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Abstract: In a freely cooling granular material fluctuations in density and temperature cause position 
dependent energy loss. Due to strong lo;a! dissipation, pressure and energy drop rapidly and material 
moves from “hot” to “cold” regions, leading to even stronger dissipation and thus causing the density 
instability. The assumption of “molecular chaos” is valid only in the homogeneous cooling regime. As 
soon as the density instability occurs, the impact parameter is no longer uniformly distributed. The pair- 
correlation and the structure functions show that the molecular chaos assumption —  together with 
reasonable excluded volume modeling — is important for short distances and irrelevant on large length 
scales. In this study, the probability distribution of the collision frequency is examined for pipe flow 
and for freely cooling granular materials as well. Uncorrelated events lead to a Poisson distribution for 
the collision frequencies. In contrast, the fingerprint of the cooperative phenomena discussed here is 
a power-law decay of the probability for many collisions per unit time.

I. Introduction
Many rather astonishing phenomena are known to occur when granular 

materials like sand or powders move [1-4]. O f interest are, e.g. density waves 
emitted from outlets [5], crack formation during vibration or during the flow through 
apipe [6-9], and pattern formation due to dissipation [10-14], All these effects are 
connected to the ability o f granular materials to form a hybrid state betv/een a uid 
and a solid: energy input can lead to a reduction o f density so that the material 
becomes “fluid” and, on the other hand, in the absence o f energy input, granular 
materials “solidify” due to dissipation. Thus, a packing o f sand behaves like a solid 
when pushed, but offers no resistance to a pulling force.

In order to formalize and quantify the complicated rheology o f granular media 
various attempts have been made. Continuum equations o f motion and kinetic 
theories [4, 15-21] are the first successful steps towards a quantitative description 
of granular materials —  at least for limited parameter range. This restriction exists
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because it is very difficult to incorporate into these theories all the details of static 
friction or other relevant microscopic mechanisms. Also the generalisation to high 
densities is an ardous task, see for example Refs. [22, 23] and references therein. 
Most o f the classical, but also the more advanced theories are based on the 
assumption of molecular chaos —  the assumption that the velocities and positions of 
all colliding pairs of particles in a gas are uncorrelated. In a diluted gas, the errors 
introduced by this assumption are negligible. In dense granular flows, however, 
correlations between colliding particles may be important, leading to qualitative 
changes o f behavior.

Section 2 is dedicated to a brief introduction o f the different discrete modeling 
approaches. In particular, we will present the “hard-particle” Event Driven (ED) 
[24, 25] and the “soft-particle” Molecular Dynamics (MD) [24, 26, 27] methods, 
both for inelastic spherical particles with frictional forces. We extend the traditional 
ED method by introducing a cut off time for dissipation [3, 12]. Any particle that 
encounters a second collision before this time passed by is assumed to be elastic -  
-  the extended method is named TCED. Furthermore, the Direct Simulation Monte 
Carlo (DSMC) approach is discussed and applied to freely cooling granular media. 
The validity o f the molecular chaos assumption in granular ows was examined by 
comparing event driven (ED) “hard sphere” simulations to those performed with the 
Direct Simulation Monte Carlo (DSMC) method [14]. The ED method is capable of 
reproducing velocity correlations —  even in the limit o f rather large densities — 
whereas DSMC assumes molecular chaos by construction. In Section 3 the 
structure factor and the pair-correlation function are examined and reasons for the 
breakdown of molecular chaos are discussed. The clustering instability s described 
in Section 4 with respect to the restitution coeffcient and a cut-off time for 
dissiparion. The probability distribution function for the collision frequency is 
measured in the homogeneous and the non-homogeneous clustering case and 
differences in the functional behavior are evidenced [3], The same behavior is also 
found in pipe flow [9] where shod: waves and arching are the observed cooperative 
phenomena. The probability distribution functions are measured and discussed in 
Section 5 and interestingly have the same functional behavior as in the case o f the 
clustering instability. Finally, the results are summarized in Section 6.

2. Models for Particle-Particle Interactions
The basic consiitutents of granular materials are mesoscopic grains, made of, for 

example, 1020 molecules. When these objects interact (collide) the attractive 
potentials of the individual atoms can often be neglected. Three models for the 
particle-particle interactions are discussed in the following. They account for the 
excluded volume o f the particles via a repulsive potential, either “hard” or “soft”, or 
assume point particles and Introduce appropriate corrections.

It is important that the surface of the gra ns is rough on a microscopic scale so 
that solid friction occurs. In general, one has to distinguish between sliding, sticking, 
and rolling friction, but we will only discuss simplifed models here. An entire
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discipline called tribology has evolved to study solid friction in depth [1, 28]. Friction 
and other sources of dissipation, like viscous damping or plastic deformations, have 
the crucial consequence that the system does not conserve energy. Since 
dissipation may occur due to various reasons, we discuss in the following only simple 
dissipation laws, assuming that the detailed knowledge of the interaction potential is 
of minor importance. In fact, complicated laws often increase the number of 
parameters without giving qualitatively different results [29].

The difference between the two most frequently used discrete element methods 
is the repulsive interaction potential. For the molecular dynamics (MD) method, soft 
particles with a power-law interaction potential are assumed, whereas for the event 
driven (ED) method perfectly rigid particles are used. The consequence is that the 
duration of the contact o f two particles, tc, is finite for MD, but vanishes for ED. In 
the DSMC method, one assumes point particles without repulsive potential but with 
an effective scattering cross section. In addition one applies corrections from the 
kinetic theory, in order to account for the effective free volume, the reduced mean 
free path, the increased collision frequency and the modified momentum transport.

2.1 The event driven, rigid particle m ethod
Here, we apply the simplified collision model introduced by Walton and Braun 

[30] and recently experimentally established by Foerster et al. [31] and Labous and 
Rosato [32], For given velocities before contact, three coefficients are needed to 
evaluate the velocities after collision. At first, the coefficient o f normal restitution, r, 
defines the incomplete restitution of the normal component of the relative velocity. 
Secondly, the coefficient o f friction, p, relates the tangential momentum change to 
the normal one, i.e. Coulomb’s law. Thirdly, the coefficient o f maximum tangential 
restitution, fiQ, delimits the restitution of tangential velocity o f the contact point to 
ensure energy conservation. Note that this model implies that two grains at contact 
either slide, following Coulomb's law, or stick together [30, 31, 33, 34], In the 
following, we apply the basic conservation laws and determine the equations for the 
velocities after collision.

Consider two particles with diameter d x and d2 and masses m { and mr  The 

normal unit vector for their contact is H = (q -  r2 )/|r, - r 21, where rl is the vector 

that gives the position o f the center of particle i ( /=  1, 2). For the interaction of
particle i = 1 with a fixed wall, we set m2 = oo and h is in this case the unit vector 
perpendicular to the wall surface pointing from the contact point with the wall to the 
center o f the particle. The relative velocity o f the contact points is

( d x _ d 2 \
—  CO, + — d>2

l 2 2 )
( 1)

with o, and ca( being the linear and angular velocities o f particle i just before 
collision. From the momentum conservation laws for linear and angular momentum 
follows
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u, =u, -  AP/m, ( 2)

( 3)

u2 = v2 -  API TMj , and (4

where u/ and <u- are the unknown velocities o f particle i after collision. l ( is the

moment o f inertia about the center o f particle i and AP is the change o f linear 
momentum of particle 1 and is a function o f r, fi, and p0:

with the reduced mass mn  = mlm2/(m1 + m2). (n) and (t) indicate the normal and 
the tangential components of 6C, respectively, and the factor 2/7 in the tangential 
part o f Eq. (6) stems from the fact that solid spheres are used [34], r is the 
coefficient o f normal restitution and P = min[/J0, /?,] is the coefficient o f tangential 
restitution. The latter is simplified so that either sticking or sliding are exclusively 
allowed. A sticking contact has a constant maximum tangential restitution fi = fi0, 
with -1  < fi0 < 1 due to the elasticity o f the material. Typical values for, e.g. 
acetate or glass, are P0 w 0,5 [31]. Sliding, Coulomb-type interactions have P = /?,, 
i.e. A/*0 is limited by Using the basic conservation laws one can find
P{ = - l  - ^ ( 1  + r) cot (yXl+l/^.), with the collision angle y, and the factor 
g.= 41'+fmd?) that accounts for the mass distribution inside the particles [31, 33, 
34]. As illustration, a schematic pictare o f two colliding particles is given in Fig. 1. 
The angular velocity :s are <u, = co2 = 0 immediately before collision (a) and non­
zero after collision (b). For a more detailed discussion o f the above equations see 
Ref. [33, 34].

For the simulation o f rigid particles, we use an event driven method such that the 
particles undergo an undisturbed motion until an event occurs. An event is either the 
collision o f two particles or the collision o f one particle with a wall. From the 
velocities just before contact, the particle velocities after a contact are computed 
following Eqs. (2)-(5). Lubachevsky [25] introduced an efficient scalar ED 
algorithm which updates only those particles involved in the previous collision. Like 
in R.efs. [29, 33] we implement the algorithm o f Ref. [25] with some changes and 
extensions. Despite gravitational acceleration, all times o f contact o f particles with 
each other or with the lateral wails cm  be calculated analytically. The coefficient of 
normal restitution depends on the parner o f the colliding particle, i.e. r or rw is used 
to indicate particle-particle, or particle wall collisions, respectively.

AP = -m l2{1 + r )v W -  |/r ,I2(1 + p )o ^ , ( 6)
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Figure I. Typical velocities o f  two particles immediately before (a) and after (b) collision

2.2 The connection between hard- and soft-sphere models
In the ED method, the time during which two particles are in contact is implicitly 

zero. The consequence is that exclusively pair contacts occur and the instantaneous

momentum change &P in Eqs. (2)-(5) suffices to describe the collision completely. 
ED algorithms with constant r run into difficulties when the time between events, tev, 
becomes too small —  typically in systems with strong dissipation —  and the so- 
called “inelastic collapse” occurs [35-38]. To handle this problem, several attempts 
have been proposed recently [3, 12, 38-44], and one o f them [3, 12] switches off 
dissipation when the collision ffecuency becomes too large.

In MD simulations o f dynamical systems, on the other hand, te> 0 and only 
a limited amount o f energy can be dissipated per contact. A finite contact duration 
thus implies a finite energy dissipation rate. In a dense system of soft particles, 
energy dissipation becomes ineffective, i.e. the “detachment effect” occurs [45, 46]. 
This effect is not obtained with hard particles and a constant coefficient of 
restitution r, however, the effect can be observed when using

fr for r P i f J

V for (7)

as the restitution coefficient for the c o it io n  n o f  particle i. In Eq. (7) t f  is the 
time since the last collision and t is the threshold for elastic contacts that can be

C

identified (up to a constant factor o f order unity) with the contact duration in the 
soft particle model. Thus, an additional material parameter is defined for the hard 
sphere model, that leads to qualitative agreement between ED and MD simulations 
and in addition avoids the inelastic collapse. Note that tc has different physical 
meaning in either hard or soft sphere model. The traditional ED method has f,= 0. 
The extended mode! that uses Eq. (7) with t>  0 is in the following referred to as 
the TCED method.

The integral o f all forces / ( / ) ,  acting on a particle at time i e  ['0; fc], is needed 

to calculate the momentum change o f this particle in the framework o f the soft 
particle model:
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AP = ( 8)

In general, the contact begins at time t0 and ends at time tc. For a constant force 

f  or an infinitesimally small time interval t - 1 in the momentum change AP in 
Eqs. (2)-(5) can be replaced by the term/(f)d/ to arrive at a differential formula­

tion for the change o f velocities u ' - u  and co'-co . The primed and unprimed 
quantities are the values at time f and tu respectively.

The stress tensor, defined for a test volume F , can be written as

j  i
(9)

The indices a  and (3 are the Cartesian coordinates, ru are the components c f  the 
vector from the center o f mass of a particle to the point % where a force with 
components /  acts. Particle i has the mass m. and a velocity with the components 
va. The first surn runs over all contact prints j ,  and the second sum runs over all 
particles i, both within F . In the static limit, the second term vanishes, since all 
velocities vanish. On the other hand, for a hard-sphere gas, the left term has to be 
treated differently, since no forces are defined. The dynamic equivalent t o /  is 
the change o f momentum per unit time AP /  At. For a hard-sphere gas the stress 
due to collisions may be evaluated as the average over all collisions in the time in­
terval At. The first sum runs over all collisions taking place in the time between 
t -  At and t. In general, the volume Vc and the time-interval At have to be chosen 
large enough to allow averages over enough particles and enough collisions.

2.3 The time driven, soft particle technique
Even without using the soft particle method in this study, it is convenient to 

discuss briefly the standard interaction forces and their connection to the hard

sphere collision operator that nvolves the total momentum change AP . Replacing

AP in Eqs. (2)-(5) by f{ f) t  md , with the mo.ecular dynamics time step chows 
the integration of the corresponding equations of motion with standard numerical 
methods [24, 27].

Since the modeling of realistic deformations o f the particles would be much too 
complicated, let us assume that the overlap of two particles is the quantity important 
for the interaction potential. The interaction is short range, i.e. the particles interact 
only when they are in contact so that their penetration depth

8 -  — ( /  + d2) -  (fi ~ 'T )'P is positive.

The first force, acting from particle 2 on particle 1 —  accounting for the 
excluded volume which each particle occupies —  is an elastic repulsive force



Clustering Instabilities, Arching and Anomalous Interaction Probabilities as Examples 423

f ei=kn80{5 /S 0y n ,  (10)

where kn is the elastic modulus and <50 is a normalization constant dependent on 
the nonlinearity u and the dimension. In the simplest case o f a linear spring that 
follows Hooke’s law, u = 1, in the case o f elastic spheres in three dimensions, 
u = 3/2 i.e. a Hertz contact [47], and for conical contacts, v = 2 can be used 

The second force —  accounting for dissipation in the normal direction —  is 
a viscous damping force

fak^rJdSIC'oJn,0 1 )

where yn is a phenomenological viscous dissipation coefficient and

5 = -u 12 • rt -  -(u, - u 2)-n is the relative velocity in the normal direction.
The simple linear spring-dr shpot model (with v = 1 and 8 = 0) can be solved 

analytically and leads to a contact duration tc = n/co and a restitution coefficient

r = exp ( - 7TJ7 / co), with m = 7 ©o - 772 ,n>02 = k„ I m l2< t] = y n / (2ml2)and

m\2 = mltn2 >{mx + m2)[34], A nonlinear repulsive potential can at least be solved in 
the limit yn -»  0 and the dependency o f r on the velocity o f impact can be estimated 
with reasonable accuracy [45, 43, 49],

The third force —  accounting for friction —  acts iri the tangential direction and 
can be chosen in the s;mplest case as

/shear = . ( 12)

where is the viscous damping coefficient :: tangential dirretion and <jj p  fi12 ■ t is

the tangential com ponent o f  the relative velocity, with F = tJ,2 /|p-312| . Eq. (12) is

a rather sim plistic description o f shear friction. For m any app licaf ons (arching, 
heap formation) it is, however, important to include more realistic static fric.ion [1, 
50], w hat can be realized by a virtual tangential spring [26, 51]: when two 
particles start to touch each other, one puts a virtual spring betw een the contact

points o f  the two particles, and I M = J i s  the totalj t0
tangential displacement o f this spring during the contact. The restoring frictional

force is thus - k £  ■ According to Coulom b’s criterion, the maximum value o f  the

restoring force is proportional to the norm al force | f nc \ at this contact, w ith the 
friction coefficient p. Cast into a formula this gives a friction force

03 )

We note that the tangential spring has to be kept at a maximum length 
<5max= ^ / e/ ^ 1 'n orc êr to lead to reasonable agreement with contact dynamics
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simulations or theoretical calculations [52]. Only when particles are no longer in 
contact with each other is the spiing removed. The main source o f static friction in 
real systems is the geometrical roughness o f the surfaces [53-56], and the same 
effects o f particle stopping can be obtained also without Eq. (13) by using particles 
o f complicated shapes, like crosses or polygons [57-60]. In fact, when particles 
deviate from the spherical shape, rotations are suppressed in dense packings under 
strong load. However, in some cases it is sufficient to use a combination o f Eqs. (12) 
and (13):

a rather bold alternative to the more realistic static friction law in Eq. (13), but 
sufficient for many, especially dynamic situations [52], For a comparison o f ED 
and MD simulation results, see Refs. [29, 45, 52, 61].

2.4 DSMC simulation method
Direct simulation Monte Carlo (DSMC) was first proposed for the simulation of 

rarefied gas flows [62] and is also use i for liquid-solid ow simulations, see Ref. [63 
and references therein. One of the algorithm’s advantages is its suitability for 
parallelization, what makes it a convenient tool for the modeling of granular media [34,64],

In DSMC the evolution of the system is integrated in time steps r, at each of 
which every particle is first moved without feeling other particles. The particles are 
then sorted into square cells with sides Lc and volume V = Z,2 . Lc is set as one half 
of the mean free path, but never smaller than two bead diameters. The time step jr 
is always chosen small enough to assure that even the fastest particle needs several 
time steps to cross a cell. Between particles in the same cell stochastic collisions 
take place; the rules for these collisions are taken from kinetic theory. First we 
choose the number of collision pairs in each cell,

where Nc is the number o f particles in the cell, . is an upper limit for the 
relative velocity between the particles. To get um>x we sample the velocity 
distribution from time to time and set v  to be twice the maximum narticlemax *
velocity found. In order to account for the actual relative velocities we apply an 
acceptance-rejection method: for a pair o f particles i and j  the collision is 
performed if

(14)

N  iN c -  ) g  Dma> 
2VC (15)

(16)

where Z is uniformly distributed in the interval [0:0; 1:0]. This method leads to 
a collision probability proportional to the relative velocity o f the particles.
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Since the collision takes place regardless of the position in the cell, we have to 
choose an impact parameter b in order to calculate the post-collision velocities. The 
impact parameter is defined as

= c/siny, (17)

where y is the angle between 5, -V j)  and J  -F y). For central collisions b = 0,
and b = d  for grazing collisions. Assuming molecular chaos, b is drawn from 
a uniform distribution in the interval [-d, d\. The rest o f the collision scheme is 
identical to the event dri ven procedure, so that the normal component o f the post­

collision velocity is 6'^n = - r v ^  whereas the tangential component remains 
unchanged, i.e. /L = - l .

To get better results at high er densities the DSMC method was modified in two 
respects. First, the number of collisions Mc in equation (15) is increased by replacing 
the volume V o f a cell with the effective free volume V -  V., where V„ is the 
volume the particles in that celt would need in a random close packing with packing 
fraction 0.82 in 2D [65]. Second, we added an offset o f d  to the particle distance 
along the direction of the momentum transfer after the collision [66].

3. Comparison of ED and DSMC Simulations
In this section two simulations arc presented, starting with the same initial 

condition, and using the same parameters, but being carried out with the ED and the 
DSMC methods. In ED the probability distribution of the impact parameter may 
deviate from the case expected for molecular chaos, whereas DSMC always uses 
a constant probability for b in 2D. The simulations involve N=  99856 = 3162 
dissipative particles with restitution coefficient r = 0.8 in a periodic quadratic system 
with volume fraction p = 0.25. The system size is 1 = Ld with dimensionless size L 
and particle diameter d. In order to reach an equilibrated initial condition, the system 
is first allowed to evolve with r=  1 for about 10 collisions per particle, so that a 
Maxwellian velocity c istribution and a rather homogeneous density distribution 
exists. Then, at t = 0 s, c ‘ssipation is set to r = 0.8 and the quantities o f interest are 
calculated as functions o f time.

3.1 Freely cooling granular materials
In the homogeneous cooling state [10, 17, 21, 67, 68] we expect that the energy 

K(i) o f the system decays with time and follows the functional form

m  ( i f
* (o )  [ i + / / j  J ’

with the theoretically expec ed time scale

( 18)
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_ 4nds,yp) 
° 2(l - r  )po (19)

as a function o f the initial mean velocity u = -J2K(6)/ Nm , the particle
diameter d, the restitution coefficient r, and the volume fraction p  with 
s, (p) = (1~P)2 / (1—7p /\6 )  [1 7 ,6 8 -/0 ]. Inserting the corresponding parameters
1-r2 = 0.36, s, (p) at 0.63158, d=  0X01 m, and u we have t0'l = 23.24 s 1.

Figure 2. Normalized kinetic energy vs. normalized time from an ED and a DSMC simulation in 2D 
with identical initial conditions and N  = 99856, p  = 0.25, r = 0.8. The dashed line represents Eq. (18)

In Fig. 2 we present the normalized kinetic energy K(t)/K(0) as a function o f the 
normalized time t/tQ. At the beginning of the simulation we observe a perfect 
agreement between the theory for homogeneous cooling and both simulations. At 
t/t0 ~ 2 substantial deviations from the homogeneous cooling behavior become 
evident, and only at //.'0 a; 10 a difference between ED and DSMC can be observed. 
After that time, the kinetic energy obtained from the DSMC simulation is 
systematically smaller than K(t) from the ED simulation. We relate this to the fact 
that the molecular chaos assumption of a constant probability distribution of the 
impact parameter b is no longer valid. Since dissipation acts only at the normal 
component o f the relative velocity, DSMC dissipates more energy than ED as soon 
as the number of central collisions is overestimated [14], To verify this assumption 
we take a closer look at the impact parameter and its probability distribution in the 
next subsection.

3.2 The Impact parameter
One basic assumption connected to molecular chaos is a uniform probability 

distribution of the impact parameter. We define P(b/d) to be the probability

distribution of b and normalize it so that fdx/^x) = 1. We find from ED simulations
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with elastic particles the normalized probability distributions P(b/d) = 1 in 2D and 
P(b/d) = 2b/d  in 3D, as expected for the case o f molecular chaos.

The ED simulation of Fig. 2 leads to P(b/d) = 1 for short trr.es only. For larger 
times we observe an increasing (decreasing) probability of grazing (central) 
collisions. In Fig. 3, data o f the probability distribution are presented at different 
times during the simulation of Fig. 2. As it is obvious from the data, more and more 
grazing collisions occur with increasing simulation time. Evidently, the assumption of 
a constant probability distribution o f the impact parameter is violated.

b/d
Figure 3. Normalized probability distribution o f the contact parameterfrom an ED simulation in 2D 

with N  = 99856, p  = 0.25, and r = 0.8 at different times, as given in the insert

One can imagine at least two reasons for the deviation o f P(b/d) from the 
constant value. The first is that P(b/d) might be a function o f the density, and that 
due to density fluctuations, the form of P(b/d) changes. Thus we calculate P(b/d) in 
smaller systems with N  = 240, r = 1, and different volume fractions, ranging from 
very dilute to extremely dense systems. P(b/d) is not sensitive to the density, as long 
as the collisions are elastic [14|. Another reason for P(b/d) to deviate from unity 
might be dissipation. In Fig. 4 the restitution coefficient is varied for fixed 
p = 0.7495. For weak dissipat'on, i.e. r  > 0.9, the distribution is homogeneous. For 
stronger dissipation r  = 0.80 we find an increasing probability of grazing contacts.

The assumption P(b!d) -  1 is true in elastic systems for arbitrary density. For 
inelastic systems, P(b/d) is constant for sufficiently weak dissipation but depends on 
bid for strong dissipation. The breakdown of molecular chaos is not due to high 
density, and also dissipation is not the only reason for it, since the dissipation must 
be strong enough to cause the inhomogeneous distribution.

The remaining question is: why do we observe this increasing probability of 
grazing contacts? Looking in mere detail at the simulations in Fig. 4, we observe that 
the inhomogeneous distribution for r = 0.8 is connected to shear motion of the 
particles, whereas no visible shear motion occurs for r  > 0.9. The shear motion in
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Figure 4. Normalized probability distribution Pfo/a.) from ED simulations in 2D with N  = 240,
p  = 0.7495 and different r
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Figure 5. Snapshots from ED simulations in 2D with N = 240, p  = 0.7495 and different r = 0:80 (left), 
r = 0,90 (middle), r = 0.95 (right) after t = Is. The lines give the velocity vector scaled by 1, 3, and 7 in 
the left, middle and right panel, respectively. In the panels below the stress is plotted in the principal axis 

representation following Eq. (9). The average is taken in the time interval 0.5s < t < I.Os over all 
collisions in each cell. The maximum eigenvalues max, measured in the left, middle, and right panel are 
0.894, 0.568, and 1.56, respectively. They are measured in arbitrary units and the figures are scaled so

that max amax has the same length
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the left panel o f Fig. 5 can be understood as the geometrical reason for the higher 
probability for grazing contacts, i.e. layers o f particles shear against each other and 
therefore touch preferentially with large impact parameter b. The two eddies (top 
left and bottom right) i \ the left panel are rotating in the same sense and lead to 
small stresses in the interior. Outside, where the velocities are less correlated one 
observes larger stresses and the stress tensor typically has strongly different 
eigenvalues. The more disordered situations in the middle and right panel, in contrast, 
are connected to rather random stresses.

3.3 The structure factor
One difference between ED and DSMC simulations is the handling of excluded 

volume by the two methods. While the ED method models hard spheres with a v/ell 
defined excluded volume, the DSMC method models point particles and excluded 
volume is introduced by the approximations described in subsection 2.4. As 
expected, we obtain dramatic differences in the particle-particle correlation function 
g(rm  in Fig. 6, where rid is the particle separation in units of particle diameters d. 
Since ED (solid lines) models hard spheres, g(r/d) = 0 when 0 <r/d<  1. For short 
times one observes g as for an elastic hard sphere gas and at larger times g(r/d)

r/d
Figure 6. Correlation function g(r/d) as obtained from the ED (solid line) and DSMC (dashed line) 

simulations o f Fig. 2. The different curves are shifted vertically in order to avoid overlap
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shows a rich structure with peak:; at 1, 2, 3, ... and multiples o f >/3/2 , indicating 
a rather dose packing of monodi ;perse spheres. In contrast, the DSMC Emulations 
(dashed lines) show no short range correlations between particle positions 
throughout the whole simulation.

The next question is, whether this difference has consequences at longer length 
scales. The formation and growth of large clusters [10, 67, 68] is quantified by the 
large wavelength modes o f g(r/d), or equivalently, by the structure factor S(k) at 
small v/ave-number k. We calculate S(k) by a direct FFT (fast Fourier transform) of 
the two-dimensional density. Before we apply the FFT we map the particles onto 
a M «  M  lattice, where M  s the closest power o f 2 that gives a lattice box s ;ze of 
about one diameter.

The structure factors obtained by ED are presented in Fig. 7(a) and those 
obtained by DSMC in Fig. 7(b). Different symbols correspond to different times. We 
observe an increase o f S(k) for short wavenumbers k < 25, until the structure factor 
ceases to change for t > 20 s. The structure factor agrees reasonably well for both 
simulation methods, and for large enough times it does not change further. This 
proves that the DSMC simulation is capable to reproduce the more realistic, but 
computationally more expensive, ED results that account for the excluded volume by 
construction. Even without short-range correlations, the information about large 
wavelengths is well reproduced by DSMC simulations.

Figure 7. (a) Structure factor obtainedfrom the ED simulations o f  Fig. 2 as function o f  the wavenum­
ber k  = //A, with wavelength A and system size l, (h) Structure factor obtained from the corresponding

DSMC simulation

4. The Clustering Instability
The essential difference between a granular and a classical gas is dissipation 

The resulting clustering instability was examined in ID [35-38, 71-73] and in 2D 
[10, 42, 68, 74-78]. Cluster growth could be described theoretically only in the case 
of irreversible aggregation [76, 79], the more general case o f reversible aggregation 
is still an open issue.
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Detailed examination of the inelastic collapse by McNamara and Young [68] led 
to the picture of different “phases”. In a periodic system without external forcing 
a critical dissipation exists —  connected to volume fraction and restitution 
coefficient —  above which clustering occurs and below which the system stays in 
molecular chaos. In the transient regime the system behavior seems to depend on 
the system size and shearing modes are frequently observed.

4.1 Parameter studies
In the following we examine periodic systems o f length L = l/d in 2D, with the 

particle diameter d, using the TCED simulation method as described in subsection 
2.2. The volume fraction ;s p = NK{dl2lf = (n/4)N/L2 and the particles are initially 
arranged on a square lattice, homogeneously distributed in the system. First the 
system is equ librated with r=  1 then the dissipation is switched to the desired value 
and the simulation starts at t = 0 s. Here we use a rather small system with N=  784, 
L = 50, and p * 0.25.

The restitution coefficient r and the cut-off time t are varied (0.99 < r < 0.20 
and 1010 s< tc < 1G'3 s) and the simulation is performed for each parameter set until 
every particle carried out O N  = 1000 collisions. In Fig. 8(a) K{t) is plotted against 
the mean number of collisions per particle O N  for simulations with f = 10‘6 and 
variable r. For large r and small O N  the energy behaves as K(t) oc exp(-C/A’) as 
can be derived from Eq. (18) by integration over the product o f mean velocity

o = a jfnm  and inverse mean free path A oc 1 / p . With decreasing r the initial slope

Figure 8. (a) K(t) as function o f  C/N with tc = I d 6 as given in the insert, (b) (Kx -  KJ/K(t) fo r  the same
simulations as in (a)

;s larger because more energy is dissipated per collision. At larger times, energy 
decays much slower and K(t) deviates from the straight line already for r < 0.95. In 
Fig. 8(b) (Kx -  K)/K(t) is plotted against ON. In a homogeneous system without 
clustering, the value o f (A( -  K )/K(i) fluctuates around zero, while values close to 
unity indicate the “shearing-mode”, i.e. most o f the kinetic energy can be found in 
one direction [80, 81]. The deviations from the homogeneous cooling state begin 
earlier with decreasing r.
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Figure 9. (a) K(t) as function o f t with r = 0.6 and - lo g  w tc as given in the insert, (b) K(t) plotted 
against C/Nfor the same simulations as in (a)

For strong dissipation one observes jumps in C/N —  meaning that a few 
particles perform many collisions without affecting the global energy too much. In 
that case one expects that the time between collisions drops below the threshold tc 
and r is set to unity according to Eq. (7). The kinetic energy K{t) is plotted against 
C/N in Fig. 9(a) for simulations with r = 0.60 and different tc = 1 0 10 s, 1G'8 s, 
10'6 s, 10'3 s, and 10'3 s. For t < 50 s the decay o f energy is almost independent of 
tc. For larger times the simulations with greater tc loose less energy since more 
collisions are elastic. From the plot o f K{t) against C/N in Fig. 9(b) one observes for 
C/N < 100 a power-law behavior K(t) oc (C/N)( with £ *  2.5 and for C/N > 100 
a much faster decay of energy, with £ «  7.

4.2 Cluster growth
In the following we discuss a simulation with N=  79524 particles, L = 500, 

p = 0.25, and tc = 10'5 s in more detail. In Fig. 10(a) the energy K(t) is plotted against 
the simulation time. The solid line indicates a slope o f -2  as one would get in the 
against cooling regime, see Eq. (18). However, the simulation seems to follow, in 
average, a slope o f -1 as indicated by the dashed line. Thus the cooling is much

Figure 10. (a) K(t) as function o f time t fo r  a simulation with N  = 79524, L = 500, p  = 0.25, and 
tc = 10'! s, (b) C/N as function o f  t fo r  the simulation in (a). The circles give the mean number o f  

collisions per particle and the squares give the mean number o f  elastic collisions per particle
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slower when it is non-homogeneous. Fig. 10(b) shows that the fraction of particles 
that have collisions with a collision frequency larger than 1 ltc is only about 0.1 
percent of the total number of particles for t < 50 s. For larger times, the number of 
elastic collisions increases, but never above three percent of C/N.

In Fig. 11 snapshots of the simulation in Fig. 10 are displayed. With increasing 
time t (and C/N) structures build up in the system and grow in size. In the bright 
regions in the centers of the clusters the collision frequency is largest.

4.3 Probability distribution of the collision frequency
For a more quantitative analysis of the clustering instability, the probability 

distribution for particle collision frequencies is examined. P(NJ gives the probability 
to find a particle that carried out Nc collisions per unit time in the last time interval 
M = t/2, and it is normalized to unity. In Fig. 12(a) P(Nc) is plotted for the

t = 0.640 s, C/N= 39 t= 10.24 s, C/N= 183

Figure 11. ED simulation with N  = 79524 particles in a system o f  size L = 500, volume fraction 
p  = 0.25, restitution coefficient r = 0.8, and critical collision frequency l/tc = 10s s'1.
The collision frequency is coded in grayscales — dark and light correspond to small 

and large collision frequencies respectively.
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homogeneous cooling during short times. The shape o f P(Nc) resembles a Poisson 
distribution with decreasing mean for C/N < 39. For C/N=  8, i.e. t = 0.04 s, the 
dashed line corresponds to Po(C/At,6.5)At with the Poisson distribution for the 
number of collisions C per particle per time At

P o (C .X > e- ^ ^ ,  (20)

with mean and width £ /At = 6.5/0.02 s = 325 s"1. This indicates that at the 
beginning of the simulation the collisions are uncorrelated events.

Figure 12. P(Nc) fo r  different C/N values from the simulation displayed in Figs. 10 and 11. The system 
is (a) in the homogeneous cooling state, (b) in the cluster growth regime, and (c) in the long-time state 

where the largest cluster has reached the system size

At longer times, the probability for a large number of collisions can be well fitted 
by an exponential

P e (Nc > 'O = T" expf* ~ rA A (21)

with the mean collision rate A = 19 s'1 in Fig. 12(a). As soon as clustering occurs, 
the form of the probability o f the number of collisions changes. In Figs. 12(b) and 
(c), P(N ) is displayed at different times, i.e. different C/N. The probability for 
large (small) collision frequencies increases (decreases), and can now be 
approximated by a power-law o f the form

p p{n c, b )=
B

(B + N j ’ (22)
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with the rate B = 8 s'1. All functions P(Nc) are normalized for arbitrary x, A or B, 
but the mean o f Pp(Nc,B) diverges. This indicates the inelastic collapse, i.e. the 
divergence o f the global collision frequency. However, in the simulation presented 
here, the collision frequency is limited since tc is non-zero.

In summary, we found that for C/N> 70 the shape o f P(Nc) changes from an 
exponential decay for large jV to a power-law behavior. This corresponds to the 
density instability when clusters evolve and grow with time, i.e. cooperative motion 
and interaction. Interestingly, the shape o f the probability distribution is only weakly 
varying over one order o f magnitude in time, from O N  ® 183 to C/N ~ 1404. At 
these times, particles that carry out many collisions coexist with those which carry 
out only a few. For even larger times O N >  2567 the function P(Nc) changes shape 
again, as displayed in Fig. 12(c). The probability for large collision frequencies drops 
again.

5. Simulating the Flow Through Pipes
In this section we present another collective phenomenon in a totally different 

geometry. Recent observations o f approximately V-shaped microcracks in vertically 
vibrated sand-piles [82] have led to the problem of gravity driven vertical motion of 
sandpiles in 2D pipes [7-9, 83]. In this situation the material is accelerated by the 
gravitational force and confined to the pipe by two side walls. During the fall, cracks 
develop in the lower part o f the pile and ascend progressively inside the bulk in both 
experiment and simulation [7]. For details on experiments and simulations see Refs. 
[7,9].

The reasons for a crack to open have been identied as the fluctuations o f either 
the wall surface [7] and the random particle motion [9], It was reported that 
fluctuations lead to a momentum wave in the material. A part o f the material is 
decelerated and the material from above hits this slower plug and causes a new, 
possibly stronger momentum wave. The increased pressure on the sidewalls may 
lead to an even stronger deceleiation so that eventually a crack opens below the 
plug —  and becomes visible only that late. Thus, cracks are a rather bac indicator of 
the dynamical processes occuring inside a granular material, since they need some 
time to open, before they get visible. In simulations one has access to quantities that 
allow deeper insight into what is going on in the material. The number of collisions 
per time unit in which a particle participates can be measured and visualized easily.

The system is a box o f width L and initially filled with N  particles with diameter 
d, situated on a triangular lattice with lattice constant s=  1.01c/. Each particle is 
assigned a random velocity, uniformly distributed in the range -u„< u (0) < uQ in 
both, the horizontal and vertical directions. This rather regular system is now allowed 
to reach a steady state, i.e. we start the simulation at t = - tr using r = rw = 1 and

H = Hw = 0. A typical average velocity in our simulations is u = yf(°2) = 0.05 m s_1

for t = 0 s. Due to the rather lew kinetic energy, the array o f particles is still 
arranged on a triangular lattice, except for a few layers at the top which are
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t=0.048 s 0.052 s 0.056 s 0.060 s 0.064 s 0.068 s

Figure 13. Snapshots from a simulation with N  = 1562, L = 20.2, e = e = 0.9, p  = p  = 0.5, and 
P0 =P0w = 0.2. Black particles have a collision frequency o f N = 0  s'1 white particles have a frequency 

larger than N  > 10‘s'1 and gray particles interpolate between the two extremes

fluidized. In a typical simulation, we use L = 20.2 d and N=  1562, so that the array 
consists o f about 80 layers. At time t = 0 s we remove the bottom, switch on 
dissipation and friction and let the array fall. In Fig. 13 we present data from one 
special simulation with N = 1562, L = 20.2, e = £ w = 0.9, n  = nw = 0.5 and 
P0 = /?0w = 0.2. Light (dark) particles carried out many (few) collisions in the last 
interval At = 0.001 s.

The black bar at the right wall marks the particle at which one observes at first 
a large collision frequency A at time t = 0.048 s. Already 0.004 s later the 
neighboring particles react and also carry out more and more collisions. This 
increase in collision frequency leads to an increase of pressure that, in return, leads 
to more friction, a slow down o f the particles close to the wall, and to even more

Figure 14. (a) Semi-log plot o f the probability distribution Pt (Nc, A) against the number o f  collision 
per unit time the simulation in Fig. 13. The data correspond to a time before cracks and arching occur, 

(b) Log-log plot o f Pp (Nc, B) from the simulation as in (a); here data are presented when cracks and
arches exist.
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collisions with the following particles. The gray region indicates an arch like 
structure that spans the whole width of the system at t = 0.056 s. Again 0.004 s later 
this region of large Nc and large pressure has almost disappeared, and for t > 0.060 s 
at the position of the initiating particle (at the black bar) a crack is visible. Still later, 
new arches above and below the original one appeared.

In Fig. 14 we present again the probability P(Nc) to find a particle in the system 
that performed a number of Nc collisions per unit time within the last time interval 
At = 0.005 s. P(Nc) is calculated from the simulation in Fig. 13 at times / = 0.02 s, 
0.03 s, 0.04 s, and 0.05 s, i.e. before the first arch (or crack) occurs. The probability 
for the number o f collisions can be well fitted by the exponential P (N  , A), see Eq. 
(21), with the mean collision rate A = I s 1.

As soon as arches occur, the probability o f the number of collisions changes 
shape. In Fig. 14(b), P(Nc) is displayed at times t = 0.055 s, 0.065 s, 0.075 s, and 
0.085 s. The probability for large (small) collision frequencies increases (decreases), 
and can now be approximated by the power-law P (N , B) with the rate B = 14 s'1 
from Eq. (22). Note that the curves in Fig. 12 and Fig. 14 are similar, the only look 
different because the horizontal axis is linear in the former case but logarithmic in 
the latter.

6. Summary and Conclusion
With a rather simple description of a granular material as an ensemble of 

inelastic spherical particles we have investigated interesting effects like the 
clustering instability and arching. A freely cooled granulate builds up a density 
instability and clusters of particles are formed. The structure on small length scales 
was described with the event driven simulation, but could not be reproduced by the 
stochastic DSMC method. The large scale structures, i.e. the structure factor o f the 
clusters, however, was nicely reproduced with the stochastic method.

DSMC assumes molecular chaos. Thus we examined different systems and 
found in 2D a constant probability distribution for the impact parameter, i.e. 
molecular chaos, when the system is elastic or slightly inelastic. Only for large 
densities, large systems and strong dissipation, the molecular chaos assumption 
becomes invalid. In those cases, we observed shearing motion of grains, a 
phenomenon that can be found also in large, dilute systems after dense clusters have 
formed. DSMC cannot model dense clusters and also ED has problems to handle 
dense regions with large collision frequencies. Therefore, we ntroduced the 
advanced TCED method that avoids the inelastic collapse, i.e. dissipation is switched 
off when too many collisions occur per unit time. We found that this variation o f the 
traditional ED method involves only a small percentage o f the particles and thus 
does not affect the system behavior as long as the cut-off time tc is small enough.

Finally, the statistics of the particle collision frequencies was examined for two 
totally different boundary conditions. In both cases, freely cooling and pipe flow as 
well, the probability distribution of the collision frequencies shows two types of 
behavior. In the homogeneous, random regime the distribution resembles a Poisson
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distribution (i.e. an exponential for small mean values), indicating that the collisions 
are uncorrelated events. As soon as cooperative effects like clustering or arching 
occur, the probability distribu :bn changes from an exponential to a power-law shape. 
We proposed one functional form that approximated the distribution functions 
measured from simulations, for both boundary conditions used.

The described cooperative phenomena are e.g. o f local nature but leave 
a fingerprint, i.e. a power-law, in the global distribution function. An open issue is the 
theoretical verfication and understanding of the shape o f the probability distribution 
function.
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