFT
solvers have generally higher computational complexities than the IRAM-FD
solver, in many applications the resulting problem size is much smaller for the
ormer methods than for the latter one. (In a typical situation one has K = Nf[)

and Nfft = Nfd/25-) Consequently in these cases the FFT-based methods are
faster, while offering an equivalent quality of solutions.

— Referring to the memory cost it has to be noted that generally the storage
requirements of the FFT-based methods are lower than the requirements of the
FD-based solvers. For instance, typically nnz = 5N. In this case the IRAM-FD
solver uses almost three times more memory than the IEEM-FFT algorithm. This
comparison may even be more favourable for the FFT-based solvers if one keeps
in mind that the problem size is usually significantly larger for the IRAM-FD
method.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 723

— Another important feature of parallel solvers is the size of messages exchanged
by the processors during execution of the program in a parallel environment.
This size is the lowest for the IRAM-FD solver if the bandwidth of the input
operator matrix is considerably smaller than its size. On the other hand if the
matrix is not banded the message size may increase very significantly. It may
also be noted that in the case of the IRAM-FD algorithm the size of
communicated messages is a function of the number of processors, while in the
case of DFT-based methods this size is virtually independent of P. Still, the
problem with the DFT-based algorithms is that due to relatively large size of
communicated messages a parallel bottleneck is expected to occur for larger
problem sizes.

Turning to the issues concerning serial and parallel performance of the solvers
the following concluding remarks can be made:

— Due to relatively low numerical complexities of all the discussed solvers
(estimated for a single iteration or a single p-step update of the algorithm) the
execution time does not “blow up” with the increasing problem size (for a
considerably large range of problem sizes).

— Still, it was found that in the case of the algorithms based on IRAM the number
of updates may increase significantly for the increased problem size or the
number of eigenvalues to be found and / or filtered-out during the execution of
the algorithm.

— Referring to parallel performance, it has to be concluded that all the developed
parallel solvers offer high efficiency and speed-up in scalable distributed memory
systems.

— Although for large problem sizes the speed-up is higher for FFT-based solvers
than for the FD-based algorithms, these methods require generally larger
problem sizes to achieve high efficiency in a parallel environment.

The following general functional features of the presented parallel solvers may
be outlined:

— The solvers based on the Implicitly Restarted Amoldi Method (IRAM) enable
one to find several eigenvalues from the desired part of the operator spectrum.
This is a substantial advantage over the IEEM-FFT method which, in its basic
version, allows one to find only a single eigenvalue.

— Investigating the properties of the IRAM-FD algorithm it may be concluded that
the algorithm is best suited for banded, sparse matrix operators obtained from
discretization of differential operators. In this case the solver may offer extremely
high performance.

— Referring to the solvers using implicit discrete operator representation (IRAM-
FFT, IEEM-FFT) it may be stated that their efficiency is directly related to the
reduction of the emerging problem size. Consequently, they may be most

724 M. Rewienski

efficiently applied if the resulting low-cost representation offers an acceptable
approximation of the considered input operator.

— Problems with the DFT-based solvers may arise if the input operator acting on
the elements from its domain produces discontinuous, highly varying functions
or distributions. This problem may be solved at the cost of increasing the
numerical complexity of the algorithm (cf. the IRAM-FFT-NI method).

— A crucial functional feature of all the presented solvers is their portability which
allows one to use efficiently the developed parallel methods in a variety of
parallel distributed memory systems, including supercomputer facilities and
network environments supporting message-passing programming model.

— The further advantage of the discussed eigensolvers which greatly extends their
applicability to solving large-scale eigenvalue problems is relatively low memory
complexity as compared to many classical methods, as well as balanced storage
requirements across the processors.

Lastly, let us mention some characteristics of the discussed algorithms being of
particular importance in the electromagnetic applications discussed in this study:

— The IRAM-FD algorithm has yielded an efficient tool while dealing with
eigenproblems of non-symmetric differential operators arising in
electromagnetics. In the current version of the solver it may be used to solve
eigenproblems for waveguiding structures with discontinuous, rectangular
permittivity profiles.

— On the other hand, the IRAM-FFT and IEEM-FFT solvers are to be particularly
useful while dealing with waveguides with arbitrary continuous permittivity
profiles.

— The scope of application of the FFT-based algorithms can be extended to
structures with discontinuous permittivity profiles at the cost of increasing
computational complexity of the algorithm.

Acknowledgments
First of all I wish to thank Professor Michat Mrozowski for his support in my

first steps in the fields of scientific computing and computational electromagnetics,
numerous, valuable discussions and constant encouragement which enabled me to
obtain the results presented in this study.

I am grateful to Jacek Mielewski for providing sequential code of the Finite
Difference solver which has served as a basis for parallel implementation of the
IRAM-FD method.

I also acknowledge the support of the Academic Computer Centre TASK in
Gdansk and the Interdisciplinary Centre for Mathematical and Computational
Modelling of the University of Warsaw in facilitating the access to supercomputer
systems which served as platforms for all the numerical tests presented in this work.

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 725

The research was supported by the Polish State Committee for Scientific
Research under contract 8 Ti lD 01911.

Appendix A

Matrix formulation o f the 1EEM

This section presents a new approach towards the Iterative Eigenfunction
Expansion Method, suitable for solving eigenproblems of firite-dimensional linear

operators. In this case the matrix formulation may be used. If f (f e M (c)„x„)
denotes the matrix of the finite-dimensional linear operator T then, analogously as
in Section 2.1, the following decomposition can be made:

T = L - F (73)

The eigenvalues of the matrix L are assumed to be known and will be denoted

as {A } We do not assume here that there are exactly n different eigenvalues. For
some i and j there may be A. = A . In order to be able to appropriately represent

every vector from the space C the eigenvectors of the matrix L : }, have to be

linearly independent. Consequently, the condition for the matrix T is that it should
be similar to some diagonal matrix or, in other words, to have a simple structure. If

this is the case, the set of its eigenvectors may be orthonormalized and in this

way an orthonormal basis {/vi.}" in the C space is obtained. Initially the

representation of the linear operator F is the matrix F , describing the linear
transformation for the standard canonical basis in the C” space. This matrix may

also have a representation in the basis of the orthonormal eigenvectors {/7 -}" of the

matrix L . By applying the similarity transformation:

F = H~'FH (74)

where the matrix H is an orthonormal (unitary) matrix, whose columns are the

eigenvectors h}, one obtains the matrix of the operator F in the basis {h.}". It is
also obvious that:

D = diag{Au ... ,A n}= H -'L H (75)

If one denotes as y ^ the k-th approximation of the eigenvector of the matrix

T , represented in the standard canonical basis and as ^ = H ' y ^ the same

726 M. Rewienski

vector represented in the basis, then the steps of a single iteration of the

IEEM method in the matrix formulation may be described as follows:

ALGORITHM 7: IEEM-matrix.

STEP 1: Compute the matrix-vector product F v .

STEP 2: Detennine the (k+l)-th approximation of the eigenvector
y (* 0) = |-v (* + l) 5- y (* - !)] ;

(76)

where AU) is the k-th approximation of an eigenvalue of the matrix [.
STEP 3: Normalize vector i-1’":

w
k +1
k + \ (77)

STEP 4: Determine the (k+l)-th approximation of the eigenvalue:

= - f e < * ’) V * " (78)

The question that appears is under what conditions the above method converges

to the solution, i.e. the eigenvalue and the eigenvector of the matrix T . For the
operator version of the algorithm (described in Section 2.4) Jablonski proved that in
a Hilbert space being the domain of the operator T = L - F, the iterative process
converges provided the operator L is relatively compact with the operator F (cf.
[16]). If the finite-dimensional Hilbert space l~ (the linear space of n-dimensional
vectors with the Euclidean norm and a standard inner product) is considered then

for any two matrix operators L and F these two operators are relatively compact,
as according to one of the definitions of the operator compactness, any finite-

dimensional operator is compact. Consequently, the matrix operator f (? J - L f x (for

Ae (Cn-Up(L))) is also compact., it may be inferred that for any decomposition

r = L - F , such that matrix E has a simple structure, the iterative method

converges to the solution.
Another question which immediately emerges is which solution (i.e. which

eigenvalue from the matrix spectrum) is being found in the iterative process. In the

Methods o f Solving Operator Eigenprohlems in Parallel Distributed Memory Systems... 727

simplest case the matrix L is similar to a diagonal matrix which has a single n-fold
eigenvalue A. In this case for all i one has A. = A in the equation (76) and it may be

clearly seen from the same equation that the vector y'<+1* approaches the direction

of an eigenvector corresponding to the dominant eigenvalue of the matrix F .

(In this case the IEEM reduces to the Power Method and the subsequent vectors vk

are constructed in a simple power iteration for the matrix F .) If A denotes the

dominant eigenvalue (the eigenvalue with the largest modulus) of the matrix F

then the method converges to A -A . Unfortunately no results have been obtained

so far for different choices of the matrix E, although the relations between the
Iterative Eigenfunction Expansion Method and the Power Method seem to
be apparent.

Symbol conventions and abbreviations
General symbols

A — linear operator
A* — adjoint operator associated with A
A _ matrix
a — vector
B(XA0 — space of linear operators {A | A : X -> X }
c the set of complex numbers
C — the class of functions with continuous derivatives
C2 — the class of functions from C1 class with continuous second derivatives
8(x) — the Dirac delta distribution
h(x) - the Heaviside function
L2(Q) - space of square integrable functions defined over the region Q

- the set of n x n matrices with complex elements
R the set of real numbers
°>(A) — point spectrum of the operator A
v,w — functions
X — complete, linear (Banach) space
(•> 0 inner product in a Hilbert space
II 'll — norm in a Hilbert space induced by the inner product

Physical quantities

P - propagation constant
£ --- relative permittivity of medium
£o permittivity of the free space

E. transverse electric field intensity
7

728 M. Rewienski

f frequency

transverse magnetic field intensity
wavenumber in the free space
permeability of the free space
normalized propagation constant

Selected abbreviations
DFT
FD
FEM
FFT
GM
IEEM
IRAM
MGS

Discrete Fourier Transform
Finite Difference discretization method
Fin; e Element Method
Fast Fourier Transform
Galerkin Method
Iterative Eigenfunction Expansion Method
Implicitly Restarted Amoldi Method
Modified Gram-Schmidt orthonormalization algorithm ARPACK
Parallel ARnoldi PACKage
Transverse Resonance Method

PARPACK—
TRM —

References
[1] Mrozowski M., G uided E lectrom agnetic Waves, P roperties a n d A na lysis, Research

Studies Press, Taunton, Somerset, England, 1997
[2] Shestopalov V. P., Shestopalov Y. V., Spec tra l theory a n d excita tion o f open

structures, IEE, London, UK, 1996
[3] Dautray R., Lions J.-L., M athem atica l A na lysis a n d N um erica l M ethods f o r Science

a n d Technology - F unctiona l a n d Variational M ethods, vol. 2, Springer-Verlag,
Berlin, 1990

[4] Dqbicki P., J^drzejewski P., Kr^czkowski A., Mielewski J., Mrozowski M., Nyka K.,
P'zybyszewski P., Rewienski M., Rutkowski T., C oping w ith num erica l com plexity in
com puta tiona l electrom agnetics, Int. Microwave Symp. MIKON-98, Cracow, 1998

[5] Przybyszewski P., M'dewski J., Mrozowski M., 'Efficient E igen function E xpansion
A lgorithm s f o r A na lysis o f W aveguides, Technical Report No. 88/96, Dept, of
Electronics, Telecommunications and Computer Science, Technical University of
Gdansk, Gdansk, 1996

[6] Golub G. H., van Loan C. F., M a trix C om putations, The John Hopkins University
Press, Baltimore, 1996

[7] van der Vorst H. A., Golub G. H., 150 Years an d still a live: eigenproblem s, Technical
Report SCCM96-11, Dept, of Scient fie Computing and Computational Mathematics,
Stanford University, USA, 1996

[8] Davidson E. R., The itera tive calculation o f a f e w o f the low est eigenva lues an d
correspond ing e igenvectors o f large rea l sym m etric m atrices, J. Comp. Phys., 17:87-
94, 1975

[9] Saad Y., N um erica l m ethods f o r large eigenva lue p rob lem s, Manchester University
Press, Manchester, UK, 1992

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 729

[10] Amoldi W. E., The p rin c ip le o f m in im ized iterations in the so lu tion o f th e m atrix
eigenvalue prob lem , Quart. Appl. Math. 9, 17-29, 1951

[11] Sorensen D. C., Im plicitly R estarted A rno ld i/Lanczos M ethods f o r L arge Sca le
E igenvalue C alculations, Proceedings of an ICASE/LaRC, May 23-25 1994,
Hampton, VA, D. E. Keyes, A. Sameh and V., eds., Kluwer, 1995

[12] Hebermehl G., Schlundt R., Zscheile H., Heinrich W., E igen m ode so lver f o r
m icrow ave transm ission lines, Weierstrass Institute for Applied Analysis and
Stochastics, Preprint No. 308, Berlin, 1997

[13] Dqbicki M. P., Jqdrzejewski R. Mielewski J., Przybyszewski R, Mrozowski M„
A pplica tion o f the A m o ld i M ethod to the Solution o f E lec trom agnetic E igenproblem s
on the M ultiprocessor P ow er C hallenge A rchitecture, Technical Report No. 19/95,
Dept, of Electronics. Technical Univ. of Gdansk, Gdansk, 1995

[14] Sorensen D. C., Im p licit applica tion o fp o ly n o m ia l f i l te r s in a k-step A m o ld i m ethod,
Technical Report TR90-27, Rice University, Dept, of Math. Sci., Houston, TX, 1990

[15] Lehoucq R. B., Sorensen D. C., Yang C., A R P A C K U SE R S G U ID E: So lu tion o f Large
Sca le E igenva lue P roblem s by Im p licitly R estarted A rno ld i M ethod , available from:
ftp.caam.rice.edu

[16] Jablohski T., Itera tive E igenfunction E xpansion M ethod f o r C ylindrica l F ibers, IFTR
Reports. 3/1986, Warsaw. 1986. (in Polish)

[17] Jablohski T., Sowinski M., A n a lysis o f d ie lec tric gu id in g structures by the itera tive
eigen function expansion m ethod, IEEE Trans. Microwave Theory Tech. vol. 37,
pp.63-70, Jan. 1989

[18] Mrozowski M., IE E M F F T — A F ast an d E fficien t Tool f o r R igorous C om puta tions o f
P ropagation C onstants an d F ie ld D istribu tions in D ielec tric G uides w ith A rb itra ry
C ross-Section an d P erm ittiv ity P rofiles, IEEE Trans. Microwave Theory Tech. vol.
39, pp. 323-329, Feb. 1991

[19] Byron F. W., Fuller R. W., M athem atics o f classica l a n d quantum p h ys ics , Addison-
Wesley, Reading (Polish edition: PWN, Warsaw, 1975)

[20] Auslander L., Tsao A., On a d iv ide an d conquer a lgorithm f o r the eigenproblem via
com plem en tary invarian t subspace decom position , Supercomputing Research Center
Technical Report SRC-89-003, Bowie, USA, 1989

[21] Auslander L., Tsao A., On p ara lle lizah le eigensolvers, Advances in Applied
Mathematics 13, 253-261, 1992

[22] Wilkinson J. H., Reinsch C., editors, H andbook f o r A u tom atic C om putation , Vol. 2,
L inear A lgebra , Springer Verlag, Heidelberg - Berlin - New York, 1971

[23] Fernandez F., Lu Y., M icrow ave an d O ptica l W aveguide A na lysis by the F in ite
E lem en t M ethod, Research Studies Press, Taunton, Somerset, England, 1996

[24] Dautray R., Lions J.-L., M athem atica l A na lysis a n d N um erica l M ethods f o r Science
a n d Technology — In tegra l E quation an d N um erica l M ethods, vol. 4, Springer-
Verlag, Berlin, 1990

[25] Jones D., M ethods in E lectrom agnetic Wave P ropagation, vol. 1: Theoryf a n d G uided
Waves, Clarendon Press, Oxford, 198 /

[26] Mrozowski M., E igenfunction expansion techniques in the num erica l ana lysis o f
inhom ogeneously loaded w aveguides a n d resonators, Zeszyty Naukowe Politechniki
Gdanskiej, Elektronika, No. 81, 1994

ftp://ftp.caam.rice.edu

730 M. Rewienski

[27] Briggs W., M ultig rid tu toria l, SIAM, Philadelphia, 1987
[28] Nyka K., Mrozowski M., C om bin ing func tion expansion a n d m u ltig r id m ethod fo r

effic ien t analysis o fM M IC s , Int. Microwave Symp. MIKON-96, pp. 203-207,
Warsaw, 1996

[29] Foster 1., D esign ing a n d B uild ing P ara lle l P rogram s, Addison-Wesley, Reading, 1995
[30] Minty E., Davey R., Simpson A., Henty D., D ecom posing the p o ten tia lly p ara lle l,

Course Notes, Edinburgh Parallel Computing Centre, The University of Edinburgh,
1996, available: http://www.epcc.ed.ac.uk

[31] Saad Y., SPARSKIT: a basic too l kit f o r sparse m a trix com putations. Version 2, CSRD
— University of Illinois and RIACS (NASA Army Research Center), 1994, available
ftp.cs.umn.edu/dept/sparse

[32] Cooley J. W., Tukey J. W., A n algorithm f o r the m ach ine eva lua tion o f com plex
F ourier series, Math. Comp. 19, pp. 297-301, 1965

[33] Briggs W. L., Van Emden Henson, The DFT. A n O w ner's M anua l f o r the D iscrete
F ourier Transform , SIAM, Philadelphia, 1995

[34] Winograd S., On com puting the d iscrete F ourier transform , Math. Comp., 32, pp.
175-199, 1978

[35] Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T., N um erica l recipes: The
a rt o f sc ien tific com puting , Cambridge University Press, Cambridge, 1986

[36] Richardson H., H igh P erform ance F ortran — H istory, O verview a n d C urren t Status,
Edinburgh Parallel Computing Centre, The University of Edinburgh, 1995, available:
h t t p :/ / w w w .e p c c .e d .a c .u k /e p c c - te c /docum ents. htm l

[37] High Performance Fortran Forum. H igh P erform ance F ortran L anguage
Specifica tion , Scientific Programming 2(1-2), pp. 1-170, 1993

[38] Gupta M., Midkiff S., Schonberg E., Seshadri V., Shields D., Ko-Yang Wang, Wai-
Mee Ching., Ngo T., A n H P F C om piler f o r the IB M SP 2, High Performance
Computing in Europe on IBM Platforms, Conference Proceedings, Academic
Computer Centre CYFRONET, Cracow, 1996

[39] Message Passing Interface Forum, MPI: A M essage-P assing In terface Standard,
International Journal of Supercomputer Applications and High Performance
Computing, 8(3/4), 1994

[40] Gropp W. D., Lusk E., Skjellum A., U sing M P I— P ortab le P ara lle l P rogram m ing
with the M essage-P assing In terface, MIT Press, 1994

[41] Sunderam V. S., Geist G. A., Dongarra J. J., Manchek R., The P V M C oncurren t
C om puting System , Parallel Computing 20(4), pp. 531-45, 1994

[42] Geist A., Beguelin A., Dongarra J. J., Jiang W., Manchek R., Sunderam V., P V M 3. A
U s e r ’s G uide a n d Tutorial f o r N etw orked P ara lle l C om puting , The MIT Press, 1994

[43] Anderson E., Brooks J., Grassl C., Scott S., P erform ance o f the C R A Y T3E
M ultiprocessor, Technical Report, Cray Research, 1997, available from: h t t p : / /
w w w . c ra y .c o m /p ro d u c ts /sy s te m s /c ra y t3 e

[44] IB M P V M e f o r AIX , U sers G uide a n d Subroutine R eference, Version 2, R elease 1,
document number GC23-3884-00, IBM Corporation, 1995

[45] Geist G. A., A d va n ced C apabilities in P V M 3.4, Lecture Notes in Computer Science
1332, pp. 107-115, 1997

http://www.epcc.ed.ac.uk
ftp://ftp.cs.umn.edu/dept/sparse
http://www.epcc.ed.ac.uk/epcc-tec/documents.html
http://www.cray.com/products/systems/crayt3e

Methods o f Solving Operator Eigenproblems in Parallel Distributed Memory Systems... 731

[46] MPI-2 comittee, MPI: A m essage-passing in terface standard , 1997, available from:
h t t p : / /www.mcs. a n l . g ov /P ro j e c ts /m P /s ta n d a rd . html

[47] A U s e r ’s G uide to the B asic L inear A lgebra C om m unication Subprogram s (B LA C S) v.
1.1, available: f t p . n e t l i b . o r g

[48] Scien tific L ibraries R eference M anual, Cray Research, SR-2081
[49] IB M P ara lle l E ng ineering a n d Scien tific Subroutine L ibrary R elease 2 G uide an d

R eference, IBM Corporation, GC23-3836, 1996
[50] Krommer A., McDonald K., The N A G N um erica l P V M L ibrary, High Performance

Computing in Europe on IBM Platforms, Conference Proceedings, Academic
Computer Centre CYFRONET, Cracow, 1996

[51] Dias da Cunha R., Hopkins T., P M 1.1 — the P ara lle l Itera tive M ethods P ackage fo r
System s o f L inear Equations. U sers's G uide, Technical Report, Computing
Laboratory, University of Kent, 1994

[52] Malard J., Richardson H., A n Introduction to P ara lle l N um erica l L ibraries, Technology
Watch Report, Edinburgh Parallel Computing Centre, Edinburgh University, 1996,
available from: h ttp ://w w w .ep cc .ed .ac .u k /ep cc-tec /d o cu m en ts .h tm l

[53] Maschhoff K. J., Sorensen D. C., P ARPAC K: An E ffic ien t P ortab le Large Sca le
E igenva lue P ackage f o r D istr ibu ted M em ory’ P ara lle l A rchitectures, Rice University,
1996, available at: f tp .c a a m .r i c e . edu

[54] Allan R. J., Guest M. F. (Eds.), P ara lle l A pp lica tion So ftw are on H igh P erform ance
C om puters, I. The IB M SP 2 a n d C ray T3D, technical report, the CCLRC HPC1 Centre
at Daresbury Laboratory, Daresbury, 1996

[55] Klepacki D., A pplica tion P erform ance a n d B enchm ark E xperience on the IB M SP
using M PI, H P F an d Virtual Shared M em ory, High Performance Computing in
Europe on IBM Platforms, Conference Proceedings, Academic Computer Centre
CYFRONET, Cracow, 1996

[56] Katz D. S., Cwik T., Kwan B. H., Lou J. Z., Springer P. L., Sterling T. L., Wang P., An
A ssessm en t o f a B e o w u lf System f o r a Wide C lass o f A na lysis a n d D esign Softw are,
paper presented at 4th NASA Symposium on Large-Scale Analysis and Design on
High-Performance Computers and Workstations, to appear in Advances in
Engineering Software, April 1998

[57] Swarztrauber P. N., FFTPACK, version 4, A p a cka g e o ffo r tra n subprogram s f o r the
F ast F ourier Transform o f per io d ic an d o ther sym m etric sequences., 1985, available
from: h t tp :/ /w w w .n e tl ib .o rg

[58] Rewienski M., Im plem enta tion o f the P aralle l A rno ld i M eth o d in the IB M SP 2
D istr ibu ted M em o iy System , Technical Report No. 89/96, Faculty of Electronics,
Telecommunications and Informatics, Technical University of Gdansk, Gdansk, 1996

[59] Lehoucq R. B., Sorensen D. C., Yang C., ARP.4CK U SE R S G U ID E: So lu tion o f Large
Sca le E igenva lue P roblem s by Im p lic itly R estarted A rn o ld i M ethods, 1996, available
from: f t p : / / f tp .c a a m .r ic e .e d u

[60] Allan R. J., Bush I. J., Henty D., Bush T., Seria l an d P ara lle l F F T R outines, technical
report, the CCLRC HPCI Centre at Daresbury Laboratory, Daresbury, 1996

http://www.mcs.anl.gov/Proj
ftp://ftp.netlib.org
http://www.epcc.ed.ac.uk/epcc-tec/documents.html
ftp://ftp.caam.rice
http://www.netlib.org
ftp://ftp.caam.rice.edu

