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Abstract: G protein-coupled receptors (GPCRs) are the most frequent targets for many drugs. They
form the largest superfamily of integral membrane proteins, of which more than 1000 members have the
following common features: (i) All GPCRs form 7 hydrophobic a-helices of length ~38A (25 amino
acids, 7 turns) along a single chain. The consecutive helices altemnatively cross the membrane, starting
from the extracellular side, so that they form a heptahelical transmembrane domain interwoven with 6
loops, of which the even ones plus the N-terminus create the receptor’s extracellular domain while the
odd ones plus the C-terminus form its intracellular domain. (ii) All GPCRs are stimulated by diverse
extracellular (primary) signals. (iii) Stimulated GPCRs convey the primary signals via their
transmembrane and intracellular domains to the cytosolic peripheral heterotrimeric GTP-binding proteins
(G proteins), mediating the signal’s further transduction to various cellular second messenger systems.
A current status of structural studies on GPCRs, consisting of low ~7.5A resolution experimental
structures and supplementary molecular modeling, is outlined. Subsequently, some results of authors’
own work on studying essential interactions of the V2 vasopressin renal receptor (V2R) with its agonist
[Arg®]Vasopressin (AVP) and selected antagonists are presented, as well as their possible impact on the
biological signal transduction is discussed. Finally, perspectives for future developments are sketched.

Keywords: G protein-coupled receptor, molecular modeling, GPCR/bioligand interaction, molecular
dynamics, membrane

1. Biological Signal Transduction via G Protein-Coupled
Receptors and G Proteins

A typical career in medicinal chemistry will run across a G protein-coupled
receptor (GPCR) as a drug target. GPCRs form the biggest known (~2000
sequences reported to date [1]) superfamily of homological proteins, integral to the
membranes in most cells of any vertebrate, where they serve as transducers of
a bewildering array of incoming extracellular signals. These signals, after being
processed within the receptor and conveyed across the membrane, are picked up by
the cytosolic GTP-binding proteins (G proteins) to initiate chains of intracellular
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processes virtually controlling all cell activities, see Figure 1. Accordingly, GPCRs,
also known as heptahelical transmembrane (7TM), or serpentine receptors, are
de facto the most frequent drug targets. Ironically, despite their absolutely
fundamental physiological roles, little is known about GPCR structure as, being
typical integral membrane proteins, they are crystallization-resistant and thus
immune against structural elucidation by X-ray.

reeeptor receptor+agorust cffector

€% channel §
PLCB

AC
PDE
Kinases

G GhP

Figure 1. GPCR signal transduction system. The activated receptor catalyses the exchange of GDP

for GTP in the Ga;;y heterotrimer. This triggers the dissociation of the heterotrimer into G .GTP and

G . which activate effectors: enzymes and/or ion channels. Native G , never separates of helical G,
and has a structure reminiscent of a 7-blade propeller [10] as reflected on the scheme.

Until now, only low-resolution (> 6 A) structures of the light receptor, bovine [2]
and frog [3] rhodopsin, are known from the electron diffraction in
cryo-microscopic measurements. Together with the multi-sequence analysis [4, 5],
they have confirmed the structural concensus agreed upon, and schematically
shown in Figure 1. Thus, any GPCR consists of a hydrophobic heptahelical
transmembrane domain (7TM), interlaced with the 6 alternating extracellular and
cytosolic loops (EL1-EL3 and IL1-IL3, respectively), creating with the N-terminus
and with the C-terminus the extracellular and intracellular domains, respectively.
Accordingly, 7TM is composed of seven transmembrane helices TMI1-TM7,
aligned one after the other counterclockwise (if viewed from the extracellular
space) into a kidney-like shape [1, 6]. The amino acid sequences of respective
TM1-TM7 helices, within the most abundant rhodopsin-like GPCR family, are
homological to ~20% level, thus supporting a hypothesis on common functionality
and structure of their 7TMs. On the contrary, both the extracellular and intracellular
domains exhibit no mutual sequence homology, unless among very closely related
GPCRs. This diversity is reflected in the enormous wealth of primary signals for
GPCRs, ranging from a photon via metal ions, gustatory substances, odorants,
biogenic amines, neurotransmitters, to small, medium-size and large peptide/non-
peptide/glycoprotein hormone ligands [1, 6, 7, 8].

Interestingly, this first-messenger diversity merges into a uniform signal-
transduction path, embodied within the receptor and at the GPCR/G-protein
interface into a putative common mechanism [1, 6-8, 9]. A contribution to the
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elucidation of the G protein role in this mechanism was appreciated with the Nobel
price in physiology and medicine, awarded in 1994 to G.M. Rodbell and A. Gilman.
Thus, the G protein is stimulated through the cytosolic domain of a ligand-activated
GPCR, see Figures 1 and 2. At this instant, it is a heterotrimer consisting of the G
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Figure 2. G protein cycle. The intracellular signal is proportional to the GDP dissotiation rate
constant k i and inversely proportional to the GTP hydrolysis rate constant he

with GDP (guanosine diphosphate) bound, GB and GY subunits, in short Gaﬁy.GDP.
Over 20 isoforms of G_, 5 isoforms of G, and 11 isoforms of G, are known [8, 10],
yielding > 1100 theoretical G,,, combinations, a figure of an order consistent with
the number of various GPCRs.

Since an activated GPCR changes its conformation, the G_ subunit of G,
receives this as a signal to exchange GDP for omnipresent cellular GTP (guanosine
triphosphate). A nascent complex GuWGTP first dissociates off the receptor and
simultaneously (subsequently?) splits into the funtional G_.GTP and G, see
Figure 2, capable of stimulating intracellular efector/second messenger systems.
These, depending of primary signal/GPCR/G protein systems, may consist of ion
channels and/or various enzymes/second messengers, controlling cellular behavior
and function. As the G_.GTP is simultaneously a slow-acting Mg?*-dependent
GTPase, it gradually hydrolyses GTP to GDP. Restored G,.GDP provides a signal
for the G, .GDP to reassociate, synonymous with the deactivation of the G protein
(as both G_.GTP and G, dissappear). Thus, the G protein working cycle closes, see
Figure 2. A single activation of a GPCR may evoke a few hundred to a few
thousand of the G protein cycles; this being a measure of the amplification of

a primary signal at this stage.
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2. GPCR Structure

Whereas the G protein structures at various stages of the G protein cycle
[11,12,13,14, 15,16, 17], likewise the mechanism of hydrolysis of G_.GTP to
G_.GDP [13, 14], are known, the conformation of GPCRs and our knowledge on
what happens at the GPCR/G protein interface are really misty, as the only GPCR
structural information available are the low-resolution electron cryo-microscopic
images of rhodopsins [2, 3], see above. These images at 6-7A resolution parallel
and 16-17A resolution perpendicular to the membrane surface are good enough for
the reassessment of the match of the specific helices with the three-dimensional
low-resolution 7TM image [2, 3, 18]. They are, however, much worse for the
prediction of mutual inter-helical arrangements, involving helical rotations, tilts and
kinks [4, 19], and they are totally incapable of locating atomic positions. It is only
known from the mutagenesis, photoaffinity and spin labeling experiments that some
20 amino acid-long N- and C-terminal G_ sequences [13] are involved in possible
interactions with the IL2, IL3 and possibly C-terminal fragments [7, 8] of GPCRs.
Thus, a state-of-the-art molecular modeling is currently the only approach to study
the structure of GPCRs and their interactions with bioligands.

Early modeling schemes used the low-resolution structure of bacteriorhodopsin
[20], another 7TM — albeit not a GPCR — integral membrane protein, as
a template for homology modeling. Interestingly, despite no homology between the
transmembrane sequences of bacteriorhodopsin and GPCRs, this modeling resulted
in a huge database of GPCR 7TM templates [21]. Using this scheme numerous
bioligand-interaction models for various GPCRs have been developed [22].
However, recent comparisons of high-resolution structures of bacteriorhodopsin
[23, 24, 25] with low-resolution structures of rhodopsin [2, 3] clearly indicate that
the latter, despite a lower resolution, would make a much better generic GPCR 7TM
template, as being dissimilar to the former and simultaneously having its 7TM at
~20% homological with other GPCRs. Thus, current molecular modeling of GPCRs
consists of rhodopsin-based 7TM templates onto which specific GPCR sentences
are threaded.

Multalin version 5.3.3
Copyright I.N.R.A. France 1989, 1991, 1994, 1996
Published research using this software should cite
Multiple sequence alignment with hierarchical clustering
F. CORPET, 1988, Nucl. Acids Res., 16 P¥, 10881-10890
Symbol comparison table: blosum62
Gap weight: 12
Gap length weight: 2
Consensus levels: high=90% low=50%
Consensus symbols:

! is anyone of IV

$ is anyone of LM

% is anyone of FY

# is anyone of NDQEBZ

MSF: 659 Check: 0 o

Name: sp|P02699|0OPSD_BOVIN Len: 659 Check: 4601 Weight: 1.19
Name: sp|P25103|NK1R_HUMAN Len: 659 Check: 7852 Weight: 1.10
Name: sp|P21555|NY1R_RAT Len: 659 Check: 4036 Weight: 1.10
Name: sp|P41143|0OPRD_HUMAN Len: 659 Check: 3951 Weight: 0.99
Name: sp|P41145|0PRK_HUMAN Len: 659 Check: 9850 Weight: 0.99
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Name:
Name:
Name:
Name:
Name:
Name :
Name:
Name:
Name :
Name:
Name:
Name:
Name:
Name:

sp|P21728 | DADR_HUMAN
sp|P08588 | BLAR_HUMAN
sp|P07550 | B2AR_HUMAN
sp|P25100|A1AA_HUMAN
sp|P18841|A1AB_MESAU
sp|P28223 | SH2A_HUMAN
sp|P25021 | HH2R_HUMAN
sp|P08908|5H1A_HUMAN
sp|P21761| TRFR_MOUSE
sp|P30518|V2R_HUMAN
sp|P37288|V1AR_HUMAN
sp|P47901 | VIBR_HUMAN
sp|P30559 | OXYR_HUMAN
Consensus

Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:
Len:

1/

sp|P02699 |OPSD_BOVIN
sp|P25103 | NK1R_HUMAN
sp|P21555|NY1R_RAT
sp|P41143 | OPRD_HUMAN
sp|P41145 | OPRK_HUMAN
sp|P21728 | DADR_HUMAN
sp|P08588 | B1AR_HUMAN
sp|P07550 | B2AR_HUMAN
sp|P25100 |A1AA_HUMAN
sp|P18841|A1AB_MESAU
sp|P28223 | 5H2A_KUMAN
sp|P25021 |HH2R_HUMAN
sp|P0B908 | 5H1A_HUMAN
sp|P21761 | TRFR_MOUSE
sp|P30518 | V2R_HUMAN
sp|P37288|V1AR_HUMAN
sp|P47901 | V1BR_HUMAN
sp(P30559 [OXYR_HUMAN
Consensus

sp|P02699 |OPSD_BOVIN
sp|P25103 | NK1R_HUMAN
sp|P21555|NY1R_RAT
sp|P41143 | OPRD_HUMAN
sp|P41145 | OPRK_HUMAN
sp|P21728 | DADR_HUMAN
sp|P08588 | B1AR_HUMAN
sp|P07550 | B2AR_HUMAN
sp|P25100 | A1AA_HUMAN
sp|P18841|A1AB_MESAU
sp|P28223 | SH2A_HUMAN
sp|P25021 | HH2R_HUMAN
sp|P08908|SH1A_HUMAN
sp|P21761 | TRFR_MOUSE
sp|P30518 | V2R_HUMAN
sp|P37288 | V1IAR_HUMAN
sp|P47901 | VIBR_HUMAN
sp|P30559 | OXYR_HUMAN
Consensus

sp|P02699 |OPSD_BOVIN
sp|P25103 | NK1R_HUMAN
sp|P21555 | NY1R_RAT

sp|P41143 | OPRD_HUMAN
sp|P41145 | OPRK_HUMAN
sp|P21728|DADR_HUMAN
sp|P08588 | BLAR_HUMAN
sp|P07550 | B2AR_HUMAN
sp|P25100 | ALAA_HUMAN
sp|P18841|ALAB_MESAU
sp|P28223 | 5H2A_HUMAN
sp|P25021 |HH2R_HUMAN
sp|P08908 |5H1A_ HUMAN
sp|P21761 | TRFR_MOUSE
sp|P30518|V2R_HUMAN

659 Check: 4069 Weight: 1.00
659 Check: 8391 Weight: 0.92
659 Check: 9981 Weight: 0.92
659 Check: 3098 Weight: 0.82
659 Check: 9868 Weight: 0.82
659 Check: 8336 Weight: 0.99
659 Check: 2329 Weight: 1.08
659 Check: 2393 Weight: 1.10
659 Check: 965 Weight: 1.15
659 Check: 242 Weight: 1.03
659 Check: 4017 Weight: 0.93
659 Check: 6899 Weight: 0.93
659 Check: 9637 Weight: 0.96
659 Check: 9692 Weight: 18.0
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sp|P37288|VIAR_HUMAN
sp|P47901 | VIBR_HUMAN
sp|P30559 | OXYR_HUMAN

Consensus

sp|P02699 |OPSD_BOVIN
sp|P25103 | NK1R_HUMAN
sp|P21555|NY1R_RAT
sp|P41143|OPRD_HUMAN
sp|P41145|0OPRK_HUMAN
sp!P21728 | DADR_HUMAN
sp|P08588|B1AR_HUMAN
sp|P07550 | B2ZAR_HUMAN
sp|P25100 | A1AA_HUMAN
sp|P18841|A1AE_MESAU
sp|P28223 | 5H2A_HUMAN
sp|P25021 | HH2R_HUMAN
sp|P08908|5H1A_HUMAN
sp|P21761 | TRFR_MOUSE
sp|P30518 | V2R_HUMAN
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sp|P47901|V1IER_HUMAN
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sp|P37288| VIAR_HUMAN
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sp|P08588 | B1AR_HUMAN
sp|P07550 | B2AR_KEUMAN
sp|P25100|A1AA_HUMAN
sp|P18841|ALIAB_MESAU
sp|P28223 | 5H2A_HUMAN
sp|P25021 | EH2R_HUMAN
sp|P08908|5H1A_HUMAN
sp|P21761 | TRFR_MOUSE
sp|P30518 | V2R_HUMAN
sp|P37288 | V1AR_HUMAN
sp|P47901 | V1IBR_HUMAN
sp|P30559 | OXYR_HUMAN

Consensus

sp|P02699 |OPSD_BOVIN
sp|P25103 | NK1R_HUMAN
sp|P21555|NY1R_RAT
sp|P41143 |OPRD_HUMAN
sp|P41145|OPRK_HUMAN
sp|P21728 | DADR_HUMAN
sp|P08588 |B1AR_HUMAN
sp|P07550 | B2AR_HUMAN
sp|P25100 | A1AA_HUMAN
sp|P18841|A1AB_MESAU
sp|P28223 | 5H2A_HUMAN
sp|P25021 |HH2R_HUMAN
sp|P08908|5H1IA_HUMAN
sp|P21761 | TRFR_MOUSE
sp|P30518|V2R_HUMAN
sp|P37288|V1IAR_HUMAN
sp|P47901 | VIBR_HUMAN
sp|P30559 |OXYR_FUMAN
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sp|P41143 |OPRD_HUMAN
sp|P41145 | OPRK_HUMAN
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sp|P25021 | HH2R_HUMAN
sp|P08908|SH1A_HUMAN
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sp|P37288 | V1AR_HUMAN
sp|P47901 | V1IBR_HUMAN
sp|P30559 |OXYR_H
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sp|P30518 | V2R_HUMAN
sp|P37288 | V1IAR_HUMAN
sp|P47901 | VIBR_HUMAN
sp|P30559 | OXYR_HUMAN

Consensus

sp|P02699 |OPSD_BOVIN
sp|P25103 | NK1R_HUMAN
sp|P21555|NY1R_RAT
sp|P41143 |OPRD_HUMAN
sp|P41145| OPRK_HUMAN
sp|P21728 | DADR_HUMAN
sp|P08588 | B1AR_HUMAN
sp|P07550 | B2AR_HUMAN
sp|P25100 | A1AA_HUMAN
sp|P18841|A1AB_MESAU
sp|P28223 | 5H2A_HUMAN
sp|P25021 | HH2R_HUMAN
sp|P08908 | 5H1A_HUMAN
sp|P21761| TRFR_MOUSE
sp|P30518|V2R_HUMAN
sp|P37288|V1IAR_HUMAN
sp|P47901 | VIBR_HUMAN
sp|P30559 | OXYR_HUMAN
Consensus

sp|P02699 |OPSD_BOVIN
sp|P25103 | NK1R_HUMAN
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sp|P07550 | B2AR_HUMAN
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sp|P18841|A1AB_MESAU
sp|P28223 | SH2A_HUMAN
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sp|P25021 | HH2R_HUMAN
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sp|P30518|V2R_HUMAN
sp|P37288|V1AR_HUMAN
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sp|P30559 | OXYR_HUMAN
Consensus
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sp|P02699 | OPSD_BOVIN
sp|P25103 | NK1R_HUMAN
sp|P21555|NY1R_RAT
sp|P41143 | OPRD_HUMAN
sp|P41145 |OPRK_HUMAN
sp|P21728 | DADR_HUMAN
sp|P08588 | BLAR_HUMAN
sp|P07550 | B2AR_HUMAN
sp|P25100 |A1AA_HUMAN YSNLRETDI
sp|P18841|A1AB_MESAU APGHF
sp|P28223 | 5H2A _HUMAN
sp|P25021 | HH2R_HUMAN
sp|P08908 | SH1A_HUMAN
sp|P21761 | TRFR_MOUSE
sp|P30518 | V2R_HUMAN
sp|P37288|V1AR HUMAN
sp|P47901 | VIBR_HUMAN
sp|P30559 | OXYR_HUMAN

Consensus

Figure 3. A typical multiple sequence alignment. 18 various GPCRs were aligned using the Multalin
program; see the header in the listing for reference. The SWISS-PROT-encoded sequences decypher
into the following human (unless otherwise stated) GPCRs in the descending order: bovine rhodopsin,
NK1 receptor, rat neuropeptide Y(1) receptor, opioid 8 receptor, opioid x receptor, D(1a) dopamine
receptor, adrenergic B la receptor, adrenergic 3 2a receptor, adrenergic ala receptor, rabbit
adrenergic alb receptor, serotonin 24 receptor, histamine H2 receptor, serotonin 1A receptor, mouse
thyroliberin receptor, V2R, V1aR, VIbR and OTR. Invariant residues are black and conservative
residues are gray. The trasmembrane helices TM1-TM7 are underlined.

The following three schemes for 7TM building are our favorite:

(i) The older scheme of Baldwin [4], based on a critical alignment, see Figure 3, of
~200 GPCR sequences. Through an extensive examination of distributions along
the putative helices of polar/non-polar and conservative/non-conservative
residues, the method enables a rational choice of the helical sequences
TM1-TM?7 and their unique threading onto a low-resolution structure of
rhodopsin. This 7TM model was subsequently refined to the self-consistency
of 1.67A, by the inclusion of all experimentally available distance, positional
and orientational constraints typical of bovine rhodopsin [26]. The automated
GPCR-modeling server, based on this scheme, is available via Internet [27].

(ii)) The most recent scheme of Baldwin et al [19] using the same rationale as the
original one [4] yet for as many as ~500 sequences and therefore enabling
refinements such as variable helical lengths, relative TM shifts, and kinks in
TMS5 and TMS6, all features affirmed by recent experimental data. A relevant
7TM template is available from the authors upon request.

(1i1) The ab initio model of Mosberg et al [28]. This model also uses multi-sequence
alignment for the choice of the 7TM helices, followed by a distance-geometry
optimization applied simultaneously to 410 GPCR sequences. First, putative hy-
drogen bonds between polar/charged residues within the GPCR interior are
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singled out. Subsequently, they are used collectively and simultaneously for
many overlapping GPCRs as constraints in the iterative distance-geometry
procedure, aimed at the optimization of an averaged 7TM bundle.

All three methods have in common an extensive use of multi-sequence analysis
for making choices of TM1 through TM7. Ones the helices singled out, the methods
[(i) and (ii)] probe the TMI-TM7 mutual arrangement either by a rule-based
threading them onto the foggy shape of rhodopsin, upon an assumption that the
sequence homology legitimates 7TM 3-dimensional structure homology, or
[Method (ii1)] by a rule-based ab initio 7TM arrangement optimization. Methods (i)
and (ii) work only at the C“-trace level and are strictly limited to modeling the 7TM
bundle, while Method (iii) in principle can also be used for modeling EL and IL
loops. These are non-conservative among the receptor types and much more
obscure for modeling than the 7TM domain. All three methods give similar
averaged shape of the 7TM bundle, Figure 4. Interestingly, the resulting bundles
from (ii) and (iii) better overlap than (i) and (ii), despite close methodological
relationship between the latter two.

Figure 4. Stereodiagram of overlapping TM bundles resulting from procedure: (i) green, (ii) blue and
(iii) red. Extracellular view onto the membrane surfuce (TOP) and lateral view (BOTTOM). The
conservative residues as indicated in Ref. [19] are marked with balls in Model (ii).
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3. Biological Signal Transductuion
via Vasopressin V2 Receptor

Vasopressin (AVP) and oxytocin (OT) are two similar nonapeptide hormones
produced in the neurophysis and released to the blood in the pituitary posterior
lobe. They differ only on the two amino acids X and X’ in their otherwise common
sequence: CYXQNCPX’G-NH,, where in AVP(X,X’)=(F,R) and in
OT (X, X”)=(1, L). Major AVP activities consist of blood pressure control via the
Vla receptors (V1aR) in blood vessels and urine concentration (antidiuresis) via the
V2 receptors (V2R) in the kidney. Oxytocin controls labor and lactation in
mammalian females via a common oxitocin receptor (OTR) in the uterus and the
mammalian gland, respectively. V1aR, V2R and OTR, being 370-400 amino acid
long, are typical members of the rhodopsin family of GPCRs, compare Figure 3.
For the best-studied AVP/V2R system a number of mutations were identificd,
giving rise to the hereditary X-linked (i.e. carried by women but affecting boys)
nephrogenic diabetes insipidus, consisting in a disability to concentrate the urine,
resulting in an extensive diuresis and, possibly, death of dehydratation [29]. Other
variants of nephrogenic diapetes insipidus, resulting from pathological deficiency of
AVP, are cured by administration of V2R-selective AVP superagonist, desamino-
[D-Arg’]JAVP (DDAVP, desmopressin®) [29]. Both, the pathological mutations and
model biochemical experiment, using mutagenesis [30,31,32] as a tool for
studying V2R structure-activity relationships, warrant molecular modeling of V2R
and its interaction with bioligands.

Our initial V2R model was obtained using Method (i), see above. The loops
ELI-EL3, IL1-IL3 and the N- and the C-termini were added using protein loop-
building tools inherent in Sybyl suite of programs [33]. Initial ligand docking was
attained in several ways, always respecting a complementarity in the electrostatic
potentials of the V2R cleft, see below, and the ligand. The systems were

Figure 5. Optimized V2R/bioligand complexes. Only the extracellular parts are shown. V2R is gray-
shaded and the ligands are black. The receptor s interacting residues are labeled and their side chains
exposed. A. V2R/AVP; B. V2R/selective peptide antagonist desGly*-[Mca',D-1le*, 1’| AVP,

C. V2R/selective nonpeptide antagonist OPC-31260.
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equilibrated using a Constrained Simulated Annealing (CSA) protocol, with all but
the 7TM C* atoms free to move. Optimal ligand docking modes were chosen using
the ligand/receptor interaction energies and structure-activity data [34, 35] as the
selection criteria. Our studies consisted of systems’ relaxation using CSA in vacuo
in the earlier works [36,37, 38], and the molecular dynamics for the systems
immersed in the fully hydrated phospholipid bilayer in the recent works [39, 40].
Details of computing and analyses are described elsewhere {36, 40].

From Figure 5 it is seen that any GPCR modeled to the RD template [26, 27]
has a ~21A deep cavity on the extracellular side, surrounded by TM3-TM7, with
a narrower extension towards TM2. The cavity ends up on a floor from the
hydrophobic residues TM3:M123, TM4:L170, TM5:V213,F214 and TM6:W284,
F287,F288 in V2R. The cleft is large enough to accommodate the pressin ring
(CYFQNC) of AVP and even more so to fit the OPC-31260 non-peptide antagonist.
Most of the simulations, whether with a peptide ligand or not, converged to the
docking modes typical of V2R/AVP [36]. However, OPC-31260 as much thinner
than the AVP pressin ring, cannot fill up the entire V2R cleft and it adheres to the
front side of the TM3-TM7 cavity in its most preferred arrangements, see Figure 5C
[37].

In Figure 5 all V2R interacting residues are marked so that the significant receptor-
ligand interactions could be seen. Both the V2R/peptide complexes develop a number
of polar and nonpolar interactions with the cleft walls. Major interactions, common to
both AVP and its peptide antagonist desGly®’-[Mca!,D-Ile?1le*]AVP involve on the
V2R part TM3:C112,V115-K116,Q119,M123; TM4:Q174; TM5:V206,A210,V213;
TM6:W284,F287,F288,Q291 and TM7:F307,L.310,A314,N317; see Figs. 5A and 5B.
The Mca® B,B-pentamethylene moiety fits snugly a hydrophobic pocket formed by
TM3:V115 and TM7:L310 and A314. The non-peptide antagonist OPC-31260 orients
itself typically so that its long axis is nearly vertical and its HN(CH,)," is involved in an
(bifurcated) ion bridge with one (two) of the numerous negatively charged Asp and/or
Glu residues in ELs, see Figure 5. With this regard, it is interesting to notice that EL2
contains three carboxylates in V2R and two in V1aR, which may bear on the increased
V2R/V1aR selectivity of the OPC-31260" analogs with a cationic group in the
equivalent place [35].

The tendency for all three ligands to dock within the same compartment of the
V2R extracellular cavity, suggests a simple competitive mechanism for the
antagonism toward V2R by both desGly®-[Mca',D-Ile?,11e*]AVP and OPC-31260.
The V2R amino acid residues, involved in ligand binding, are invariant or
conservative for the subfamily, or even invariant over the whole GPCR superfamily
(TM3:C112, TM4:Q174, TM6:W284,F287 and TM7:N317). The invariant
(conservative) residues within the subfamily may be pertinent to ligand binding
while those invariant over the whole GPCR superfamily may have to do with the

* Abbreviations: Mca B,B-cyclopenta-methylene-B-mercaptopropionyl; OPC-31260
[5-dimethylamino-1-{4-(2-methyl-benzoyl-amino)- benzoyl}-2,3,4,5-tetrahydro-1H-benzazepine.
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signal transduction, putatively universal for the whole GPCR superfamily. Our
results on agonist docking agree with those obtained by Mouillac et al for a related
AVP/V1aR system. Furthermore, some of the equivalent V1aR residues have
already been found critical for the ligand affinity [41].

In our most recent work [40] we performed comparative unconstrained
molecular dynamics of the AVP/V2R complex and an empty V2R in the fully
hydrated lecithine (dimyristoylphosphatidilcholine, DMPC) bilayer. In Figure 6 the
interiors of the intracellular sides of empty V2R and its V2R/AVP complex are
compared. Both images represent well-relaxed structures, resulting from averaging
the last 300 ps of ~1500 ps total simulation in each case. It is seen that in the
V2R/AVP complex there is a contiguous network of internal polar receptor
residues, extending from the ligand to the cytosolic domain, whereas in the empty
V2R a similar network is interrupted. The most prominent difference regards the
TM3:Thr134-TM7:Tyr325 contact, present in the V2R/AVP complex but absent in
the empty V2R. Interestingly, both residues belong to those universally conserved
over the GPCR superfamily [4, 19], see Figure 3. Thus, the relaxed structures are
compatible with the active and passive forms of V2R respectively, and possibly
indicative of details of an allosteric signal transduction mechanism.

Figure 6. Space-filled networks of polar residues (blue) and prolines (green), spanning interior
of V2R from AVP (thick gray backbone) to the conservative and important in signal transduction
(see Figure 3) DRI sequence at the C-terminus of TM3 (standard colors: C,H gray, O red and N
blue): in V2R/AVP complex (TOP) and in empty V2R (BOTTOM). It is seen that a contiguous
network only preserves in the receptor-ligand complex. Note that the TM3:Thr134-TM7:Tyr325
(pink) contact is preset in the V2R/AVP complex while it is absent in the empty V2R.



596 J. Ciarkowski, C. Czaplewski, M. Pasenkiewicz-Gierula

4. Perspectives

Contemporary protein modeling is not advanced enough for full credibility.
Rather, it hopefully may guide as to specific mutagenesis/affinity studies aimed at
the verification of arising hypotheses. The afore-mentioned V2R residues,
appearing to be responsible for ligand binding, should be among the first candidates
for experiments of this kind. Progress in GPCR modeling may be expected from the
following areas:

(1) The Protein Structure Database at Brookhaven [42] is growing exponentially,
now exceeding 7000 objects totally and 1000 having unique folds [43], thus
providing a basis for analyses and taxonomy of structural protein motifs. The
analysis of the accumulation rate of these motifs optimistically indicates that in
5-10 years, more or less simultaneously with the completion of the human genome
project, the collection of the structural motifs may approach the state of saturation
[43, 44], which in turn forecasts well for homology modeling.

(2) Progress continues in the electron cryo-microscopy going down to lower and
lower temperatures, towards the liquid helium. This will dramatically reduce
a destructive effect of the electron beam thus improving the number of collected
structure factors and eventually the resolution. A measure of success in this
field may be the first high-resolution structure solution of bacteriorhodopsin
(another 7TM integral membrane protein yet not a GPCR) [25], giving hope
that other TM proteins will follow soon.

(3) A new era for X-ray (micro)crystallography is coming, implementing cubic lipid
phase [45]. This, together with the third-generation synchrotronic sources,
providing for enormously strong X-ray radiation, forecast a possible break-
through in the X-ray crystallography of integral membrane proteins [46, 47].
Two recent high-resolution structure solutions, using these new techniques for
the most studied landmark protein bacteriorhodopsin [24, 48], argue in favor of
this optimism.

If a break-through in the accumulation rate of the transmembrane protein motifs
to the Protein Structure Database were indeed around the corner, then the basis for
an increasingly rationalized homology modeling of GPCRs would grow rapidly.
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