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Abstract: The paper presents results on numerical modelling of rapid flow o f granular materials in a model 
silo with convergent smooth walls. The calculations werfi performed with a finite element method based 
on a polar elasto-plastic constitutive relation by Miihlhaus. The relation differs from the conventional 
theory o f plasticity by the presence o f Cosserat rotations and couple stresses using a mean grain diameter 
as a characteristic length. The characteristic length causes that numerical results do not depend upon the 
mesh discretisation. The model tests on rapid silo flow o f glass beads performed by Renner in a glass 
hopper with a large wall inclination from the bottom were numerically simulated. The plane strain 
FE-calculations were performed by taking into account inertial forces and linear viscous damping. 
A satisfactory agreement between numerical and experimental results was obtained. Advantages and 
limitations o f  a continuum approach for simulations o f rapid silo flow were outlined.

1. Introduction
The existing theoretical models on silo flow o f granular materials can be divided 

into models treating the silo fill as continuum and as separate particles. The first 
models based mainly on a finite element method are more suitable for slow silo flow, 
i.e. flow with low deformation rates, where the particles behave as a conglomerate 
and exhibit solidlike behaviour. During such flow, the internal stresses are generated 
only by normal and friction forces between par.icles. The second models using 
granular dynamics algorithms, kinetic theories or cellular automata approaches 
correspond to rapid silo flow where the material behaves like gas or dense fluid. 
Rapid flow is connected to high deformation rates and large inertial forces. During 
such flow, the particles loose oft their contacts and are subject to short impulsive 
collisions and overriding. The internal stresses are due to normal and friction forces 
between grains and collisions. Slow and rapid flow are dissipative. For slow flow, 
energy is slightly lost due to friction as grains slide across each other. For rapid flow, 
energy is strongly lost because particle collisions are inherently inelastic. Both types 
of flow may occur simultaneously at different locations in a silo. Usually, material at 
the outlet is in the rapid flow regime and the material higher up is moving slowly.
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The intention of the theoretical research presented in this paper is to study the 
onset of rapid flow o f granular material in a plane strain model hopper with a large 
wall inclination from the bottom. The study was performed with a continuum model 
based on a finite element method and taking into account a polar elasto-plastic 
constitutive law. The used model is a continuum approach but it has some properties 
characteristic for discrete models. It includes, namely, a mean grain diameter, grain 
rotations and couple stresses. To describe the material dynamics and the possiDility 
of energy loss during grain collisions in rapid flow, inertial forces and viscous 
damping were also included. The FE-results were compared with corresponding 
model tests carried out on glass beads flowing in a glass hopper with a large wall 
inclination from the bottom. The used approach turned to be realistic for description 
of usual silo flow (Tejchman 1995, 1996, 1997) but it has not been verified for 
extremely rapid flow yet which takes place in hoppers with a large wall inclination 
(rather unusual in the si'os practice).

The available analytical continuum theories of stress analysis in silos are too 
simple and not sufficient to realistically describe the material behaviour during 
dynamic flow. They were derived from quasi-static assumptions without taking into 
account the deformations in silo fill and inertial effects. Some of these methods were 
formulated by classical methods of plasticity (Walker 1967, Walters 1973, Horn and 
Nedderman 1976, Drescher 1983) assuming a total plastification of the fill in the silo 
which does not take place in reality. Other formulae were based upon assumptions 
(elastic stress field by Frohlich 1934, active and passive stress state by Airy 1987, 
associated flow rule by Mroz and Drescher 1968, Mroz and Szymanski 1971, radial 
stress field by Jenike 1964, circular distribution of the major principle stresses by 
Enstad 1975, and static and kinematic bounds theorems by Melix 1985) which were 
not verified by experiments. In addition, the assumption in most silo theories of 
a constant wall friction angie (tc be determined with wall shear tests) as boundary 
condition along the wall is not realistic because the wall fricr on angle changes during 
shearing and depends on the boundary conditions o f the enthe system (Tejchman 
1989). The existing FEM-solutions o f silo flow by HauBler and Eibl (1984), Eibl and 
Rombach (1988), Vedaie and Bishara (1988), Tano et al. (1994), Ragneau and 
Areibert (1995), Paickenbrod and Eibl (1995) are more realistic than analytical silo 
formulae. Their big advantage is the possibility to consider large systems. However, 
they were obtained within a non-polar elasto-plastic continuum and thus, the results 
were dependent on the magnitude of the element mesh. Moreover, some of them did 
not consider the material softening due to the shear zone formarion, and others 
inertial forces. They were also unable to consistently describe the interface 
behaviour along the silo wall. The influence o f wall roughness and cohesion on flow 
was not investigated too. Due to an assumption of large viscous damping (HauBler 
and Eibl 1984, Eibl and Rombach 1988), the calculated stresses during silo emptying 
had a quasi-static character. The dynamic pulsations in a silo fill during flow 
(Ruckenbrod and Eibl 1995) were obtained under a doubtful assumption of 
a decrease of the wall friction coefficient in the region of high flow velocities.
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Tejchman (1989, 1997), Gudehus and Tejchman (1991) showed that many 
mechanisms of granular mass in silos at the onset of quasi-static mass flow with 
controlled outlet velocity (formation of shear zones, interaction between the wall 
with variable roughness and the siio fill, stress fluctuations, grain size effects) could 
realistically be described with a polar elasto-plastic and polar hypoplastic approach. 
The numerical results were independent o f the mesh size. The polar boundary 
conditions on the wall proved to be more realistic than the classical ones. Using the 
same approaches with an additional consideration of inertial forces, Tejchman and 
Gudehus (1993) and Tejchman (1995, 1997) successfully described silo the onset of 
dynamic flow wl :h controlled and free ouilet velocity.

The granular dynamics algorithms (Cundall and Strack 1979, Walton and Braun 
1986, Savage 1992, Sakaguchi and Ozaki 1993, Thornton and Sun 1993) are 
powerful research techniques for giving insight into flow behaviour at the 
microscopic level since they handle particle properties directly. The calculated flow 
patterns in model silcs with these algorithms are consistent with experimental work, 
but the calculated stresses in the silo fill are only qualitatively in agreement with 
measured ones (Kafui and Thornton 1995, 1997, Langston et al. 1995, Gutfraind and 
Pouliquen 1995, Pouliquen and Gutfraind 1996, Lin et a!. 1996, Masson et al. 1996, 
Luding et al. 1996, Ristow 1997). This is so as the determination of both micro- 
structural material parameters and wall boundary conditions is difficult. There is 
simply no experimental data on micro-structural parameters which could help to 
calibrate better the granular dynamics models. At present, these models demand too 
much computer time and thus they are not relevant for large silos. They certainly 
belong to future methods on investigation of flow behaviour in silos since they follow 
the motion of all particles and their interactions at each time step in detail. Their 
availability grows with the appearance of more and more powerful computers.

A.n alternative to the use of granular-dynamics computer simulations to predict 
the rapid granular flow behaviour are analytical kinetic theories (Savage and Jeffrey 
1981, Haff 1983, Jenkins and Richman 1985, Lun and Savage 1987, Jenkins 1992) 
which were developed in terms of analogies to the flow of gases and dense fluids at 
the molecular level, i.e. in terms of a molecular chaos without long duration contacts 
In order to account for the velocity fluctuations, the concept of granular temperature 
was introduced. Futterer (1991) used a model by Haff (1983) to describe the 
material behaviour during rapid flow in converging canals. Oniy qualitative 
agreement with experimental data was achieved. As in the case o f molecular 
dynamics algorithms, the identification of material constants and the assumption of 
realistic wall boundary conditions was not possible.

Cellular automata approaches (Baxter and Behringer 1990, Martinez et al. 
1995), which describe the material flow as an upward propagation and diffusion of 
holes through the lattice, are purely kinematic models and no flow dynamics is 
involved. Thus, they are not apt to realistically model silo flow.

The paper is organised as follows. At the beginning some results o f model silo 
tests on rapid flow in a model hopper are shown. Next, a plane polar continuum is
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briefly presented. Later, a polar elasto-piastic constitutive law is summarised which 
is used for investigations o f rapid flow. The polar boundary conditions and the FE- 
implementation are presented as well. Then, the FE-results for plane strain flow are 
depicted. Finally, the conclusions from numerical analyses are discussed.

2o Model Tests
Model tests on rapid silo flow were performed in a flat silo model with 

convergent glass walls (Buggish and Renner 1993, Renner 1996). The model was 
0.9 m high and 0.02-0.045 m thick. The wall inclination from the bottom was 
a  = 82°-87.5s, the width at the bottom b, = 0.02-0.08 m, and the width at the top 
b2 = 0.13 m. As the fills, the dry glass beads with two different mean diameters 
were used, viz. d = 2.3 mm and 4.5 mm. The flow of the fill out o f the hopper was 
gravitational. Due to a large wall incli aation from the bottom, the flow was rapid 
The wall shear stress and wall normal stress were measured with a transducer 
placed at half o f the height o f one wall. The transducer consisted o f one vertical and 
one horizontal beam. The st resses were obtained w ith the aid of strain gauges which 
were stuck to the beams. The displacements o f glass particles during flow were 
registered with a high speed video-camera which was apt to make 10C0 photographs 
in Is. In addition, air pressure inside the silo fill was measured.

Fig.2.1 shows typical recorded signals o f the normal (n and shear stress (wat 
the mid-point of the glass wall during fitting, storing and flow (a -  87.5s, bt = 0.04 m,
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Figure.2.1. Measured shear tw and normal bj stress on the wall during rapid flow (Renner 1996)

d5( = 2.3 mm). During flow, the wall stresses pulsate strongly about their mean 
values with a frequency of about f  = 5.5 Hz. The pulsations are almost harmonic. 
The amplitude from peak to peak of the normal watt stress is about 0.6 kPa and of 
the shear wall stress 0.2 kPi. The normal wall stress pulsates around the mean 
value o f 0.5 kPa, and the shear wall stress around 0.2 kPa. The mean wall friction
angle is found to be almost constant, i.e. <pw = arctan(rh,/<j) = 18.4s. The pulsations
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are caused by disturbances of the material flow at the silo outlet. The disturbances 
propagate through the fill in the form of longitudinal stress waves opposite to the 
flow direction. The velocity o f these stress waves, v = 2 .7  m/s, was estimated on 
the basis o f the measured velocities o f neighbouring particles, and was 
approximately nine times as laige as the mean flow velocity, v = 0.3 m/s. The value 
of v v/as approximately equal to a theoretical value for the mean flow velocity at 
the silo outlet given by the experimental formula by Schwedes (1968):

wherein bg is the outlet width and g denotes the gravitational acceleration. The 
measured velocity and frequency o f stress waves in the fill during rapid flow are 
significantly smaller than the velocity and frequency o f longitudinal stress waves 
propagating through a compact granular body. During rapid flow in the hopper, 
numerous hollow spaces were observed in the fill which strongly reduced the ve
locity and frequency o f propagating stress waves. The more compact the granular 
body, the higher the wave velocity and frequency. The slower the flow, the more 
compact the bulk solid remains. The velocity and frequency of waves during rapid 
flow in silos with smooth walls cannot be simply estimated from the formula for 
wave propagation in an elastic bar o f a silo height (Tejchman 1997) because the 
propagation way and the modulus o f elasticity are different due to the occurrence 
of hollow spaces in the flowing material.

In addition, the model tests by Renner (1996) revealed that the mean stresses 
increased with increasing v/all inclination a. The velocity v and frequency /  of 
stress waves increased almost linearly with decreasing a. The influence o f b on the 
results was insignificant.

A rectangular (*•, x2) coordinate system is used, where x are the coordinates of 
material points in the actual configuration. A polar (Cosserat) continuum differs 
from a classical (non-polar) continuum in that an additional rotation (called coc) 
appears in the kinematics (Gunther 1958, Schafer 1962, Mindlin 1964). Thus, each 
material point of the polar continuum has three degrees o f freedom: two translational 
degrees of freedom, namely m, and w2, and one rotational degree o f freedom coc 
(Fig.3.1). During deformation, the material points are displaced by tq and w., and at 
the same time are rotated from their initial positions by an angle <yc with respect to 
the axes o f x, and x2. The rotation takes place around the rotation axis x3 which s 
orthogonal to the 1,2 -plane. (oc, which originates from the micro-rotation o f the 
micro-elements in a polar continuum, is independent o f the displacements in contrast 
to the rotation in a non-polar continuum:

The state of deformation within a polar continuum is described by the following 
six deformation quantities (which are considered here as infinitesimal):

(2 .1)

3. Plane Polar Continuum

(3.1)
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where

£1I =M1,1 J e22 = m2,2> (3.2)

= «1,2 +(0 ’ £2l=tt2,\~ ® ) (3.3)

K, = C»“) , K2 - COC2 , (3.4)

(),; =d() ldxi . (3.5)

e. are components o f the deformation tensor and k . are components of the 
curvature vector. The normal deformations are defined similar as in a non-polar 
continuum. The shear deformations £n and e21 can be viewed as a relative 
deformation relating the macro-displacement gradient and the micro-rotation

Figure 3.1. Degrees o f freedom in a plane Cosserat continuum: ur u2 — horizontal and vertical 
displacement, to c— Cosserat rotation, P — material point

(Fig.3.2); in contrast to a non-polar continuum en * eiy The curvatures k:, and 
describe the macro-deformation gradients o f the micro-rotation (Fig.3.2). £ and k. 
are invariant with respect to rigid body motions (Gunther 1958, Miihlhaus 1989). 
The deformation tensor £. can be decomposed into a symmteric part E. and 
a skew symmetric part W.-W.f:

£i j=Ei j + Wu -W?,  (3.6)

where

E,j = 0 .5(« ,j + ujj),  (3.7)

Wy = a>ij -  0.5(uij  -  Ujj ), (3.8)

Wx\ = W2C2 = 0, K  = -W2l = -6JC. (3.9)

E. and W.. denote the symmetric and the skew symmetric part o f the displacement 
gradient, respectively, and W ' denotes the skew symmetric tensor corresponding 
to the Cosserat rotation coc. E.. is the deformation tensor and Wy is the rotation 
tensor which are characteristic of a non-polar continuum. The skew symmetric part
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W -  W e designates the difference between the macro- and the micro-rotation. 
If W..- W;,c, e.. reduces to L and the kinematics of a non-polar continuum is 
retrieved. If W..< W an overall negative (clockwise) Cosserat rotation emerges.

The conditions for the compatibility of deformations and curvatures are (Gunther 
1958):

£I2,1 + ,f l (3.10)

£21,2 K2 = (3.11)

: - ^ 2,i = 0 - (3.12)

Six deformation quantities are conjugate with respect to energy to six stress 
quantities referred to the actual configuration. Four components o f s sire associated 
with four components of the stress tensor a  vhich is in general non-symmetric 
(ct12̂  cr21). The curvatures k. are associated with the couple stresses m.. Fig.3.3 
shows the stresses, the couple stresses, the volume body forces f f , the volume body

moment mB, the volume inertia forces piit , and the volume moment o f spin inertia

96ic at an infinitesimal element (dxJ, dx2) o f a plane Cosserat continuum. Force 
equilibrium and moment equilibrium give the following equations of motion

Gu,\+G\2,2 ~ f \B + Pu\ = 0 . (3-13)

<7 21,l + a 22.2 ~ f l  + P W2 =0> (3-14)

C

m\ ; +m2 2 + cr2i ~ <J\2 ~ m B +9(0 (3-15)

where

Q = d 2()ldt2 (3.16)

p is the mass density and 6 is the volume moment o f inertia.
The representation of stresses in the Mohr plane leads to a circle whose centre 

is displaced along the shear ordinate. The coordinates of the centre cr and r, are:

<rc =0.5(crn + ct22) ,  tc =0.5(cti2 - o'2i) , (3.17)

and the circle’s radius r is:

r2 = 0.25(0-,, -cr22) 2 +0.25(CT|2+C721)2 (3.18)

The principle stresses a [ and o are expressed by the relation:

o'i|| = 0.5(o-u + ct22) ± v,0.25(o-11 -<j 22Y +0.25(o-,2 +cr2, ) 2 (3.19)

The equilibrium conditions (Eqs.3.13-3.15) are equ?/alent to the virtual 
work principle:
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£ 2 1

Figure 3.2. Shear deformations £iy £n and curvatures ic;, k} in a plane Cosserat continuum

J (c rySSy + mfiKj)dV = J [ ( f B - p m )5 m; +  (mB - 6 co )Scoc}dV +
B B

+ f  t:Su:dA + f  mSa>cdA
J ' ' J , (3.20)

<?, B d2B

where
<r.n =t.  on <9.B, nn. = m on ^,B • (3.21)

t. and m are prescribed boundary tractions and moment, respectively, Se and 5k. 
denote the virtual deformations and curvatures, 5u. is the virtual displacement, 5coc 
is the virtual Cosserat rotation and V is the body volume. The virtual 
displacements and virtual Cosserat rotations vanish on those parts o f the boundary 
where kinematic boundary conditions are prescribed. The work principle states 
that the fields cr., mi satisfying for arbitrary kinematically admissible virtual Su\ 
5of also satisfy the equilibrium conditions (Eqs.3.13-3.15) and the boundary
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Figure 3.3. Stresses m and couple stresses mf volume loads f f  and mB, and volume inertia loads 

p  v. and 9&>c at at an element o f a plane Cosserat continuum

conditions (Eqs.3.21). The viiiual work principle is used to formulate a FEM of  
motion (Tejchman 1989). As a consequence o f the presence o f rotations and 
couple stresses, the constitutive law for granular materials within a polar 
continuum is endowed with a characteristic length corresponding to a mean grain 
diameter (Muhlhaus 1989). Thus, the numerical results are independent o f the 
spatial discretisation (Tejchman 1939, 1994, 1997, Sluys 1992) and boundary value 
problems remain mathematically well-posed (Benallal et al. 1991, de Borst et ai 
1992, Sluys 1992). Due to the presence o f a characteristic length, a polar 
approach can model the thickness o f shear zones and related grain size scale 
effects (Tejchman 1997). Otherwise, numerical results produce unreliable results. 
Shear zones become narrower upon mesh refinement and computed load- 
displacements curves change considerably (Tejchman 1989). A polar approach is 
more suitable to model shear zones in granulates as compared to other models 
able to capture localisation o f deformations in a proper manner (e.g. non-local, 
strain gradient and viscous models, Sluys 1992) on better physical grounds since it 
takes into account rotations and couple stresses which are observed during 
shearing (Oda et al. 1982, Uesigi 1987, Uesugi et al. 1988, Oda 1993) but remain 
negligible during homogeneous deformation. A polar model is stiffer and stronger 
than a non-polar one because the work of a Cosserat continuum (Eq.3.20) is 
augmented by couple stresses, curvatures and rotations which depend upon the 
mean grain size. Thus, the additional degree o f freedom of a polar continuum 
releases the additional resistance against itself. The FE-calculations show that the 
thickness o f shear zones does not depend upon the mesh refinement if  the size o f  
finite elements in the shear zone is not greater than five times the mean grain
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diameter when using triangular finite elements with 1' tear shape functions for 
displacements and a Cosserai rotation (Tejchman 1989, 1997).

For detailed treatment o f a polar continuum, the reader is referred to Gunther 
(1958), Schafer (1962), Mindlin (1964) and Muhlhaus (1987, 1989, 1990).

4. Polar Elasto-Plastnc Constitutive 
Relation for Granulates

Bogdanova-Bontscheva and Lippmann (1975) showed for the first time that 
Cosserat type rotations appear during shearing o f granular materials. The couple 
stresses v/ere found to be insignificant. Further studies by Becker and Lippmann 
(1977) and Kanatani (1979) showed that the Cosserat effects are o f major 
importance only alcng the boundaries. A Cosserat elasto-plastic constitutive model 
for granular materials with isotropic hardening and softening was proposed by 
Miihlhaus (1987) and further developed by Muhlhaus und Vardoula'ris (1987) and 
Muhlhaus (1988, 1990). It differs from the conventional theory o f plasticity by the 
presence o f Cosserat rotations ana couple stresses using the mean grain diameter as 
a characteristic length. It can be summarised as follows:

. e . P e p 
Sij = Eij + Sij > Ki = Ki + Ki ’ (4.1)

' = ~ [ ( l  + v )rt//-vcrtt] ) i = k , 
E

(4.2)

. 2 2
1 dx  -e l dx

2G day ’ K'~ 2 G d m ,  ’ l * J ’ (4.3)

. p

Ej
dm, ’ (4.4)

£ = + ai s,jsj i + ~ r  mimi ) ° ' 5 , ( 4 .5 )
“ 50

f  = x + p(e0, y p)p ,  (4.6)

g = x + a(e0, y p)p ,  (4.7)

wherein r is the second invariant o f the deviatoric stress tensor, s.. —  non- 
symmetric deviate :c stress tensor (s..= c - p 8 ) p —  mean stress, a„ —  stress 
tensor, m. —  couple stress vector, ^  = 3/8, a2= 1/8 , a3= 1 —  coefficients, d50 
mean grain diameter, / j—  yield function, g  —  potential function, p  —  mobilised 
friction factor, a  —  mobilised dilatancy factor, e0 —  initial void rario, y p —  plastic

shear deformation, e.. — deformation tensor, Ey —  rate o f deformation tensor,
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jc( — curvature vector, k, —  rate c f  curvature vector, A —  proportionality factor, 
E — elastic modulus, G —  shear modulus, v — Poisson ratio, —  Kronecker 
delta. The superimposed Indexes e and p  designate the elastic and the plastic 
strain or curvature, respectively. The meaning of f  g, x, y p and A is analogous to 
non-polar plasticity (Mroz 1963). In the r, p-plane, the equations / =  0 and g  = 0 
describe a yield and a flow potential curve (Fig.4.1). The parameter A is

calculated from the consistency condition df=  0. The expression for x in Eq. 4.5

can be determined with the aid o f the plastic shear strain rate y 0 which has been
derived on the macroscopic level by taking into account slip and rotation in 
a random assembly o f circular rods with a diameter d50 (Muhlhaus 1987 V

. p  , p , p  . p . p  . p  . p

Y = (3 c,j e,j -  etj ej, + k , k , ) 0'5 > (4.8)

where is the deviatoric part o f the non-symmetric deformation rate tensor £,,•. 

Assuming that r and j p are work-conjugate (Muhlhaus 1987)

. p

xy - s ijeijJrmi Ki, (4.9)

t in Eq.4.5 and the coefficients a, = 3/8, a2= 1/8 and a3= 1 can be found. If the 
moment stress vector m. vanishes, x in Eq. 4.5 is reduced to its counterpart in 
a non-polar continuum,

r = (siJsiJ)0-5. (4.10)

Other combinations o f the constants ap a2 and a3 are also theoretically possible, 
provided that a, + a2=0.5  (Muhlhaus 1990). The constants a, = 3/8, a2= 1/8 and 
a3= 1 turned out as useful and sufficient in numerical calculations involving
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localisation (Tejchman 1989). In general, the constants a{, a2 and a3 control the 
influence o f Cosserat quantities cn the material behaviour. The larger the difference 
between a, and a2, the larger the non-symmetry o f the stress tenser and the larger 
the effect o f Cosserat quantities on the material behaviour (Tejchman and Wu 
1993). The influence of a3 on the results is rather insignificant.

The factors jo. in Eq. 4.6 and a  in Eq. 4.7, which are related to the angle of 
internal friction 0  and the ang'e of dilatancy (3 o f granular materials, can be 
identified with the help o f tests in a plane strain apparatus (Vardoulakis 1980). 
Figure 4.2 shows the general mobilised friction factor u and the mobilised 
dilatancy factor a  for dense granular materials. The function describing the 
mobilised friction factor ju versus the plastic shear deformation y p was proposed 
by Vardoulakis (1980) on the basis o f the biaxial tests:

^ = ^ c r - ^ c r - c { Y P) exp(-c2y p), (4.11)

wherein u = sinG> is the friction factor in a residual state, 0  denotes the critical 
angle o f internal friction, and c, and c2 are the constants which are calculated 
from two simple conditions fulfilled at the peak of the curve:

Figure 4-2. Mobilisedfriction factor p and mobilised dilatancy factor a  for dense granular material 
( 0 — angle o f internal friction, ,3— dilatancy angle, yp —plastic shear deformation, subscript 

«p» — peak value, subscript «cr» — critical value)

u(ypp ) = sm<t>p , 3 L(j P) = q . (4.12)
dyp

0 p and y ‘ denote the maximum angle o f internal friction and the corresponding 
plastic shear deformation, respectively. For the function a  versus yp, the following 
relation was assumed (Tejchman 1989):

a = 3 ( ^ - / i cr) .  (4.13)

The outlined constitutive law includes 7 material constants which are to be 
determined, viz.: E, v, 0 P, <£7, y p and d50.

The capability o f an elasto-plastic Cosserat model in solving various boundary 
value problems involving localisation was demonstrated by Tejchman (1989, 1994,
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1997, 1998), Miihlhaus (1989, 1990), de Borst (199!), Papanastasiou and 
Vardoulakis (1992), Sluys (1992), Tejchman and Wu (1993, 1995, 1997), Tejchman 
and Gudehus (1993), Unterre:ner et al„ 1994, Steinmann (1995), Murakami and 
Yoshida (1997) and Groen (1997).

5. Polar Boundary Conditions on the Wall
The Cosserat boundary conditions in a polar continuum allow for the different 

wall roughness with consideration of Cosserat rotations. According to Yoshimi and 
X.ishida (1981), and Uesugi (1987), the roughness o f the wall can quantitatively be 
characterised by the average distance from the peak to the valley o f asperities, r , 
measured on a representative surface o f 2.5 cm * 2.5 cm. However, it is the 
roughness ratio between the vail roughness and the mean grain diameter, r M w  
that determines the interface behaviour between the wall and the granulate 
(Tejchman 1989). The walls aie smooth if  the roughness rw is almost equal to zero 
(rjd50* 0 ), rough if the roughness is larger than zero but smaller than dSQ, i.e. 
rJdia< 1) and very rough if the roughness is larger or equal to d50, i.e. r j d i0> 1). 
For modelling o f very rough walls in silos, full shearing o f the material along a rigid 
wall is assumed-

«*, = 0 ,  m2 = 0 , =0 . (5.1)

The assumption u.~ 0  was confirmed by model tests (Tejchman 1989). A slip 
along very rough walls occurred only f  the wall fr otion angle reached its residual 
value and at the same time no deformations in the material were observed. Up to 
this point, the material experienced shearing. The condition atc was verified during 
shearing tests in a Couette apparatus with steel rods representing sand grains 
(Tejchman 1989). In the case o f rough and smooth silo walls, both shearing and slip 
of the material along a rigid wall are taken into account. The calculations are carried 
out with the following assumptions (Fig.5.1):

Mj = 0 , o) /u2 = fw / d50. (5.2)

The third condition assuming a relation between the curvature and the 
displacement gradient s obtained automatically. The ratio r j d x  is assumed to be 
0.0001 for smooth walls and 0.1-0.5 for rough walls. The assumed boundary 
conditions in Eq. 5.2 are realistic and consistent, i.e. for rJdSQ t  0, no stress changes 
in the material are observed, and for RJd£&  1, the numerical results approach the 
results for very rough walls with the boundary conditions expressed by Eq. 5.1. As 
a result o f the polar boundary conditions on the wall, the wall friction angle is derived 
and no special interface elements are needed (Tejchman 1997).

5. Finite Element Implem entation
For the numerical simulations, the following material constants for glass beads 

were used: p  =1700 kg/m3, v  = 0.3, 0 P= 30fi, 0 cr(  292, 2.5e and d50= 2.3 mm.
Tne values o f v, 0 P and 0^  were determined with compression tests performed by
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Wu (1992) for similar glass beads. The modulus o f elasticity, E =  1000 kPa, was 
adapted on the basic of the test data in a hopper (Section 2) to approximately obtain 
a similar frequency of longitudinal stress waves which are dominant in silos with 
smooth walls (Tejchman 1989). In general, E is estimated on the basis o f resonant 
column tests (Das 1983).

For the plane strain calculations, 400 quadrilateral finite elements composed of 
four diagonally crossed triangles were applied to avoid volumetric locking and 
spurious element behaviour (Groen 1997). Totally, 1600 triangular elements with 
linear shape functions for the displacements and the Cosserat rotation were used. 
Symmetry with respect to the centreline was taken into account. The width o f FE- 
elements along the wall was equal to d,.Q.

The calculations were performed with a lumped mass matrix (Bathe 1982). The 
volume body moment mB (Eq. 3.20) was neglected. The initial calculations showed 
that mB= ±yi(dsJ2) had an insignificant influence on the results. The volume inertia 
moment 6=  0.5p { d j l ) 1 was assumed as for a cylinder with a diameter dso.

To capture the possibility o f energy loss during the inelasticity o f grain collisions, 
linear viscous damping matrix C was included. It was constructed using the global 
mass matrix M, C = 2 t]M, where t] [s ] is the linear damping coefficient.

To model free silo outflow due to gravitation, the supporting forces along the 
outlet due to the fil ing process were reduced to zero from the beginning of the flow 
As the initial stress state, the Allstate was assumed (o22= y / . ,, o’n = Kocr22, 
a \i~ ° 2i = 7d = PS~ 16.68 kN/m3, Ko=0.4), x2 is the vertical coordinate 
measured from the top of the silo fill and yd denotes the materiel density. The 
boundary cond:tions o f the silo fill were along the top traction and moment free.

a )

-J  u

Figure 5.1. Kinematics along a smooth (a) and a rough silo wall (b)
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They were in the symmetry axis: u[ = 0, coc= 0, di, = 0. The wall was assumed to be 
very smooth (as in the experiment), r J d -=  0.0001.

The calculations were carried out mainly with small deformations and 
curvatures. However, some aralyses were performed for large deformations and 
curvatures by an Updated Lagrangian formulation (Bathe 1982) using both the 
Jaumann stress rate and Jaumam couple stress rate. At the same time, the changes 
of the element configuration and the element volume were taken into account

To satisfy the consistency condition / =  0, the trial stress method (linearised 
expansion o f the _ .eld condition about the trial stress point) using an elastic predictor 
and a plastic corrector with radial return mapping algorithm (Ortiz and Simo 1986) 
v/as applied

For the solution o f the non-linear equation of motion governing the response o f a 
system of finite elements, an implicit integration method by Newmark with a 
modified Newton-Raphson scheme was used (Bathe 1982). The calculations were 
performed using a symmetric elastic global stiffness matrix. The iteration steps v/ere 
performed using translation and rotation convergence criteria (found by means of 
preliminary FE-calculations) an d a criterion on the minimum number of iterations (at 
least 12) in each time step. The time increment was chosen as 0.0005 s.

The tensile normal stresses were not allowed in the silo fill. If they v/ere 
obtained in elements above the outlet, the normal stresses, shear stresses and couple 
stresses in these elements were replaced by values equal to zero. For such 
elements, the element stiffness matrix was assumed to be equal to the initial elastic 
one.

7. Numerical Results
Figs.7.1-7.7 show some numerical results for a model hopper with smooth walls 

under conditions o f both small and large deformations and curvatures. The viscous 
damping was not taken into accourt.

The numerical results (Figs.7.1 and 7.2) show that the calculated pulsations in 
the glass beads are almost harmonic and are close to these from the experiments. 
The pulsations are connected to natural vibrations o f a silo fill induced by 
disturbances o f flow at the outlet (Hatamura and Takeuchi 1989, Tejchman 1997, 
1998). The pulsations are created at the bottom and propagate upwards in the form 
of stress waves. In silos with smooth walls, longitudinal waves are dominant. The 
stress waves are created due to the change o f the direction o f shear deformation at 
the outlet that is connected to alternate volume changes (Tejchman 1997). The 
volume changes are connected to the stress changes that lead to the formation of 
dynamic pulsations due to the presence of inertial forces. The ampf' ude from peak 
to peak o f the calculated wall normal stress at fne mid-point on the wall is about 
0.8 kPa, and is in a satisfactory agreement with the experimental value o f 0.6 kPa. 
However, the calculated mean wall normal stress, 0.8 kPa, is twice as high as the 
experimental result. The amplitude from peak to peak of the calculated vertical 
normal stress inside the material is about 2.0 kPa The pulsations o f the wall shear
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stress are almost insignificant. The calculated frequency of pulsating stresses, 
/ =  14 Hz, is too high. To better approximate the frequency o f dynamic effects and 
the mean wall stress, the modulus o f elasticity should be slightly reduced, and the 
calculations should be performed with consideration o f the filling process which 
induces wall shear stresses. The calculated frequency can be obtained with the 
formula for the fundamental frequency of the longitudinal vibration in an elastic bar 
of a silo height with the top and bottom free using the wave equation (Das 1983).

E{ 1 -v )
p ( !+ v ) ( l - 2 v)

■12 k*=
1000 (1-0.3) 

'1.7(1+ 0 .3 )0 -2 -0 .3 )'
-/2-0.9 = 14Hz (7.1)

The calculated vertical displacements « 2 and velocities u2 are very similar in the 
entire flowing material due to small friction along the walls. They strongly increase 
wtth flow t; me (Fig.7.1). At / -  0.5 m/s, w2 = 0.6 m and u2 = 2.4 m/s. The calculated

Figure 7.1. Calculated vertical displacement uy vertical velocity u2 and vertical acceleration ii2
in glass beads during flow



<7
22

 [ 
kP

a 
] 

r/
n 

[ k
Pa

FE-Simulaticns o f Rapid Sil o Flow with a Polar Elasto-Plastic Constitutive Model 489

Figure 7.2. Calculated normal stress a  < on the wall (a), wall shear stress i \ .  vertical normal stress 
a  12 inside the fill (c) during flow o f glass beads and deformed mesh (d) in the lower part o f the

hopper at t = 0.5 s
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Figure 7.3. Calculated wall friction angle <pw = arctan (x J a  )  (a) and wall pressure coefficient 
Kn = a  n/u  22(b) during flow o f glass beads
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no

Figure 7.4. Calculated vertical displacement u2 and vertical velocity u2 in glass beads during flow
(large deformations and curvatures)
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Figure 7.5. Calculated normal stress a  n on the wall and vertical normal stress a  n inside the fill 
during flow (large deformations and curvatures)
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Figure 7.6. Calculated wall friction angle <p ̂  = arctan (x ja  J  (a) and wall pressure coefficient 
K = a J o n  (b) during flow (large deformations and cun'atures)
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Figure 7.7. Calculated normal stress a  ri on the wall and vertical normal stress a  n inside the fill 
during flow of glass beads (E = 2000 kPa)
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velocities differ markedly from the experimental value o f v = 0.3 m/s. The 
calculated vertical acceleration inside the material oscillates around the gravitational 
acceleration g (Fig.7.1). The value o f the vertical acceleration from peak to peak is 
about 3g.

The material moves almost as a rigid body due to small wall friction. The 
thickness o f the wall shear zone is approximately equal to d}0 (Fig.7.2;.

For a better agreement o f the calculated mean wall friction angle, <pw-  129 
(Fig.7.3), with the measured result o f <pw= 18.4s at the mid-point o f the wall, the 
coefficient r j d  0 should be slightly increased in the wall boundary condition. The 
calculated mean pressure coefficient K = crJo22 is about 0.9 (Fig.7.3).

The consideration of large deformations and curvatures does not influence the 
results o f the displacements, velocities (Fig.7.4), mean wall friction angle and mean 
pressure coefficient (Fig.7.6). That has, however, a large effect on the mean 
horizontal normal stress on the wall (Fig.7.5) which increases continuously during 
flow (due to updating of the body volume). One has to remember that the material 
height in model tests was decreasing during flow whereas it remained constant in 
the FE-calculations.

An increase o f E by the factor 2 increases the amplitude o f normal stresses on 
the wall by 10% and the frequency of pulsations to/ =  24 Hz (Fig.7.7).

The numerical results with considerati on o f a linear viscous damping in the silo
fill (77 = 10 s'1) are shown in Fig.7.8. At t = 0.5 s, u2= 0.2 m and ti2 = 0.4 m/s. After 

t = 0 .1 s, the vertical velocity « 2 in the glass beads reaches almost a constant value

(its increase is insignificant). The obtained result o f u2 is, thus, in accordance with 
the experiment. The consideration of a linear viscous damping during flow causes 
also a decrease o f amplitudes o f pulsating wall stresses'. At the same time, the mean 
stresses do not change.

The effect o f dr. in the range o f 2.3-4 mm was found to be insignificant on the 
FE-results.

8. Discussion
The numerical results show that the onset o f rapid silo flow can be realistically 

described with a polar elasto-plastic constitutive law on condition that the elastic 
modulus and the viscous damping coefficient are known. Their effect on the flow 
velocity and stress amplitudes is of importance. However, there is not enough 
experimental data on these two parameters.

Rapid gravitational flow is not easy for numerical modelling for the longer flow 
time with the used continuum model due to an increasing distortion of the FE-mesh 
and increasing tensile regions inside the flowing material above the outlet. Therefore 
only the onset o f rapid flow can be simulated. The problem of a large distortion of 
the FE-mesh can be dealt with twofold. A mixed Euler-Lagrangian procedure opens 
one way. In contrast with an Updated Lagrangian formulation, it allows for the mesh 
distortion since the material displacements are uncoupled from the nodal point
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o

Figure 7.8. Calculated vertical displacement uf  vertical velocity u2 and normal stress on the wall 
a  n in glass beads during flow (rj =10 s'1)

displacements (Hueting and Helm 1992, van den Berg 1994). The material streams 
through the mesh and the geometry o f finite elements is fixed. This method can be 
used by an extension of a conventional Lagrangian formulation by adding convective 
terms proportional to the relative displacement increments. Another possibility is the 
application of the so-called “dead elements” option. The elements which have 
already passed through the silo outlet are cut off. The avoidance o f the tensile 
regions is not possible since the constitutive law is designated for deformation rates
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at w h ic h  gra in  d o  n ot lo se  con tacts. T h e a ssu m p tio n  o f  to o  large  d a m p in g  can  

su p p ress d y n a m ic  p u lsa tio n s in  a s i lo  (T ejchm an  1 9 9 7 ) T h u s, there is  a  n eed  for  

a n e w  c o n stitu tiv e  la w  cap ab le  to capture the m aterial b eh a v io u r  in  the reg im e  o f  

s lo w  and  rapid flo w . A s  o u tlin ed  b y  M iih lh au s et al. (1 9 9 5 ) , an ex te n s io n  o f  a F E M  

b a sed  on  a co n stitu tiv e  co n tin u u m  m o d e l for s lo w  f lo w  b y  term s o f  a k in e tic  th eory  

b y  H a f f  (1 9 9 3 )  is  fea s ib le .
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