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Abstract: Flic paper is intended to describe a method for the calculation of.ID viscous compressible 
(subsonic or supersonic) How in axial turbomachines described in the Form of thin-layer Reynolds- 
averaged Na\icr-Stokes equations. File method draws on Godunov-type upwind differencing and FNO 
reconstruction suggested by llarten, so as to assure monotonicity preserving and high accuracy of 
computational results. The computational efficiency is achieved thanks to the implementation of 
a simplified 11-type multi-grid approach and fi-form implicit step. Turbulent effects are simulated with 
the help of a modified algebraic model of Baldwin-!.oiu*x. This method was at the foundation of 
a computer code a complex software package to calculate 31) flow in multi-stage turbomachines that 
allows us to obtain local characteristics, like temperature, pressure, density or velocity distributions, as 
well as global characteristics, like How rates, stage reaction. How efficiency for the considered turbine, 
compressor stage. The paper also giv es selected results of computation of a number of turbimachincry 
cascades, showing that these results agree reasonably well with the available experimental data.

1. Introduction
The 1990s have brought a rapid development of CFD (computational fluid 

dynamics) codes to solve 3D flows in a number of engineering applications, including 
turbomachinery. Results obtained from these codes facilitate design and analysis of 
turbomachinery performance that would otherwise have to be carried out by means 
of experimental testing, involving more cost, time and risk. Turbomachinery flows 
arc well known to be a ground for several phenomena of gas dynamics which take 
place in extremely complex geometries, only to mention leakage, unsteadiness, 
turbulence, laminar-turbulent transition, separation, shock wave interaction, vortex 
flows. All these phenomena may have a considerable effect on the performance of 
turbomachinery and should be accounted for in what aspires to be a modern CFD 
code.
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In this paper we will mainly concentrate on two aspects of CFD simulation, that 
is turbulence modelling and numerical resolution as these aspects are still in the 
centre of research. The choice of an appropriate turbulence model is an important 
problem for non-DNS (direct numerical simulation) codes. We make use of 
a modified Baldwin-Lomax turbulence model — an algebraic zero-equation model 
that has been tested to good effect in complex turbomachinery geometries and for 
its relative simplicity does not impose major difficulties in numerical implementation.

A numerical technique used in this paper can be called a Godunov-type ENO 
(essentially non-oscillatory) scheme. This approach was put forward by Yershov 
[24, 25], who constructed this scheme based on theoretical ideas of essentially non- 
oscillatory schemes presented in a landmark paper of Hartcn & Osher [11], and 
then developed by Yershov & Rusanov [26, 27, 28, 29] into an application package 
known under the name FlowER for the computation of 3D viscous turbomachincry 
flows. It is believed that ENO schemes, owing to their advantageous features of 
monotonicity preserving and high-order accuracy, have an upper hand over central- 
difference schemes which are non-monotonous and non-linearly unstable without 
artificial diffusion, and also over TVD (total variation diminishing) schemes which, 
although preserving monotonicity, tend to degenerate to first-order accuracy at local 
extremes.

2. Governing Equations
Turbomachincry flows can be described by a set of thin-layer Reynolds- 

averaged unsteady Navier-Stokes equations written in a curvilinear body-fitted 
coordinate system (d, t], Q presented in Figure 1 and rotating with an angular speed 
f l  The idea of thin-layer approximation is to discard streamwise diffusive terms, 
compared to the full Navier-Stokes equations. The approximation is well-founded 
due to the fact that for high Reynolds numbers, terms containing second derivatives 
of the velocity in the streamwise direction are much lower than the derivatives in

Figure 1. A curvilinear coordinate system (L,v\,Cj in a blade-to-hlade passage
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cross-stream directions and can be left out. This approach containing all Euler terms 
and cross-stream diffusion can be considered an intermediate step between full 
Navier-Stokes equations and boundary-layer approximation, and unlike the latter is 
capable of properly representing the effects of separation. The set o f governing 
equations is presented below in the matrix form
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where O is a conservative variable vector, E, F  and G are flux vectors; H  is a so­
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In the above formulas p is the pressure, u, r, tr —  Cartesian components of the 
velocity, U, V, IF — contravariant components of the velocity, / — enthalpy given by

U = u£,x + v t y + vr^_; V = infx + v ijy + u p p  IF = uqx + v c v + w qp  (3a)
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The following symbols were introduced to describe viscous fluxes R. and R
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and J  denotes the Jacobian o f the transformation from the Cartesian to curvilinear 
coordinate system
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and y is the specific heat ratio, /V —  Prandtl number, p  — effective (molecular 
and turbulent) viscosity

4 '  =  „ r -
(5a)
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The laminar part in Eq. (5a) can be found from the formula of Sutherland as 
below

fj. =  C ]T L5 / ( T  +  C 2 ), (5b)

where T = — ; C, = 1.4458 -10 '
pR m s - K

In order to determine the turbulent part a modified Baldwin-Lomax model is 
used (see next paragraph). The effective heat conductivity can be described as

kg ; C\ =1 10.4K. and R is a gas constant.

P  _  Plum Pair

Pr Pn,m f \ r
(5c)

assuming the laminar and turbulent Prandtl numbers as in the case o f air, that is 
Pr, =0.72, Pr =0.9.lam tur

At each nodal point of the calculation region, five unknowns are calculated from 
the set of Eqs. (1) — they are: three components of the velocity, density and 
pressure. Given values of these parameters, other local characteristics, like 
temperature, enthalpy, or entropy distributions, as well as global characteristics, like 
flow rates, stage reaction or flow efficiency for a considered turbine (compressor) 
stage can be found.

As seen from Eqs. (3b) and (5b), thermodynamic parameters are linked by the 
state equation of perfect gas. The gas constant and specific heat ratio are assumed 
constant within the turbomachinery stage and do not depend on changes o f pressure 
and temperature.

Bon n clary con ditions
The following boundary conditions are assumed at the inlet to the computational 

domain

— span-wise distributions of total pressure, total temperature, pitch and yaw angles

Piu= Tn,= T^ '  r = r (r )’ 4>=<l>(r), (6a)

— span-wise distribution of static pressure (voluntary as an additional condition to 
help evaluate the initial flow field)

P 0s= P j r ) .  (6b)
There are several boundary conditions to be imposed optionally at the exit from 

the computational domain (all these conditions have already been tested)

span-wise distribution of static pressure

Pi = PiO' h (7a)



— static pressure at the mid-span section p2; the span-wise distribution of static 
pressure is calculated then from the radial equilibrium equation

! *  = ̂ ,  (7b)
r dr r

—  mass flow rate G or volumetric flow rate G . These boundary conditions are 
recommended for low flow-rate compressor through Hows. For both cases, the 
span-wise distribution of static pressure can be calculated either from the left

Riemann invariant 1 = w -------- J tP^P  kept constant, or from the radial equi-
y - 1

librium equation, for details see [28].

At the walls (blade surface or endwalls) the following boundary conditions are 
assumed

—  no-slip
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U = V = W = 0, 

— wall temperature or (no) heat flux at the wall

(8a)

c l '
T = const, or —  = const. 

CTj
(8b)

The static pressure is calculated from Eq. (1) written along cross-flow gridlines 
as below

at blade walls
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3. Modelling Turbulence
The simulation of turbulent effects is of great importance for the computation of 

three-dimensional viscous turbomachinery flows. There is a number of turbulence 
models ranging from simple algebraic to differential Reynolds stress models. None 
of them is capable of correctly describing all types of flows. Therefore, it is crucial 
that a chosen model should be appropriate for the investigated flow and easy to 
implement without considerably increasing computational costs. The model used in 
the paper is a modified Baldwin-Lomax model —  an algebraic two-layer eddy- 
viscosity model put forward originally in [1].

The main idea of this model is to divide the boundary layer into two domains — 
an inner and outer layer, as shown in Figure 2.

Figure 2. The calculation of turbulent viscosity in the houndary layer

The Prandtl concept of mixing length is used in the inner region to calculate the 
distribution of turbulent viscosity

Pturh ~~ P-turh ~  P^ | ^ | ’ (9a)

where ro is the vorticity, / — a mixing length, that is a linear scale o f turbulence 
calculated as

/ =  At [i -  c x p ( -  i f  / A*  )], (% )
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where q is a distance from the wall; q^ = q ^ p K /r„, / p w —  non-dimensional
distance, r  —  wall shear stress, A'= 0.4 —  Kantian constant; A + = 26 — van 
Driest constant.

The eddy viscosity in the outer region of the boundary layer is defined by the 
modified Clauser formula

Flurh ~ Fntrh ~ a ^CpP^UK^k-
Subsequent terms of this equation are explained as

a  = K a

where

— , <p = 0 .55[l-exp(- 0 .2 4 3 ^ -0 .2 9 8 - )
1 + (p

(10a)

(10b)

z = Re /425 — 1, AT = 0.0168 — Clauser constant,

Re# =
pUO

A'
— momentum thickness Reynolds number;

It is assumed that C = 1.6. F  is the wake function expressed as follows

FlVK - min(;7niax/^liax ,CUKqm3JJ  D! F  ), (10c)

where U = U  -  U is the difference between the maximum and minimum |e-a max nun
locity at the boundary layer section; CnK = 0.25 is the wake constant. Fmax is 
a maximum of the velocity function

F{q) = j;|(y|[l -  exp(q+ / / l4")], (lOd)

whereas n is the coordinate that refers to that maximum location.1 max
Fk in Eq. (10a) is the Klcbanoff intermittency factor given by

Fk =[l + l5 (C ,;7 /0 maJ ’I ' .  ( 10c)

where Ck = 0.3 is the Klebanoff constant.
The division between the inner and outer layer is assumed at a point nearest to 

the wall where

p'mrh = plrb ■ C)
The model does not explain the phenomena of laminar-turbulent transition. The 

flow is assumed turbulent if at some point of the boundary layer profile the turbulent 
viscosity calculated as prescribed above is 14 times larger than the molecular 
viscosity of undisturbed flow. Otherwise, the boundary layer is thought to be laminar 
at this section.

The original model of Baldwin-Lomax as described above has been modified by 
Yershov & Rusanov [30] so as to correct its weak points. Main problems are 
connected with the calculation of turbulent viscosity in the regions of separation 
and wake.
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Usually, the turbulent viscosity calculated in separated flows is too low and 
according to the criterion given above the flow is predicted laminar. This in turn will 
increase dimensions of the laminar recirculation zone. Furthermore, if the flow is 
supersonic, the oversized recirculation zone will intensify the compression wave near 
the separation and the separation point will move upstream. This will further 
decrease the turbulent viscosity and extend the recirculation zone. In the light of the 
above, several measures were taken to improve the computational conditions. First, 
the velocity U was assumed as a negative of the maximum backflow velocity, 
unlike in the original Baldwin-Lomax where (7 = 0 . Second, following [151 the 
value of coefficient C in the recirculation zone was increased according to the 
fonnula below

C»' = C,1-L (l + Dlt 7]w/! / L),  (12)

where C^!' is the wake constant in the original Baldwin-Lomax model; ;/ -
-backflow thickness; L — characteristic dimension (blade span for endwall boun­
dary layers or pitch for boundary layers at blade walls), D |(. ~ 50. Next, in the pro­
ximity of separation and reattachment the wall shear stress r tends to zero and 
the model may yield unphysical values of turbulent viscosity. Therefore, following 
[4] one can replace the wall shear stress in the separation region with an avera­
ged value defined as

r“  = (13)

where ^ is the curvilinear body-fitted coordinate, L —  is a distance along the wall. 
In order to assure smooth changes of turbulent viscosity, the flow history is taken 
into account using a simple relaxation procedure that refers to turbulent viscosity 
upstream, see [5]:

AT, = (1 -  X ) ( ' , ,+  XU,, r  (14)

where fir is the resultant turbulent viscosity coefficient, ft, — its preliminary va­
lue, q, | — turbulent viscosity one cell upstream, % = 0.1-0.3 is the correlation co­
efficient.

The original Baldwin-Lomax model simulates poorly eddy-viscosity in wakes. 
For far wakes usually the Clauser formulation is assumed

f i l t  = K CLp U e8 ' F k , (15a)

where <5* is the displacement thickness, U is the outer flow velocity. As it is dif­
ficult to determine the displacement thickness for an arbitrary three-dimensional 
wake, usually the constancy of the maximum turbulent viscosity as well as the 
constancy o f the quantity p U  8* is assumed which reduces Eq. (15a) to the form

ft a  = ma\{fi,c)Fk , 
n (15b)



where f.i is the turbulent viscosity at the trailing edge. Fk is the Klebanoff inter- 
mittency factor
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Fk = 1 + 5.5 (15c)

where the wake thickness 8  is estimated as

= mi n  {ilmJ C k,28io\ (!5d)

and S'" is a cross-wake distance between the wake axis and a point in the wake

where the vorticity assumes a maximum value. The relation 8  * 2 8  is usually

valid. The wake axis is determined as a line that consists o f points where the 
velocity is minimal and the entropy function reaches its maximum.

For a near wake the following relaxation formula is applied [21 ]

V,urh = V a , + U ,  ~ Ma, )CXP[- S / ( 2 0 ^ )], (16)

where /.ia , f ‘,„rh arc coefficients o f turbulent viscosity calculated in the wake 
from the Clauser formula, calculated at the trailing edge from the Baldwin-Lomax 
model, and the resultant turbulent viscosity in the near wake, respectively. In Eq.
(16) c is the distance from the trailing edge section and d; is the trailing edge 
boundary layer thickness.

The original Baldwin-Lomax turbulence model was put forward for 2D flow 
simulation. In order to implement it in 3D computations it is necessary to devise 
a procedure that accounts for intersecting effects of different walls (endwalls and 
blade wuills). This procedure is as follows. For each point of a section C = const,

two coefficients of turbulent viscosity f.i;lirh (due to endwall effects) a n d ^ ''^  (due
to blade wall effects) are calculated for independent length scales. Then, the final 
turbulent viscosity is found as a weighted average value as explained below. Both 
the blade-to-blade region and the wake region are divided into several sub-regions, 
see Figure 3.
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Figure 3. The division of the hlade-to-hlade region (left) and the wake region (right) into several 

sub-regions for the ealcidation of turbulent viscosity coefficient
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In a section £ = const of the blade-to-blade region one can distinguish the 
following sub-regions: I — outer flow, II — endwall boundary layers, III — blade 
wall boundary layers, IV — corner boundary layers. In the sub-region I the

coefficient of turbulent viscosity t l,urh ' s calculated as an average of ju ~urh and 

IjT weighted according to the distance from the walls

A C ©  + A © ©1 turh
l„ + h

(17a)

where /., / are distances from the endwall or blade wall, respectively. In the sub-

' region II fLturh is assumed equal to, whereas in III — equal to /jfurh . In the sub-
i
region IV p iurh is also evaluated as a weighted average o f /uflirb and ju'’irh , taking 
into account the distances from the walls and sub-region boundaries

Â turh
A'L, A>? + fj furh A ̂  

A /] 4- A ̂ (17b)

where

77'? =
r  turh r l iw h

S ,  - A t
p  = „ !r 1, turh H'turb

Ot1 (17c)

The symbols used in Eqs. (17b, 17c) are easily explained with the help of
Figure 4.
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Figure 4. Turbulent viscosity calculation in the corner sub-region

In a section C, = const of the wake region one can have the sub-regions: I -  
-outer flow, II —  endwall boundary layers III — wake / outer flow interaction, 
I V —  wake / endwall boundary layer interaction. The calculation procedure is the
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same as above, bearing in mind that in order to determine , we use the wake 

formula (15) instead of the wall formula (9).

4. Numerical Scheme
The matrix of governing equations (1) forms a set of complex non-linear partial 

differential equations. Neither an analytical solution has been found nor even the 
problem of existence and uniqueness of solution has yet been resolved and there is 
little hope that this problem will ever be resolved. The difficulties lie in non-linearity 
of equations, a large number of unknowns and geometrical complexity of 
boundaries. All hopes are pinned on numerical analysis and experimental validation 
of obtained numerical results. Although a considerable progress in quality of 
numerical schemes for Navier-Slokcs and Euler solvers has been made over recent 
years (only to mention central difference schemes of MacCormack [19], Beam- 
Warming [2], Rungc-Kutta resolution by Jameson [18], upwind difference schemes 
of Godunov [9], modified by Kolgan [16] and Tiliajcva [22], TVD schemes of 
Marten [10], Ramsey [20], Chakravarthy [3] and Nigmatullin [14]), further extensive 
research is required to make the numerical schemes stand up to what is deemed as 
fundamental criteria for their operation, that is accuracy, monotonicity preserving, 
proper approximation of convective derivatives, reliability and relatively low 
calculation costs. It is generally accepted that the schemes based on central 
differences generate non-linear instabilities wherever flow gradients become large 
and only upwind differencing assures linear and non-linear stability. In turn, 
Godunov-type and TVD schemes, although monotonicity preserving, with upwind 
differencing, and usually second-order accurate, tend to degenerate to first-order 
accuracy. The numerical scheme described in this paper is a modified upwind 
difference Godunov-type scheme that makes use of ENO reconstruction to 
approximate convective derivatives and assures at least second-order accuracy 
everywhere. This approach was put forward by Yershov [24, 25, 27, 28], who 
constructed this scheme based on theoretical ideas of ENO schemes presented in 
a landmark paper of Marten & Os her [11],

Explicit step
The applied scheme draws on cell-centred finite-volume discretisation. These! 

o f governing equations can be integrated in an elementary cell tpjj k

f f i f M . f l o { E  -  Rr ) d { F  -  R ) d G
-------— +------- — +---ptz

<R (R
d(j> = .

(IS)

Making use o f the Gauss theorem with regards to the second integral, then 
taking into consideration the mean value theorem, one can obtain the following 
difference equation
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«  = 0 " ,  - Q L ,  ~ e . . , ,(A^A;/A g J ) KM

( £ - A ) ' A „ A S ] 1 / : / ( + [ : F - R „ ) " A 4 A s J i(1(; (19)

(where subscripts /, /', A- refer to cell centres, i±  1/2, /'± 1/2, k±  1/2-to cell sides and 
n is a time instant.

ENO approximation
In Godunov-type schemes the inviscid fluxes are found from the solution o f the 

Rietnann problem, that is the problem of finding gas dynamics parameters at a cell 
side (surface of discontinuity of parameters), given their values in the neighbouring 
cells. In the case of weak flow gradients, a subsonic linear approximation is used. 
For large gradients the scheme relies on an iterative procedure depending on the 
velocity jump normal to the cell side. The Ricmann problem solver is described in 
detail in [9] and assures upwind differencing. In the original Godunov scheme, the 
boundary values for the Ricmann problem are taken as those o f the cell centres. In 
the method presented in this paper the initial values for the Ricmann problem are 
calculated from a time-space piece-wise linear extrapolation

r/(^,??,C,0 = qK
f  n \cq

V(  ^  Jm

f  T* \
A c t (?-?„,)+

c q

l ^  J m s d t  j
( '  -  )•

cq
cq ( n - n , „ )

Jrn

( 20 )

where q = (p, i t , r, »■, p) is the primitive variable vector, q — its value at the cell 
centre, £ , n , C — cell centre coordinates.

The spatial derivatives that appear in Eq. (20) are found from the following 
algorithm.

1. First, the primitive variables q are transformed into characteristic variables de­
fined as

A,„<p = A/A,,# , (21)

where L is the matrix of left eigenvectors of a matrix D[f that appears in the 
non-divergent form of Eq. (1), see Eq. (25) below. The symbol t// denotes any of 
the coordinates L  n, & A q = q - q  . and A (b = <b - 6  ,m 1 Jm 1 m-1 mT Tm T m-1.
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2. Then, the ENO approximation is used to define the derivatives of the character­
istic variable vector

f  \  clef j
—  = —  minmod[A„,(p + a  minmod(A,„<p -  A A m+l<p -  Am<p\

^  (22a)
A m+\<P ~  P  minmod(A,„+1(p -  Affl<p, A m+2q> -  Am+I<p)],

where A is the cell size and the function minmod is defined as followsV

minmod(a, b) = sign(rz) max{0, min[ | a | , /rsign(fl)]}. (22b)

The choice of constants a, b determines the order of the numerical scheme. For 
a  = 0; p  = 0 we have a classical TVD scheme that is locally second-order accu­
rate. For a  = 1/2; f}= 1/2 we have an ENO scheme that is second-order accu­
rate everywhere in time and space and does not degenerate to first-order accu­
racy at critical points. For a  = 2/3; /3 = 1 /3 the scheme is locally third-order ac­
curate, remaining at least second-order everywhere. This scheme is implemented 
in the present paper to solve turbomachinery flows.

3. In order to finally find the derivatives of primitive variables an inverse transfor­
mation is used

f  d q }
dy/ Jm

d(j)

dy/ (23)
Jm

The operation of transformation from primitive to characteristic variables to 
calculate the derivatives in Eq. (20) has a stabilising effect on the calculation 
process as it prevents entropy drops usually responsible for failure to converge at 
the front of shock waves.

Let us remark that Eq. (22a) is written for cells of equal dimensions. However, 
grids used for computation of fluid domains are usually refined near the walls. In the 
present approach, we make use of an H-type body-fitted grid refined at the walls 
and near leading and trailing edges. Therefore, the formula (22a) should be improved 
to account for different cell dimensions
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^ Ptp ^ del

rip
V r  S'"

= min modi + $, (A„,(// + .92Am+l/2y/)
\ A V „ ,

m i n  m o d An, + \(P - An,(P A,„(P~  A m_ , f

A„,v2 ’ A,„~w2 „

A,„ + 1<P , ( A „ I+, V / - $ 2A „ It] 2i / / ) m i n m o d
A,n + \'l/

(24)
A . + ^ - A j p  A„,+2<p-A„,4l<p

A ,„W A „,+

where A i// is the cell si/e, A j  —  distance between centres o f neighbouring 
cells (A i// + A u/=2A  i//) and $ = 1/2; $ = 1/3.

The time derivative in Eq. (20) is found from the non-divergent form of the 
governing equations

pq
J - A +  D-.

Pt
cq_ D, cq_

cq
D . * - = T

dq
JH +

\

PR.

~^T
■ +

Pi] (25a)

where matrices D can be found from Eq. (1)

PVx P ¥y P¥; 0
0 0 0 Vx 1 P
0 0 V* 0 v j p
0 0 0 V , V - J p
0 YPVX YPVy YPV:

(25b)

U is one of U, V, W\ T is a matrix of transformation from primitive to 
conservative variables.

The viscous fluxes are calculated based on ENO approximation of derivatives of 
the primitive variables (already done while evaluating the inviscid fluxes) and

f
a weighted linear interpolation. For example, a quantity P

\

Pit
Pi]

\

/
at a cell side can

be found from
( \

Pn\ 1
= n .)

JO, 2

Pit 
9 —  Pq + (T /ti ~ n j+1.2)

f  Pit '  
P ~

Jio \
Pi] (26)

Subscripts /', k are left out in Eq. (26) as constant. This approach ensures 
second-order accuracy and it is simpler and more natural than traditional central- 
difference approximations. The viscous terms arc limited by the function minmod 
and the effects o f viscosity arc not distorted by unphysical numerical phenomena.
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Implicit scheme
One drawback of the described explicit scheme is its insufficient effectiveness 

in terms of computational costs. The process of convergence to a steady-state 
solutions can be accelerated if an implicit scheme is applied. A number of implicit 
schemes have been elaborated to work with the Godunov scheme. In the present 
paper we make use of an implicit 5-operator of Beam & Warming [2]. This method 
can be considered supplementary to the explicit scheme and does not involve major 
changes in the concept of the algorithm.

In the construction of the implicit 5-operator of Beam & Warming the following 
asymptotic relation is used

I  + ■
_e__

(1 +.x)J
—  A +

eq
B + — C

8$

\
5 0 "  =

/ j 1 + x
■ R I I S " +

1 + .v
-SO «-i

(27)

where / = diag {1} — unit matrix; 0 and v — constants; R//S  — right hand side 
of Eq. (25a). In order to obtain second-order accuracy it is necessary to put down 
0= 2, x  = 1, and assure the approximation of RHS with second-order accuracy in 
space. The process o f solving Eq. (27) requires its factorisation (with regards to 
space coordinates) and diagonalisation of matrices A, B, C.

In general, the applied implicit scheme is as follows
1) transformation to primitive variables

5q"  = - 1 — T 8 Q "  + ——— 8q "1 + .Y 1 + .Y (28a)

2) transformation to characteristic variables with regards to coordinate g

S<p 7 -  L ' S q  " ; (28b)

3) implicit step with regards to g 

T0 d
I  +

(1 + x ) J  eg
(a ;  + a ;  ) C ~ o + 1 / 3 e  ^ n .ocp z =  ocp s , (28c)

4) inverse transformation to primitive variables

5q"+] * = L:'5(p *; (28d)

5) traiwformation to characteristic variables with regards to coordinate q

8<p;;+' n  = L ns g n + I / 3 (28c)
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6) implicit step with regards to q 

tG
I  +

(1 + x ) J  ot]T 7  (A ẑ +  A ~n) Sip n + 2/3 _ n + 1 /3 ,
n = 5(Pn > (28f)

7) inverse transformation to primitive variables

Sc, n + 2;?‘ = L~'5(p ” + '  ''; (28g)

8) transformation to characteristic variables with regards to coordinate C

S(p"+2n = L J q " +23: (28h)

9) implicit step with regards to £ 

t0 c
(a ;  + a : ) Sep’! = Sep n+2/3.

(28i)(1 + x ) J  dq

10) inverse transformation to primitive variables

Sc," = Z .- '50 ; ; (28j)

11) calculation of primitive variables in a subsequent time step n+ 1

q"+l= q " + 8 q " .  (28k)

The derivatives in Eqs. (2.67), (2.70) i (2.73) are substituted with upwind 
differences, for example

d y (A+,  + A v )
0 A » , K 5(PV A n, + \ K S(P„
Sep = --------------- + •

A n,V A „, + lV'
(281)

In the above formulas the symbols A v are defined as

A + A v ±  |A ̂  |
A v = ------- 7T------K (28m)

where the diagonal matrix A consists of eigenvalues o f D

A ,  = L¥ D ¥ L-¥' (28n)

obtained from D through diagonalisation, using matrices L ^ 1 whose columns 
are left and right, respectively, eigenvectors of D . The diagonal matrix | | con­
sists of absolute values , .

|AV,| = ^ { | AJ }  . (28o)



Mixing plane
The elaborated method enables the calculation of one-stage and multi-stage 

turbomachines, including both stationary and rotating blade rows that are calculated in 
coordinate systems fixed to the blading (rotating with the rotational speed of blade 
rows). The stator/rotor interaction is accounted for through exchange of averaged 
thermodynamic parameters. This mixing procedure is accomplished in the gap 
between the blade rows with the help of non-reflective boundary conditions to prevent 
reflection of waves there. The non-divergent form of Eq. (25a) is rewritten as
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j A i + D

a * 6c  ' di] - dC ' dd

f

J H  +

v

SR c__S_■ + ' V
dij (29a)

where matrices D* are given by

D  = L~ A  L .V ¥ ¥ V (29b)

Non-reflective conditions are obtained assuming that at the inlet to a non-first

+ 3  q
blade row D *  -7-7-  = 0 ; at the exit from a non-last blade row D  ~ ------ - 0 .

* ^
Then, Eq. (29a)reduces to

j A l + D i A l + d  A l + d * A l
d t  " ' d ll  *

%

T J H  +
d R ,  dR„

V
dq  d q (30) ■

Therefore, the following numerical procedure to evaluate primitive variables at 
non-first inlet/non-last exit sections is assumed

. n + 1 TII -  —
( 'T

+  B dq  +  D ± dq  ^ 1
l  J dr) ' *  J j (31)

where Sq = q - q 0; q()— circumferentially averaged primitive variable vector. The

d q  d q  d q
derivatives ~T7~’ ~  are calculated from ENO approximation and invisciddq 011 oq
fluxes are found with the help of the Riemann problem solver.

5. Numerical Results

Langston cascade
Our first example of numerical calculations refers to a 3D linear cascade 

investigated experimentally by Langston et al. [17]. The exit Mach number was 
about 0.2, Reynolds number — 500 000. The calculated velocity vectors near the
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cndwail of the Langston cascade are presented in Figure 5a and exhibit the 
presence of a horseshoe vortex generated near the leading edge that consists o f two 
branches. One branch passes around the leading edge and propagates at the suction 
side of the blade, the other spreads through the passage to the suction side o f the 
neighbouring blade. The surface streamline that divides the passage and corner 
vortices can be seen near the suction side of the blade. The corresponding 
experimental cndwail flow obtained by Langston is displayed in Figure 5b. The 
comparison of computational and experimental static pressure contours is shown in 
Figs. 6a and 6b.

Figure 5a. Langston cascade — computed velocity vectors at the cndwail

Figure 5b. Langston cascade — experimental endwall flow
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Figure 6a. Langston cascade — computed total pressure contours at the endwall

Figure 6b. Langston cascade — experimental total pressure contours at the endwall

The next pictures shown in Figure 7 illustrate computational and experimental 
contours o f the total pressure coefficient at cross-flow sections of the blade-to-biade 
passage for several distances from the leading edge — 14, 55, 96% axial chord. 
These pictures show subsequent stages of development o f secondary flow 
structures that evolve from the horseshoe vortices. A similar secondary vortex is 
conspicuous in Figure 8 that displays contours of the static pressure coefficient in 
the bladc-to-blade passage at 82% axial chord from the leading edge. Although the 
computed results can be observed to slightly overprcdict the intensity of secondary 
structures, by and large, the computational and experimental results are found to 
agree reasonably well.

j
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Figure 7. Langston cascai/e — computed tleft) and experimental (right) contours o f the total pressure 
coefficient at subsequent cross-flow sections o f the hlade-to blade passage

Figure 8. Langston cascade -  computed (left) and experimental (right) contours o f the static pressure 
coefficient at subsequent cross-flow sections o f the blade-to blade passage

Hodson <6 Dominy cascade
The next example is a 3D linear cascade of Hodson & Dominy [12]. Figure 9 

shows calculated velocity vectors at the pressure side and suction side o f the blade. 
The positions of separations and reattachments are shown schematically by dashed 
lines S and R, respectively. The span-wise distribution of the total pressure loss 
coefficient near the exit (2% axial chord downstream of the trailing edge) and in the 
region of wake (10 and 42 % axial chord downstream of the trailing edge) is presented 
in Figure 10. The picture contains results of our computations (solid lines) together 
with the results of experimental investigations of Hodson & Dominy (circles) and 
results of numerical calculations of Ivanow & Krupa [13], based on the TVD method 
(dashed lines).
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En d  m a l l

Figure 9. Hudson & Dominy cascade — computed velocity vectors at the pressure side and suction
side o f the blade.

Figure 10. Hodson & Dominy cascade — span-wise distribution o f the total pressure loss coefficient tit
several distances from the trailing edge.
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The comparison of computational and experimental velocity vectors and total 
pressure contours at the exit section from the cascade is presented in Figure 11. The 
symbols A, B, C mark the comer, passage and discrete vortices respectively. As in 
the case of the Langston cascade, it seems that the numerical method tends to 
slightly overprcdict the intensity of secondary structures. However, there is still good 
agreement in quality and quantity between computational and experimental figures.

2 , 0  i , 3  1 , 0  0 , 5  0 , 0

Figure II. ffoi/son if Dominy cascade — the comparison o f computational and experimental velocity 
vectors and total pressure contours at the exit section.

Model air turbine
The final example is a model air turbine of ITC Lodz [23], The geometric and 

thermodynamic characteristics of this two-row stator-rotor stage are displayed in 
Tab. 1. A 3D view of the calculation grid for the stator and rotor is shown in Figure 
12. The computational area consists of 420 000 cells in total. Figs. 13 and 14 present 
the obtained contours of total pressure and entropy function behind the stator and 
rotor. The shape of the wake behind the stator and rotor seems to be regular for that 
type of flow. Local maxima of the entropy function due to secondary vortices are 
clearly vis;ble at some distances from the endwalls.
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Table 1. Approximate geometric and thermodynamic characteristics o f a modeI air turbine stage.

stator rotor

span/chord 1/b 0.73 2.20

pitch/chord t/b 0.86 0.80

span/diameter 1/D 0.08 0.08

stagger angle [deg] 47 13.6

pressure drop 0.9

inlet temp. [°C] 320

flow rate [kg/s] 4.3

average reaction 0.23

efficiency 0.87

Figure 12. ModeI air turbine — the calculation grid for the stator (left) and rotor (right)

The computed overall efficiency i]u of the flow that includes kinetic energy 
losses —  profile and endwall losses, wake and exit velocity — is equal to 0.87, for 
the optimum load (h/c = 0.54). The comparison of computational and experimental 
efficiency characteristics as a function of load is presented in Figure 15. In the same 
picture, there is a comparison of the computed and measured degree of reaction at 
the hub p  and casing p .  A small table attached to Figure 15 gives a set of discrete 
values of the above mentioned global characteristics of the stage for three values of 
load. Except for p_, other computed characteristics compare well with those
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Figure 13. Model air turbine — computed contours o f total pressure behind the stator (left)
and rotor (right)

Figure 14. Model air turbine — computed contours o f entropy function behind the stator (left)
and rotor (right).



obtained from the experiments. Most likely, a reason for the disercpancy in p is that 
the numerical scheme does not incorporate tip leakage regions.

Another comparison of experimental and computational results is presented in 
Figs. 16a-c. These pictures concern the span-wise distribution of velocity and yaw 
angle at the exit from the stage for three values of load. Although the results may 
not agree in quantity near cndwalls, the character of the computed curves is 
a decent reproduction of experimental values.

The presented computations were carried out for subsonic flows. The numerical 
scheme also lends itself to the calculation of transonic and supersonic flows. To see 
some other examples of computations with the help o f the presented numerical 
method the reader is requested to refer to [6, 7, 8, 31, 32].
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0:li-

P

u/Co. 0 .45 0 54 0.65

Hu 0  856 0. 872 0.847

Pw 0.07 0 14 0.18

P/ 0  14 0 21 0.25

0.0 -

Figure /5. Model air turbine — computed (solid lines) and experimental, (dash-dotted lines) efficiency 
and reaction characteristics o f the stage as a function o f toad.

Figure ! 6a. Model air turbine — the comparison o f computed (solid lines) and experimental 
(rectangular points) velocities (left) and yaw angles (right) at the exit from the rotor for u/c = 0.45
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L coord / Am

Figure 16b. Model air turbine — the comparison o f computed (solid lines) and experimental 
(rectangular points) velocities (left) and yaw angles (right) at the exit from the rotor for u/c  ̂= 0.54

Figure 16c. Model air turbine — the comparison o f computed (solid lines) and experimental 
(rectangular points) velocities (left) and yaw angles (right) at the exit from the rotor for u/c()[ = 0.65.

Conclusions
A numerical method to solve 3D turbomachinery flows is described in the paper. 

The governing equations are assumed in the form of thin-layer Reynolds-averaged 
Navier-Stokes equations. The effects of turbulence are incorporated with the help of 
a modified Baldwin-Lomax model. The numerical procedure is constructed based on 
the upwind difference Godunov scheme. An increased accuracy o f calculations is 
achieved thanks to the applied ENO approximation o f derivatives o f characteristic 
variable derivatives. The scheme is locally third-order accurate and does not 
degenerate below the second-order accuracy anywhere in space and time.

The presented examples of computations concern single 3D cascades and 
a two-row model air turbine. The computational results reproduce well main 
structures of the flow characteristic for the tested range o f Mach numbers and 
aspect ratios (blade span/'pitch, chord/pitch). The presented illustrations exhibit the 
occurrence of horseshoe vortices, passage and comer vortices, development of 
secondary flows, presence of wakes, separations and rcattachments. Thanks to 
post-processing of computed flow characteristics, the computer code enables the 
determination of global characteristics of axial machines, including stage efficiency 
and reaction that also remain within reasonable agreement with results of
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experimental investigations. The elaborated code seems to be suitable not only for 
investigating 3D flow phenomena in turbomachines but also can be instrumental in 
engineering practice to help design high performance blading for HP, MP, LP 
turbines and compressors.
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