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1. Introduction

The rescarch in fluid dynamics can be done on both experimental and numerical
basis. For the latter one a computer code nceds to be written in order to solve the
governing fluid flow equations. The code KAPPA is a CFD-simulation package serv-
ing as a platform to develop faster and more accurate numerical schemes, better physical
models, or as an engineering tool for the simulations of flows in technical equipment.
Another important subject is the training and education of students or engineers. Since
CFD s highly calculation intensive, new computer architectures like vector and paral-
lel computers are necessary to treat more complex flow ficlds or to resolve these
flows morc accurately . Therefore KAPPA has been specially designed to be used on
these architectures. The structure of the code is such that the solution of additional
transport equations needed for the simulation of chemistry , turbulence modeling,
multiphase flows etc. can be casily implemented. In order to treat complex geometrics
the code is block stuctured. The finite volume method is used to discretize the equa-
tions in space. The code is written in Fortran 90 using the highly desirable new feature
of this language in order to make up for the disadvantages of the Fortran 77 language
with respect to other programming languages like C, C++, or Pascal. For the applica-
tion of the code on parallel computers a message passing tool has been used. Since we
feel that MPI (Message Passing Interface) has become the defacto standard tool for
distributed memory parallel platform, it is used in KAPPA. Especially for the training
of students in CFD, a graphical user interface for KAPPA has been developed. This
has been donc using the frecware Tel/Tk (Tool command language/Tool kit) developed
by John Ousterhout [ 19] which has gained widespread acceptance in the programming
community. It turned out that with the graphical user interface not only the handling of
the code has been improved but also the amount of typing errors has been significantly
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reduced. The code solves the compressible Navier-Stokes equations in Reynolds av
erage form in conjunction with a statistical turbulence model like algebraic turbulenc
model or two-cquation model, as well as in a space and time filtered form for larg
eddy simulation.

Steady and unstcady flow fields can be simulated. Unsteady flows can also b
treated together on moving grids.

The code is subject to continuous development with respect to compressible flov
ficlds, chemically reacting flows, multi phase flows, turbulence modelling etc. in ow
institute as well as in other research facilities in Europe.

2. Basic Equations Governing Fluid Flow

The calculation of viscous flow around complex 3D-bodies with large seperation
regions requires the solution of the Navier-Stokes equations. An exact solution for this
system of nonlinear and coupled partial differential equations in conjunction with geo
metric and dynamic boundary conditions to which the system may be subjected is
usually difficult to obtain. One possibility to solve this system is the direct simulation of
the full Navier-Stokes equations with a numerical scheme which resolve all the signifi-
cant time and space scales appearing in a turbulent flow. The cffort to solve a flow
field increases approximately proportional, with the third power of the Reynolds-number
Even with the help of the highest sophisticated super computers available today and in
the near future the direct simulation method can only be used for Reynolds-number
regions in the order 0(10*) which is definitively too low for practical flow situations.

In order to obtain the governing conservation cquation for turbulent flows for high
Reynolds-numbers it is convenient to split the instantaneous quantitics of the Navier-
Stokes equations into a mean and fluctuating part. This concept is called the Reynolds
averaging technique.

The average of a turbulence variable can be defined in several ways, e.g. time,
mass, phasc or ensemble averaging [33]. The appropriate averaging concept for
compressible and stationary flows is the mass-weighted averaging after Favre [3].
Replacing the instantancous quantities in the Navier-Stokes equations by their mean
and fluctuating parts results in an expression which contains mean terms, fluctuating
terms and additional unknown terms representing the mean effects of turbulence [ 18]
The additional terms make the resulting conservation equations undetermined, the gov-
erning cquations do not form a closed set. They require additional relations, based on

statistical or similarity considerations. The unknown Terms — pv,'v." are called

Reynolds stresses and are subject to turbulence modeling techniges.

The compressible, time-dependent Navier-Stokes-equations in integral form can
be written as:

for mass conservation:

op S =
J:[ EdV +J. pv-ndS =0, 2.1)
v

S
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for momentum conservation;

J‘J. (pu dV + J‘J.pu iz)(/S'+J.J.pna’S J]n TdS=0, 2.2)

for energy conservation:

.”.[ IV HF’[ "'”)‘”Jr'”.p(v i)dS
= || T ) ii-qdS=0. (2.3)
{J\ in-T (/S“+J;J'n GgdS =0

This is a system of hyperbolic cquations with respect to time, where E represents
the total specific energy (summation of inner and kinetic energy) and ¢ being the
energy flux vector.

It is assumed that the energy flux vector expresses only molecular energy trans-
port which can be described by Fourier’s law:

=—kVT. (2.4)

With £ the thermal conductivity, determined with the assumption of a constant
Prandtl number according to:

¢ H
v

Pr= (2.5)

T in the momentum cquation is the ,,viscous stress tensor” which will be de-
scribed later.
The total specific energy for ideal gas is:

pE =pe+p)2v° = p/lc =1)+ p/2v’ (2.6)
and the total specific enthalpy:
pH =pE+ p. 2.7)

Here e represents the inner cnergy. H the total enthalpy and « the ratio of
the specific heats.

For Newton-type fluids the assumption is made, that the stress tensor T is

continually varying with deformation velocity tensor D (Stokes hypothesis).

_ ) -
TzzuD—Eyv.(ﬁ-/) (2.8)
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The deformation velocity tensor D is given by

u, 1/2(11‘ + \'\) 1/2(1,/__ +w )

D = 1/2(1,1 Lty ) v 1/2(\/': + u'\‘)

"

1/2(. +w) l/2(\*: +w ) W

(2.9)

p being - the total viscosity (laminar + turbulent) and I being the unit-tensor. Fur-
thermore, the dependency of the laminar viscosity u, from the pressure is neglec-
ted so that the Sutherlan formulation could be used.

= (I\/?

o
1+4

1,

with ¢ and d being fluid specific constants which for air is given by:

c=1.46-10° [—A]
d=1104K

3. Finite Volume Method

There are some different approaches for the approximation of the equations gov-
erning fluid flows. The most popular arc the Finite Difference, Finite Element and
Finite Volumes Methods. All methods have their particular advantages and disadvan-
tages, sce Ferziger/Peri¢ [37] or Hirsch [9] for a detailed description.

In KAPPA wc arc using the Finite Volume Method to approximate the integral
form of the conservation equations. The solution domain is subdivided into a finite
numbecr of contigous control volumes (CV), and the conservation equations, as well as
the transport equations for turbulence, species ete. are applied to each CV. At the
centroid of cach CV lies a computational node at which the variable values arc to be
calculated. Interpolation is uscd to dxprcss variable values at the CV surface in terms
of the nodal (CV-center) values. Surface and volume integrals are approximated using
suitable quadrature formulac.

As arcsult, onc obtains an algebraic equation for each CV , in which a number of
ncighbour nodal valucs appears. In this chapter we shall deal mostly with 2D grids; the
cxtension to 3D-problems is straight forward. We will describe the method for an
arbitrary conscrvation equation ¢ on a grid moving with the velocity v,

ST [ ] b [ [ oo =5, s -

S

jjrgl'tlcl¢~l7c15 +J.J‘J.q¢d!” (3.1
l/

S
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Dividing the flow ficld in a finite number of control volumes one needs to approxi-
mate the volume and the surface integral.

The simplest approximation of the integral is the midpoint rule: the integral is ap-
proximated as a product of the integrand and the volume or surface area (this results in
second order accuracy). For the volume integrals one assumes a const. value of the
integrand and multiply it with the volume. The surface integral is approximated in
terms of the variable values at onc or more locations on the cell face and the cell face
values are interpolated in terms of the nodal values.

There are several ways of doing this, the simplest one is to take the value at the
node upstream of the face.

For example on the face ¢ one has to check the flow direction at this face and then

(¢ if(F-7,)7) >0
e ¢, it(F-v,)i) <0 (3.2)

to take either:

=)

This approximation is only first order accurate — which is regarded as insufficient
for practical calculations, thercfore a second order approximation is necessary for the
face value ¢

_ oy +¢p _
5

¢, 3.3)

For equidistant grids this approximation is sccond order accurate whereby the
formulation:

(l)(’ = )‘ud)lf + (1 - A’(' »I’ b (34)

where lincar mterpolation factor 4 is defined as:
by =0 (3.5)

is second order accurate on non-cquidistant grids [37].

4. Higher Order Approximations

The most critical terms in the Navier-Stokes equation are the convective fluxes
since they are nonlinear. If one wants to apply higher order approximations usually
only these terms are treated differently .

In Finite Volume Mcthods one has to approximate then the surface integral with
three points in 2D and with 9 points in 3D for fourth-order accuracy according to
Simpson’s rule. In order to retain the fourth-order accuracy these values have to be
obtained by tnterpolation of the nodal values at lcast as accurate as Simpson’s rulc.
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Cubic polynomials are suitable by fitting
¢(‘,):a(,+a|x+a3x: +oax’ (4.1
through the values of ¢ at four nodes (two on cither side of the face).

5. Turbulence Models

Turbulence modeling concerns the generation and testing of closure relations de-
scribing the Reynold stresses. At present we can confidently predict only a small class
of turbulent flows. Turbulence modcls can be devided into three major kategories:
cddy-viscosity models, algebraic Reynolds stress models and ditferential Reynolds stress
modecls. The differential Reynolds stress models consist of partial differential equation

for cach component of the Reynolds stresses pv,"v;". They can be derived in exact

forms but contain higher order correlation that have to be approximated in order to
obtain a closcd system. In these models one needs to solve the equation for the turbu-

lence energy dissipation rate ¢, in addition to those for pv;"v," for the length scale.
A particular advantage of the Reynolds stress models is that terms accounting for
buoyancy, rotation and other etfects arc in principle introduced automatically. Several
closure schemes have been proposed by Launder et al. [40], Lumley [17], Gibson/Rodi
[39] and others.

In differential stress modecls, there are differential transport equations for cach

component of pv;“v;" in addition to the ¢-cquation. To reduce the computational ef-

fort, Rodi [50] proposed an algebraic relation to calculate the Reynold stresses. The

convection and diffusion terms in the transport equation of pv, v '

; are replaced by

model approximations, reducing the equations to algebraic equations. Rodi assumes

that the transport of pv,"v'

;18 pmpprlional to the transport of K and the proportional-

pvy,

ity factor is . With these approximations incorporated, the transport equations

yield algebraic expressions for pv, v, " that contain the various production terms ap-

pearing in the pv;"v;' cquations. Thus, the gradient of mean flow quantites, K and ¢

appears also in the expression, so that K and € equations have to be added in order to
complete the turbulence model. The algebraic expression together with the K and ¢
equation form an extended K-g model. Algebraic stress models are suitable whenever

the transport of pv;"v;' is not important. Algebraic stress relations arc basically like
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eddy viscosity formulations [51] and therefore are not applicable to cases with counter
gradient transport. On the other hand, all effects that enter the transport equations for

pv;“v;" through the source terms for example, body force effects (bouyancy , rotation

and streamline curvature), non-isotropic strain ficlds and wall damping influence can
be incorporated. So algebraic stress models can also simulate many of the tlow phe-
nomena that were described successfully by differential Reynolds stress models.

Boussinesq [12] was the first to attack the problem of finding a model for the
Reynolds stresses by introducing the concept of eddy viscosity . He assumed that the
turbulent stresses act like the viscosity stress, which implies that the turbulent stresses
arc proportional to the velocity gradient. The coefficient of proportionality was called
the “eddy viscosity” and was defined by

' ' I !
_p\'l .vl_ ::ll] —_ — — — )
x; ox; 3 Y ox ; 3

v, oy, 2 0y 2

5, pk . (5.1)

Note that this viscosity is a property of the fluid motion and not a physical property
of the fluid itself. From dimensional considerations and by analogy with kinetic theory
the eddy viscosity is proportional to the product of a length and a velocity scale. Many
types of eddy viscosity models have been proposed in the past. We will restrict our-
sclves to the description of those models which have been introduced in the code.

The simplest turbulence models are the algebraic eddy viscosity models which
relate the eddy viscosity u by an algebraic expression for the length and velocity

scale.

5.1 Baldwin/Lomax model

The Baldwin/Lomax model [34] calculates the eddy viscosity i algebraically from
mean flow quantitics introducing a two layer concept based on the idea of Cebeci/
Smith [42] and deviding the flow into an inner and outer layer . For the inner layer they
assumed:

(5.2)

u, = p12|w

>

where
l:/\j'[l—e“"‘ . ] (5.3)

y = normal distance from the wall

+ V p“,T“._l’

P =2
; m (5.4)
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(5.3
The constants &= 0.4 and A"= 26 according to van Driest.
For the outer layer:
:“l = kC(/’ pF\mA(' FA/L’/) (-V) (56)
with
[: _ < s Cn k .\ ‘nm\ Uz?r!/
wake = T Ve U s 5 (57)

max

where v and F, arc determined by the maximum of the folowing function:

Max
I
F(_v): y‘m‘[l —e ] (5.8)
This function has a pronounced maximum in the boundary layer. The normal dis-
tance from the wall to this point (v ) replaces the displacement thickness in the
formulation of Cebeci/Smith. The Klebanott-factor is given by:

1
Fpp )z e
e [+5.5 Cuens (5.9)

Yoy

and U, is the maximum of the velocity in the wall layer. The other constants are
given below:

K =0.0168 (Klauscr);
= 1.6; C -0.25; C 0.3.

& Atk klch

op
Switching from the inner to the outer model is performed where values of i fo

inner and outer model become equal.

5.2 Martinelli/Yakhot model

The algebraic turbulence model of Martinelli/Yakhot [48] is based on th
Renormalisation Group Theory [36]. Although free from uncertainties related 1o th
determination of modelling constants, they still require the specification of a length
scale which leads to a restriction in the generality of the model. The eddy-viscosity i
obtained from the following relation.
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o= L+ H (—28/\}4 G, 113, (5.10)
1, '

where F/(x) is the Heavyside function defined by H(x)=x for x> 0 and H(x)=0
otherwise, A the wave vector corresponding to the integral scale of the turbulence
in the incrtial range, and g = i, + u is the total viscosity (laminar plus turbulent).
The constants «¢ = 0.12 and C =75 were derived in [36]. The mean dissipation
rate £ and the wave vector A must be determined before using this equation to
compute the eddy viscosity.

5 v -1 : 5 §
The integral scale of turbulence L, =1 A, corresponding to the top of the iner-

tial range, is postulate to be proportional to the distance from the wall (L, =Ky,
where « 1s the Von Karman constant).

In the outer region, it is plausible to take the integral scale in the order of the
boundary layer thickness 6. Following the idea of Stock/Haase [28] the boundary layer
thickness o is determined by:

0= 1.548y

max

where v is the wall distance where the function

R :){(ol[l—e“‘ ““’ ] (5.11)
has its maximum.
With this assumption the eddy viscosity equation can be cast in the following form:

I3

11
= l.+H —UTg —+

U; voyo

~C, (5.12)

where ¢ = 0.192 or ¢ = (.0256, depending whether the Von Karman is taken to be
equal to the value predicted by.the RNG theory (k= 0.372) or to the standard va-
lue (k= 0.4). The value of the parameter y=0.225 has been chosen in order to
recover the constant predicted by the RNG-theory for the outer part of the boun-
dary layer. More precisely the value of y has been chosen in such a way that
w6 — 0.0840as y—» J. Also cquilibrium (Production = Dissipation) is assumed,
from which follows:

cu, Cu; 2 . Cu, |Cu,
+ i - (5.13)
/ . .
x, oy, 3 7Oy |Qy

I

e=F=pc=p

The turbulent eddy-viscosity u is then obtained by solving the cubic equation at
every point in the computational domain,
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5.3 Algebraic wake model

In order to use the simple algebraic models on block-structured grids, the probles
arises how to calculate the turbulent stresses in those blocks which do not have:
boundary-layer-type tflow. A typical example is the wake of blunt bodics, because th
algebraic models cannot calculate the characteristic length and the velocity scale no
mal to the wall. Therefore, empirical distribution laws were introduced to describe th
turbulence transport into these blocks. Because the production of turbulent energyi
local equilibrium flows correlates with vorticity, this was taken as a weighted functia
to distribute eddy-viscosity in that arca, according to

o]

Ho=p , 5.1

‘(’-)x 5

with: g — the maximum cddy-viscosity along the upstream block face and |(o l
— the local vorticity at that point. The exponent « is determined by numerici
cxperiments, o =0.2. :

In addition the eddy-viscosity is also smoothed by an exponential damping factori
order to ensure steadiness on the block faces.

. f Ax,
R o

max

Wlth M, = the eddy-viscosity on the upstream blockface at the same j-station &
u', Ax — the normal distance to the location of g and Ay, ~ the length d
thc block in strecamwise direction.

5.4 K-¢ model of Launder and Sharma

The most popular two-cquation model is the K-£ model, with K the turbulent ki
netic energy and ¢ the dissipation.rate of the turbulent kinetic energy. These two equa
tions have been derived from the full Navier-Stokes equations by adopting the decom-
position of the instantaneous variables in a mean part and a fluctuating part according
to Reynolds. Additional correlations appear from the non-linear part of the Navier-
Stokes equations, which must be modelled appropriately [43].

The K-¢ turbulence model is valid only in the high-Reynolds number region. In
order to use the two-cquation models throughout the laminar, transition and fully turbu-
lent regions one must extend these models to account for the wall proximity effects.
Patel et al. {44] reviewed eight different models and found that the model of Launde
and Sharma [41] appears to perform fairly well in a majority of the test cases studicd
by Patel ct al. [44].
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The full K-¢ model in generalized curvilinear coordinates reads:
cWw ¢F oG ¢H
—t ottt =S (5.16)
ca o os dn o of
with
pKVol
- pe Vol (1)
I w( 8K oK 2k
p K _Hs ¢ o+ Py +¢,
P Voll o0& ~on = o
= M [ O¢ 8 £ oe 5.18
pelU - H, —— g, —— =18
V()/ (’3‘, 077 " 06
0 K 0K 0K
pAL-—“( (K Oﬁ +c (ﬂ
G = ol & cn ol )
pz,V—“ de _6"z+( C_z: (5.19)
Vol og Can to¢
5 C K o K 0 K
p KW -Ea|. - g O
i Vol 0& on o
o M deg . de de (5.20)
A & " c
i vol| 7o “on " o¢
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Vol| Py + P, — pe —2pv K
ox;
B e
Vol ¢, [PS 3 H, ]—pc; 8[\: - -Z,u,y,[

U=u-§ +v-§ +w-S’

V :Lt-S;'+U~S-/“+u-‘-S/‘T

W=u-S+v-S +w-S;

e, = (5 +(s:F +(57)

¢y=¢, =88 +S!ST + ;8¢

"
i

Cg = (S

=0 =808+ SIS+ SIS ¢y =S T +(s;

k

) 214 oW
F, =—ng £+c + £

3 ox Oy 0z
C (avY (owY | [ou ov
P(),:2%+(—V+£L | g oY
‘ Cx oy 0z oy Ox
(ou ow] fov ow| 2[au_ov
| 0z  Ox 0z 0Oy 3| ox Oy

with

ols;f+(s7)

Ce=Co =SS + 58! + 8387 (524

f + (S;f

v

ow

Cz
;

(5.21

(5.23

i (5.29)
=

(5.30)
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Lo ?15,'*?5}*6”5“ ED (5.31)
ov | ¢& on o¢ vol :
(:u = E.liS: + i’ll S; + ou S l (5.32)
)z | O on o¢ . jvol ’
etc.
Hy = (,“/ + )’A'luz)
¢, =1.44 ¢, =1.92 c,=0.09 (5.33)
¢, =0.491 A =0.77 Ay =1.0
:L[;: = (:u[ + A’z:/‘ll) (534)
p K’
Ry =— (5.35)
L€
K= e, [ Ry (5.36)
f, =1-03exp(- RZ) (5.37)
=25
= eXp| —————
S p[l 10.02R, ] (3.38)

5.5 K-t model of Speziale ef al.

Very recently Speziale et al. [27] proposed a K-t model with improved asymptotic
behaviour of the wall damping functions. This model yields improved predictions for
turbulent boundary layers and is computationally robust. This robustness makes this
model very attractive to use in a 3D-Navier-Stokes solver for complex geometrices.

The K-t model proposed by Speziale et al. in gencralized curvilinear coordinates

reads:

cWooF oG oH
ottt =S (5.39)
o & odn of
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p KVol
(540

W =
L)r Vol

p KU -H& |, — 40—+
Fe Vol | ~¢& " on c¢
— () 0 & .
prU——HL < (’\T+Cq—£—r—+(' o B
Vol | " ¢&  ~én c¢

C _ u( ek & 3
pKV—ﬂL (.4( +qu+(.(‘i<_
B Vol o& on c¢
_ : % 2 Al
PTV—“T ('4i+‘1ﬁi+('(»i ee
i Vol o0& T on ¢
T 3 2 K
p KW _Hy & £ +cxi+c)d\
L Vol\ "0&  “on &g
_ O % C
2 PR G4
i ‘ol Q& on ¢
Vo/[PS i — p£]
S= , ‘
T S 5.4
V()[|i(l_c‘” [Ps +PK ]?-i-DK ——Dr +((«&.24/2 —])P} (5.44
2 cU ¢oV oW
PK :—3—[) K{ = + ~ + = :} (545)
cx oy (=
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[ T/a N (AaY raN] Ta, a7
Cu v A cu Oy
Fe=|2||l— |+ =—| H=| | *
Ox 5% &5 gy x
e owl] [ov ewl| 2lou v ow | (5.46)
o R T | i e
| 0z Cx ¢z Cy 3jox v oz
D 2 cK (71'+(7K (?r+(71< T
=— M| =T P ﬁ 5.47
P KT v o v oy Gz ooz (>-47)
o N2 A\ ~y N2
D 2 ot . o1 N ot
P § ﬂ = :
T T ox oy Oz (5.4%)
with
2 o - N
ou cu . Cu ou o)1
= =S =8 pe=ff = (5.49)
cx | ¢ on c¢ vol
ou ou . ou .. ou .. |1
— = S S S (5.50)
dy | c& on o¢ vol
D 2 5 5 1
ou cu . Ou .. Ou .
—sm = g b bl == (5.51)
oz o& on ' o¢ vol
cte.
Hyg = (/‘/ +AcH, )
c, =1.44 ¢, =0.09
d ' (5.52)
By = M = A, =0.7353 Ay =0.7353
po=(, +A 1) (5.53)
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pKrt
R, = . (554
C, =1.83 1-—exp/ -| - (5.5
- b
fi=|1-exp ——‘E (5.56
| 3.45 v
_f“ = 1+W tanh % (557)
o J7”Urp
y = (5.5
H,
:Lll = :ll/ C“ f“ RT (559]

6. Numerical Algorithm

If one wants to solve a partial differential equation numerically one ultimately mug
discretize and hence reduce the partial differential equation to a system of algebraic
cquations. There arc many possibilitics of achieving this. We will not describe here al
the methods which have been successfully applied in the past but will restrict ourselves
to those methods which have been implemented in KAPPA.

In KAPPA we use the so called ,.semi-discrete method”. This is a discretization
process in two stages, first discretizing only in spacc with the finite-volume method.
leaving the problem continous in time. This leads to a system of ordinary differential
cquations in time. We then discretize in time using cither the explicit Runge-Kuta
method or the implicit LU-SSOR method for systems of ordinary differential equa-
tions.

Explicit methods typically need less computational work and are simpler both in
derivation and application. Implicit methods, although expensive in computation, have
less severe stability bounds (classical stability analysis shows unconditional stability but
in practice nonlinear problems bounds are encountered). The extra work required for
an implicit scheme is usually compensated by the advantages obtained by the increased
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stability limits, and in general implicit schemes have been useful and successful for a
varicty of inviscid and viscous flow-ficld calculations. On the other hand, the explicit
methods, although restricted by the small time steps due to fine grid spacing for nu-
merical resolution, have been made competitive by the use of convergence acccelera-
tion techniques.

With the advantage of high speed vector and parallel computers one must also
consider the degree to which a certain algorithm can be vectorized resp. parallelized
when choosing a scheme. As a rule explicit schemes are more casily vectorized resp.
parallelized than implicit schemes.

Another consideration is the question of time accuracy versus non-time-accurate
steady state iteration. For unsteady problems we wish to employ time accurate meth-
ods, initialize the flow with some realizable state and integrate forward in time whith
time steps commensurate with the unstecady phenomena which are being calculated.
Both implicit and explicit methods are capable of computing time accurately. In steady
state calculation we wish to integrate from some arbitrary state to the asymptotic
solution in a way which will get us there with the lcast amount of computational work.
Non-time-accurate techniques e.g. relaxation methods, variable time steps, multigrid
techniques can be employed as long as they are convergent and do not distort the
stcady statc cquations so as to produce inaccurate results.

6.1 Explicit method

Stable time stepping methods for the semi-discretized Navier-Stokes equations
can be patterned on standard schemes for ordinary differential cquations. Multistage
schemes of the Runge-Kutta type have the advantage that they do not require any
special starting procedure, in contrast to leap frog and Adams Bashforth methods, for
example [46]. These schemes are usually designed to give a high order of accuracy. If
the objective is simply to obtain a steady statc as fast as possible. the order of accuracy
is not important. This allows the use of schemes selected purely for their properties of
stability and damping [4, 29]. If the ccll volume V,, is independent of time, the semi-
discretized N-S cquations can be written as:

—+R(“_):0, (()l)
where R(\.-) is the residual.

Let w” be the value of w after n time steps. The gencral i stage hybrid scheme to
advance a time step At can be written as:

Mr(o) = ‘v(”)
wih = W — g ALR®
“,(m-l) G “.(I)) _ am-lA,R(m»Z)
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Where appropriate coefticients o, can extend the stability region considerably [30]

6.2 Implicit method

An approximate LU decomposition method developed by Jameson and Turkel [43
applied in two dimensions by Jameson and Yoon [49] modified and extended to thre
dimensions by Rieger and Jameson [31] is implemented in KAPPA. Since the classici
direct LU decomposition of the unfactored implicit operator is too expensive for mult:
dimensional problems one has to resort to incomplete or approximate LU decompost
tion mcthods. In the latter concept a particular approximation to the unfactored implic
operator is chosen so that the desired LU-representation will directly result. Hence fu
any dimensions only two factors appear which additionally have the advantage to &
casily invertible. Usually this objective can be achieved by an appropriate lower orde
analoguc of the original operator. For triangular matrices inversion is done by simpk
forward and backward sweeps across the field. Hence, these methods resemble the
Symmetric Succesive Over-Relaxation (SSOR) approach. The numerical method for
the semi-discrete Navier-Stokes equation then reads:

B:Al@_én _ED)_FAZE_EU _ED)+A3@—QU _g[))’ (62)

where E, F, G represent the inviscid and viscous flux vectors into the generad
coordinate directions By Xy T respectively. For control and nonlincar instabilities
and central differences a scheme has to be provided by suitable dissipation opera
tors which are indicated by lower indices D.

Then a Newton-iteration would read:

n
R\ sq"+R"=0. (6.3).
cqg | —

Here the upper index indicates the iteration count and & ¢" is defined as
0q" = g""' - ¢" In general, the computation and inversion of the functional matrix
OR/0q is too costly , so that an approximatc form has to be found such that the inver-
sion is easy and stable. A choice which has been found beneficial resembles that of
flux-vector splitting. Because the particular construction only affects the implicit op-
crator a rather crude choice fulfills the requirements for diagonal dominance of the
coetficient matrices.

For definition of the functional matrix some Jacobians of the different flux vectors
are necded.
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— aE __ aEu — aEl)
Ame 4,= o 4, = J (6.4)
B = O.E B - O_EU B = aEl)
= aq =v 6(] =D . aq (65)
-0 _36, o 9,
= (‘\q =uv aq =D. (3([ (6())

Then an appropriate approximation to the functional matrix in 6.3 could be:

1

E‘q— :D;é+D,]£+D§ g (67)

()
=91

The experience shows that in principle only the inviscid flux Jacobians have to be
considered for definition of the implicit operator , also for viscous calculations. Al-
though robustness and stability may be improved for severe problems by including into
the implicit operator an approximation of the artificial dissipation operator and by parts
the physical viscous tlux Jacobians, for a further discussion the basic scheme [31] is
sufficient.

The difference operator D: ctc. are written as a sum of first order forward (A))
and backward (V) difference operators: )

D. A=A A +V 4 . (6.8)

Now, the particular flux Jacobians 4" and A" ctc. are defined in such a way that

they possess only non-negative and non-positive cigenvalucs:

+ 1
4 =5y ril) (6.9)

r Zmaxq/l,d). (6.10)
That 1s achicved by dcfining r, as a value which has to be equal or greater than the

spectral radius of 4.

By sweeping forward and backward through the ficld the resulting relations can be
combined similar to a SSOR method [32] and it turns out that the implicit operator in
6.7 can be approximately factorized into a product of a strictly lower triangular matrix



234 F Magagnato

L . a diagional matrix D and an upper triangular matrix U . Hence the basic schem

can be written as:

D Upqg'=-R", (6.1
with:
L=V A4"+V, B +V.C" -4 ~-B ~-C", (6.1
D={ry+ 5t ) ' (6.3
U=A. A4 +A,B +A.C +4"+B +C". (6.14

Now stability should be inhanced providing diagonal dominance for cach factor [45]

Consider, as an example, the L-factor for which rearrangement will allow to write

L= (ry+rg+r, )L.‘M, —%(é - rﬁi)’__l’j_k
—%(é + "Bi)f.j—l.k _%(ng "(Vi)i,j.k—l' (6.15)

It is evident that diagonal dominance is only assured if the quantities », . and
.

i1, Cte. are redefined so that they are equal and simultancously the maximum of
both original values defined after 6.10. That is:

r7 = max (",ri./.l\- ik ),,/,,-L, > (6.16)

Paijk =F e Faicijk =Ty - 6.17)

Corresponding scttings following for the U-factor suggest also a modified diagonal
matrix D:

1
QZE(rA, FF o+l Tl tH_FF ){ (6.18)

In fact inversions of scheme 6.11 are accomplished by sweeping along diagonal
planes I+J+K = const. across the domain. Then during the inversion process all vari-
ables necded from the off-diagonals are already updated, allowing a variation of the
straightforward procedure. In inverting the modified L-factor we obtain from 6.11:
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(o "(')i,.‘/

gk —i=bjk

+B Sq  +C 8q (6.19)

ggep —da—lkk =, 41 —iJjk-l

To avoid the explicit evaluation of Jacobian matrices the intermediate flux states
can be approximated by a Taylor series expansion:

Fle) + LGy )+0(

)’ (6.20)

55'). (6.21)

Now, the scheme 6.11 is inverted by the following steps:

"i.m =—R7 g #BE s g #8F 0 48 Gy s (6.22)
o~ -1 W
bgl}j./\ :_[—)"-/?AO_CL,'J'./\‘ ¥ (623)
~ n .| = S oy _
bg/ Jik :Qi._/./« (DZ,'.‘/_,‘. _bEnl././\ —bEi,/al,A -0 Q,‘J,“])« (6.24)
where:
SE =E()-£(g") (6.25)
5E =£*G)-£'(¢"). (6.26)

In comparison to the straightforward inversion of scheme 6.11 no degradation in
performance was obscrved with the cost-effective relaxation-type inversion 6.23,

6.3 Stability analysis

The numerical schemes for the solution of a partial differential cquation must be
stable. This means that any perturbation of the input values at the 2th time level should
be prevented trom growing without bound. The stability of a scheme can be investi-
gated by the von Neumann Analysis.

Consider a distribution of errors at any time in a mesh written as a scries of the
form:
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E(n)= D byt (6.27)

£ (x(,,t0 + At)
& ('X() ¥ I()
stable. A similar technique can be used to investigate the stability for systems of equa-

tions [38]. A model for the cquation encountered in fluid mechanics can usually be
written in the form:

If the amplification factor g = < 1 then the numerical scheme is

OFy 0 4
LN WL LY (6.2
ot Ox ot ox

We now locally linearize the system by holding [A] constant while the W vectoris
advanced through a single time step. For an explicit scheme this analysis lcads to the

requirement that

At
A’ max o
Ax

<1 where A is the largest eigenvalue of the [A] matrix,

We apply this analysis to the K-& model in generalized curvilinear coordinates.
A conservative estimate for a nominal Courant number of unity is

Vol

Z ) /1’_ ’ (6.29)

where 4 are the averaged spectral radii of the Jacobian matrices in i, j and k directions.

Lincarizing around a reference state the K-¢ equations in matrix form arc

At =

o W ow i g 3
LA LI LY Y VYN Y, (6.30)
a e om ec eEr ot o -

with:
p K
W = Vol{ } (6.31)
pE
and:
A = [ 0]
= _0 U | (6.32)
B = i g
= ] 0 v | (6.33)
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, w0
L = 6w (6.34)

_ X s Y o J Y L Py F o Y ey o m
U=us; +vs) +ws) V=us)+vs] +ws; W=us) +vs) +ws; (6.35)

711;_&”*"4*"7 0

D = Vol

0 -L‘:;(‘,+(‘4+('7 (6.36)
Vol

—"/—y’:(':+('5+(‘x (637)

Mk . .
- St toy

F — Fol O
L Cit ety (638)
0 I @
Vol

0 — Vol

. 1:: % _ 4 &
—cy oz Vol —2c;¢3Vol ¢

G = (6.39)

The eigenvalues are rcadily obtained by calculating det(A — Afl) = 0. The largest
eigenvalue then reads:

Ay=uS" +vS" +wS; (6.40)
A, =uS* +vS¥ + wS; (6.41)
Ao =uS' +vS' +wS; (6.42)
(e +ey+ey
Ap=—— +—>2—L
D 0 [ Vol j (6.43)

M €3 +C5+6q :
A=k | TETRT R
E P [ Vol ] (6.44)
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Ay =

W ey +eg+e
__A[;__> (6.43

e} Vol

A :C-L_V()I%(cé +\lc§2 — ¢y j (6.46)

and the time step can be calculated according to:

B Vol
Ay +Ag ¥ Ao ¥ hp+Ap+0, +A,

At (6.47)

The cstimations of the time step for the K-t model and Navier-Stokes is similar
and will not be repeated here (for reference sce [20]).

6.4 Artificial dissipation

Whenever discrete methods arc used to calculate complex 3D-flows including
shocks, or to compute high Reynolds number behaviour, scales of motion appear which
cannot be resolved by the numerics [26]. These can be brought about by the nonlinea
interactions in the convection terms of the momentum cquations (resp. two cquation
turbulence model). If a scale is represented by wavelength or frequency , it can be
casily shown that two waves interact as products to form a wave of higher frequency
(the sum of the original two) and one of lower frequency (the difference).

The lower frequencies do not cause a problem, but the continual cascading into
higher and higher frequencies does. It is accounted for physically by shock formation
or by viscous dissipation of the very high wave numbers. In numerical computationsi
cannot be ignored and must be accounted for in the algorithm constructed. In any finit
discrete mesh the cascading frequencies can eventually exceed the capacity of the
mesh resolution at which point they can cither: a) alias back into the lower frequencies
or b) pile up at the higher frequency side. In cither case, if uncontrolled, these terms
can lcad to serious inaccuracies and possible numerical instability.

For the central difference type scheme used in KAPPA a numerical dissipation
model is included in this scheme. The form of this dissipation model is a blending of
second-difterence and tourth-difference terms [46]. The sccond-ditference terms ar
used to prevent oscillations at shock waves, while the fourth-difterence terms are
important for stability and convergence to a steady state. The dissipaton model usedin
KAPPA was first introduced by Jameson, Schmidt and Turkel [46] for the Euler equa-
tions. Several modifications of the model have been investigated in [47] and [30] in
order to improve it and make it suitable to obtain accurate and efficient solutions of the
Navier-Stokes cquations.

Basically the same dissipation model has been used for the two equation turbu
lence models. We will describe these models here only for the K- model and refer the
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interested reader to the report of Magagnato [13] and Leicher [24] for the Navier-
Stokes equations in 3D.
The lincarized K-¢ equations in generalized curvilinecar coordinates reads:

3l 4 3l oW cW 0 W O W 2514
et A+ B A C 4 DI v ES t F =G L (g8
ot c& ﬂn ¢ CE” an” oLa’ '

where the dcfinitons of the matrices A...G and W can be found in the preceeding
paragraph. To advance the scheme in time we use a multistage scheme. A typical
step of a Runge-Kutta approximation to this cquation is

At
a/"

Vol
+ D;ZD(HFI) + D]]ZE(mvl) + Dsﬁly(/ll—l) _ G m-1) AD]

W(/u) _ ”/(()) _

[D--A(m“l)-f-D B(m-l)_'_D“C(m—l)
5 ] :
(6.49)

where D, D, D.. B> D . D arc first resp. sccond spatial differene opera-
tors, and rcplcscms the drtlf'ual dm%lpdtlon terms. The dissipation terms consist of
fourth differences. That is:

=—~(D!+D,) +DHW, (6.50)
where

D: =V [y 2,4k AV AW, 4 (6.51)

Dn4 and D ‘are defined analogously. V. and A, are the standard forward and
backward difference opcerator respectively associated with the & direction
and k¥ is a constant.

The variable scaling factor 4., A, and 4. could be taken proportionally to the
largest eigenvalues of the matrices A, B and C resp. if one would solve the K—& model
uncoupled with the Navier-Stokes equations. But in practice the Navier-Stokes and
the K—& model are solved simultancously , so that the largest eigenvalue of the cou-
pled N-S and K—¢ equations must be taken. Since the cigenvalucs of the N-S equa-
tions are larger than those from the K—& modcl one must take the former.

They are:

= ‘uS,:" +vS + wa\ + c\/(S,"f 4 (S,:"f + (Sf)2 (6.52)
o =lusy vy w4 eqf(s7F + (5 F (5 ) (6:53)
Ao = ‘uS,‘\_" +vS; + wS;‘ + C\/(SAYT + (SA‘T + (SAT (6.54)

where ¢ is the speed of sound.
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For meshes with cell aspect ratios 0(10?%) typically gencrated for high Reynolds
number viscous flows, Swanson and Turkel [47] and also Martinelli and Jameson [30]
proposed to adjust the scaling factors. Instead of using the anisotropic formulation:

li+l*2,j.k = A;‘ (6.55)
li./'+l Sk A’l} (656)
Aijksra = Az (6.57)

they adjust the scaling factors as a function of the spectral radii of the Jacobian
matrices associated with the &, 1, ¢ directions and account for varying cell aspecl
ratio

Aivvizgn =i jh B2k (6.58)
)"1.,/+I/2.k = /1:./41/2,/\' K/NREY (6.59)
lf./,sz = ’1,‘._/./\-+1/2 '¢;,/‘.A’+J 2 (6.60)

where

Giv12. 4 =1+ max ((’1::/’1: ) /2 )u) (6.61)

and analoguously for ¢, and ¢,

+12.4 LEH 12T

7. Convergence Acceleration Technique

For the calculation of stationary flows it is interesting to accelerate the conve
gence to steady state as quickly as possible. Several techniques are applied in KAPPA
in order to minimize the computational effort. The convergence acceleration technique
cannot be used for all possible combinations of numerical schemes and/or physicil
equations. For example, the local time stepping technique is senseless if one adopts the
implicit LU-SSOR scheme or the enthalpy damping technique for a Navier-Stokes
calculation. Anyway, the code switchés off automatically those accelerating techniques
which are not appropriate for the specific computation.

7.1 Local time stepping

For explicit numerical schemes the time step is limited by the Courant Friedrich
Lewy condition (CFL), which requires that the domain of dependence of the numerical
scheme must at least contain the region of dependence of the original differentid
cquation. That means that the time step is a function of the cell size. The ratios be
tween the smallest and the biggest cell size are of the order of 0(10%) for viscous {low
meshes. Computation using the time step of the smallest cell in the whole computa
tional domain would be very costly . The concept of local time stepping overcomes this
difficulty by advancing every computational cell at its own stability limit. A conserva
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tive estimate of the focal time step limit for the Luler equation is:

Volna
s g 7.1
Ae+ A, + A (7.1)
where 4., 4 and A _are cstimates of the local maximum wave speed in the &
and g.—dnull()n of the convective operator. For the Navier-Stokes equations the
contribution due to the diffusive operator has to be added:

Vol
Ar = .
[ ()'.’ + }”r; —FA‘_)_F(U~ +U” +l):) (72)

And finally the two equation turbulence model has a time step limit which is aug-
mented by an cstimate of the source terms:

Vol

Al = .
(A; + 4, +A: )+ (U; +u, +0 )+ (7.3)

7.2 Implicit residual averaging

Another technique to enhance the convergence rate of an explicit scheme is the
implicit residual averaging. For a multistage scheme the residuald in cach Riumnge-Kutta
step are replaced by a weighted average of the residuals at the neighbouring point. For
three-dimensional flows the implicit restdual smoothing is applicd in the product form:

(1-&.V. A=V, AN -6V AR, =R (7.4)

me
where: R — is the explicit residual at the point 7, j, k and R, — is the smoothed
residual. For highly stretched cells Martinelli [20] has given a formula in which the
smoothing coctficient is a function of the characteristic wave speed. In three-di-
mensions this can be de fined as [22]:
i
74 « 3 W
CFL b A.

£. =max l (l +max| | L | —- -1 -C |,
B 4CFL, A, + lna.\‘(/l” A )} A A : (7.5)
' \

and analoguously the n and ¢ coefficient. In KAPPA we replace the lower limit
¢=0, proposed by Martinelli [20] by ¢ = 0.1 for the Navicr-Stokes equations and
¢=0.2 for the two equation model.

7.3 Multigrid

A very efficient convergence acceleration technique is the multigrid strategy.
Although proposed in 1964 by Federenko [23] it has been applied only recently for
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viscous calculations by Martinelli [20]. The general idea behind any lmllligridis'i
to transfer some of the task of tracking the evolution of the system to a se
quence of successively coarser meshes [5]. This has two advantages. First, th
computational ctfort per time step is reduced on a coarser mesh. Second. th
usc of larger control volumes on the coarser grids tracks the evolution ong
larger scale, with the consequence that global equilibrium can be more rapid
attained. The coarser meshes are generated by elimination of every other linei
the i, j and k-direction. Sweeping through the coarser meshes in different way
inflaences the efficiency and the damping property of the numerical scheme.
KAPPA the V-cycle can be used to accelerate the convergence. In most cass
the multigrid strategy increases the convergence rate by a factor of 5 to 20y
increasing the computational work by a factor of 2 for a multigrid cycle, so th
the cpu-time can be reduced effectively by a tfactor between 2 and 10 using th
multigrid technique.

The principle concept of the multigrid is to combine the coarse grid cffe
ciency with the finc grid accuracy. Analytically, crror is the sum of infinite numbe
of frequencies in a Fourier series representation. On a given grid the visibk
modes of the error arc finite and depend on the grid spacing. A short wave
length (high frequency) wave on a fine grid can be represented ws a long wave
length (low frequency) wave on a coarser grid, (the so-called aliasing elfect),

Low frequency components of crror are badly damped by the convention
iterative techniques employed in the solution methods. as opposed to high fre
quency modes which can be damped very effectively. The mathematical basi
underlying the multigrid method s to damp difterent error modes on differer
grids effectively by making use of the aliasing principle. A practical conclusia
of this is that it is advantageous to use as many grids as possible to cover a larg
spectrum.

The following steps are performed in the multigrid computations:

* Smooth the crror on the fine grid,
= transfer this solution and the residuals to a coarscer grid (restriction), a
solve on the coarse grid,

e transfer back the corrections, the difference between the transferred sol
tion from the finer grid and the solution obtained on the coarser grid, toth
finer grid by interpolation (prolongation).

Then the new solution on the finc grid is obtained by adding these coarse gn
corrcctions to the fine grid solution, Figure 7.1 (a). This onc cyclc is called th
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1
O Finer grid :

Restriction Prolongation SR S S D

Coarser grid
Residuals, Solution vector W (FAS)

(a) (b)
Figure 7.1 (a) Multigrid operations for a V-cvele, (h). Grid coarsening,.

V-cycle. It is remarked here that the reason that the residuals are also restricted
to the coarser grids is that the solution on the coarser grids 1s driven by the residuals
on the finest grid. to ensure converged solution on the coarser grids once converged
solution on the finest grid is obtained. This is done by introducing a so-called forcing
function which is the difference between the residual on the coarger grid and the
restricted residual from the finer grid. This multigrid algorithm where the solution and
the residuals arc used i1s called Full Approximation Storage (FAS) scheme.

A coarse grid is obtained by deleting every other coordinate line in each direction,
asshown in Figure 7.1 (b). In practice, in addition to the multigrid operators restriction
and prolongation, additional smoothing is performed to ensure a smooth representa-
tion of the errors, (climination of the high frequency components of the error s essen-
tial to the success of the multigrid method).

Multigrid operations begin on the finer grid. However, iterations beginning from the
initial flow field, commonly initialized with the freestream flow values, may deteriorate
oreven preclude convergence on the finest grid. The solution to this problem is the so-
called Full Multiorid (FMG) technique, where converged solutions on the intermedi-
ate grids are used as the initial solution on the finest grid as tllustrated in Figure 7.2, In
this example it is assumed that 5 grids arc available in cach block, the finest grid is
denoted by /1 and coarser grids are denoted by 2/, 3/ ete. Multigrid operations begin
on the grids 3/, 4/ and Sh. A user specified N1 number of V-cycles are performed on
these grids to obtain a converged solution on grid 3/ (here N1 is usced to indicate an
input, in KAPPA the number of V-cycles for each level is element of an array, N1 is
not the name of the variable). In the second level. the solution on grid 3/ is interpolated
to the finer grid denoted by 2/ and N2 number of V-cycles are performed on these 4
grids. Converged solution on grid 2/ after N2 iterations is interpolated to the finest grid
and final N3 number of V-cycles are performed on the complete 5-grid system to
obtain the final coniverged solution on the finest grid /1.
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h : finest grid, ..., 5h coarsest grid.

3h

NCYC1 4

5h
' 2h
3h
NCYC2 4h
5h

2h

NCYC3 3h
4h

5h

Figure 7.2 Full multigrid strategy.
It is seen that there are three different iterations performed in the code:
1. Loop over multigrid levels, 3 in the example
2. loop over grids within a level, N1, N2 and N3 in the example,

3. Avop on a given grid. typically T or 2,

Understanding of these iterations is essential for the understanding of the global structure of the code.

8. Boundary Conditions

The efficiency and generality of a flow code in terms of its ability to handle a wid
varicty of problems and flow conditions is highly dependent on the accuracy and the
flexibility of the boundary conditions incorporated into the code. KAPPA possesse
a number of different boundary conditions which can be sclected to define the physic
problem to be considered. These are the wall conditions, the moving wall condition, the
symmetry condition, the farficld condition, the specification of a velocity profile or the
static pressure ete. For block faces which coincide into a singular line or into a singula
point there arc a couple of boundary conditions allowing to describe the physics appro-
priately. Last but not lcast, the boundary of these blocks which adjoin another block
face must be specified.
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8.1 Solid wall and moving wall
S

The condition of no slip for viscous flow is imposed by setting the tlow velocity to
zero at solid surfaces or to specify the velocity of the moving wall at the surfaces. For
inviscid calculations one must assume that the flow is tangential to the solid surface
and the pressure is determined from the normal momentum equation.

8.2 Farfield condition

A very attractive boundary condition for the farticld should damp all outgoing dis-
turbances effectively without falsifyving the flow field too much. Therefor this condition
is based on the introduction of the Riemann invariants for a one dimensional flow
normal to the boundary. At the out flow boundary. the tangenual velocity components
and the entropy are extrapolated from the interior. while at the inflow boundaries they
are specified with the free stream values. These two quantities together with the sum
and the difference of the two invariants provide a complete definition of the flow in the
farfield.

For the specification of the boundary condition for the two-cquation turbulence
model two parameters of the turbulent flow field need to be known. The first is known
in most cascs or at least can be guessed, namely the turbulence level 7 . The other
parameter, the turbulence length scale, is difficult to measure and in most cases not
known a priori. Onc possible way to calculate the Iength scale L is to choose the eddy
viscosity in the order of the laminar viscosity, and by applying the definition of the eddy
viscosity 4, = pc,, \/fl,,- the corresponding turbulence length scale can be calculated.
A good compromise for the eddy viscosity is to scale it with the turbulence level, for
example: gt = 1 + 2 - Ti’ [14]. The two-cquation models have different boundary con-
ditions than those for the Navier-Stokes equations. At in flow boundaries both values of
the turbulence model must be specitied by Dirichlet boundary conditions while at out
flow boundaries these are extrapolated from the interior. Also at the wall the boundary
condition must be specified by a Dirichlet boundary condition, which sometimes is trou-
blesome for the g-cquations. However, with the use of the K-7 model this reduces to
K= 7= 0 at thc wall, which is computationally the best boundary condition for
the wall.

9. Grid Generation

There is a wide varicty of methods for generating grid systems. Algebraic meth-
ods such as conformal mapping, quadratic functions, or the control function approach
of Eisemann [21] have been widely employed. The numerical approach of using ellip-
tic solvers, Thompson, Thames and Mastin [35], is also widely used. Thompson [16]
provides a good review of the current state of the art in grid generation. With increas-
ing complexity of the gecometry these methods become more and more in flexible, so
that new concepts which should overcome these difficultics were developed. The
subdivision of the entire volume network into adjacent sub-arcas provides the possibil-
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ity to arrange these sub-domains according to the actual geometry and thus to buildy
more complex grid structures at all. This approach is well known under the termd
block-structured grids™. For the price of an additional necessary block-topology,ir
creased tlexibility in the possibilities of the gcometry description are attained. Certainly
the introduction of the block structure leads to a visible progress with respect to th
trcatable geometrics, and based on this approach some almost automatic grid gener
tion methods running in batch-mode have been well established for standard geomein
configurations. But especially if the basic types of configurations are changing fre
“quently, other weaknesses of this approach become evident. As all the steps of grid
generation and -control are carried out by means of batch programs, the editingd
a base geometry, i.e. the cvaluation of the geometry input for a mesh generator migh
lead to substantial difficulties. The actual generation programs require large lists of
control parameters to determine the approach in advance. A visual inspection of th
networks is only possible using plots and to do improvements implies again the used
the generation procedure. Due to the development of hard and software within th
CAD/CAM arca or in computer graphics in general during the last years, it becoms
feasible to rearrange the entire preprocessing into graphic-interactive programs [52)
The advantages are obvious: within a dialog and under permanent visual control st
by step (and even backwards) a basic geometry can be upgraded to a tinal nctwor
within one session. Errors can be cancelled immediately since they are casy to recog
nize, and possible variations can be tried at the smallest expanditure of time.
In our institute we are using the commercial software package ICEM-CFD forth

genceration of block structured grids.

10. Multiblock Topology

Conceptually multiblock topology is simple: the discretized flow domain, the gridis
divided into a number of blocks. From the parallel computation point of view, multiblock
topology is a systematic way of distributing the domain among a number of processor
in a non-overlapping manner. Even for a serial computation, however, multiblock topot
ogy is required for mesh genceration about complex gecometries due to practical difficul
tics in generating single block mesh. Multiblock topology is also useful in cases wher
the whole mesh cannot be stored in the core memory and only a number of blocks
have to be solved at a time.

In the example shown in Figure 10.1, the flow domain is divided into 8 blocks o
which the flrst 4 blocks, blocks 1, 2, 3 and 4 arc assigned to processor nuimber one and
the other 4 blocks, blocks 5, 6, 7 and 8 are assigned to processor number two.

The structure of the code is not determined by the requirements of parallclization,
it is the multiblock topology that determines the code structure. As shown in Figure
10.1, cach processor has a local count of the blocks that are assigned to it and al
parallel block loops run to that local number of blocks. For instance, in the example
shown, a scrial loop over blocks would be performed from 1 to 8, whereas in case of
two processors, loops from | to 4 would be performed by the first processor, and from
5 to 8 by the second.
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Multiblock topology

Figure 10.1 Multiblock topology exafiple.

A block can have cither a connection boundary, that is, it is connected to another
block, or a physical boundary. In Figure 10.1, the block number [ is connected to
blocks 2,4 and 7, and it has one physical boundary. Whether a data exchange between
two blocks at the connection boundary is performed across processors or within
a processor, makes no principle difference except for practical coding complications
where a different routine has to be called for cither casc.

In all these cases a common requirement is that each block be individual, inde-
pendent item of computation except for the global data exchange with other blocks at
the connection boundaries. This is achicved in KAPPA by providing a halo of two-
layers of dummy cells around cach block.

A one-dimensional example of block connections and array dimensioning is shown
inFigure 10.2. The number of grid points in i-direction isNT, in j-directionNJ, and in
k-direction NK, as uscd in the code. In this example, the grid arrays are dimensioned

Block Structure Example in 1-D

Array dimensioning of a 1-D block:

el st = G s Y
0 112 |3 [2M-1 12oM ,I2M+1
o.0ol|le|e e |5 0o
1 1 1 1
'[6’*’1‘.2;3 NI-1 NI NI+1
.
R

< = e =y

]

o e} : Application of physical boundary condition
I

\ Fixed value here.

NI

Figure 10.2 Block structure example in 1-D.
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from (0:NI+1). The first layer dummy ccell coordinates are computed cither by
extrapolation from inner points for physical boundarics, or they arc assigned the coor
dinates of the corresponding cells in the connected block for the connection bounds
rics. The flow variables are stored at the cell-centers, and tlow variable arrays ar’|

'7
j
|

dimensioned from 0 to I2M+1 in i-direction.
The cell-centers denoted by solid circles in the Figure indicate the internal flow
ticld points which are computed during an iteration (for instance during a Runge-Kuti

stage). Dummy cell values at the connection boundaries are assigned after the intemdl -
flow field is computed, by assigning the corresponding cell values of the connecting -
blocks, as indicated by arrows in Figure 10.2. This procedure is called data exchange. 4
Afier the data exchange. the physical boundary conditions are dpplied by fixing the :
dummy cells so as to have the correct boundary value at the boundary plane. Forf?
instance, 1f the boundary value of M at the plane NT is W,, . and the value of Ia:
I2M-1is ¥ the value of the first dummy cell,

12538-1°

¥ oin is fixed as:

=2 -
WIZM "'WNI WIZ;\I-I E
i
so0, that a lincar interpolation between the first inner and dummy cell values g LM
the correct value at the boundary. To fix the second layer of the dummy cell
either a higher order interpolation, or simple extrapolation is used.

Each block becomes a computationally independent unit once the dummy cell val
ues are fixed.

11. Data Management

Data Management
1D Array: WALL

T T
Dependent variables ! Pressure !
] ]
1 ’ N1 N1+N2
Grid 2
Grid 1
Block1
N1 = NVAR * NCELL(1,1)
N2 = NCELL(1,1)
ALLOC: IWALLP(IGRID,IB,1l) =1
IWALLP (IGRID,IB,2) = N1+1

KAPPA: CALL RUNGEK (WALL)

RUNGEK: DIMENSION WALL (*)

IBW= IWALLP (IGRID,IB,1)

IBP= IWALLP(IGRID,IB,2)

CALL CALCP(12,J2,K2,WALL(IBW) ,WALL (IBP))
CALCP: CALCP(I2M,J2M,K2M,W,P)

DIMENSION W(0:I2M+1,0:J2M+1,0:K2M+1,NVAR)
DIMENSION P(0:I2M+1,0:J2M+1,0:K2M+1)

‘
€

Figure 11.1 Data management
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A practical implication of the multigrid operations described above is the necessity
of a flexible data management. In KAPPA a standard solution of using a large one
dimensional work array WALL is chosen, Figure I1.1. The work array WALL is cre-
ated by subroutine ALLOCATEWALL within ecach processor for the blocks assigned
to that processor. For instance, in the example shown in Figure 10.1 the data for blocks
1,2,3 and 4 will be stored in processor 1, and data related to blocks 5, 6, 7 and 8 will be
stored in processor 2, blocks being numbered from [ to the number of blocks
assigned to that processor, i.e., numbered locally. For cach block, the data is stored
for each grid in that block, beginning from the finest ghid of that level. For each
grid the same arrays are stored consecutively beginning with the dependent variables
as indicated in Figure 11.1. These arrays arc clearly indicated in subroutine
ALLOCATEWALL. At the beginning of cach new multigrid level, the data structure
related to that level is created. In the example shown in Figure 7.2, at the third level, 5
grids will be stored for each block, the grid number | being the tinest grid.

A pointer of an array is the location of the first element of the arrav. The
allocation of the data structure is done by storing the pointers of each array for cach
grid and for cach block. In the example shown in Figure 11.1, IWALLP is the pointer
array for grid number IGRID of block IB. The first component of IWALLP points
to the dependent variables, number of variables NVAR times the number of cells of
that particular grid, grid 1 of block 1, indicated by NCELL (1, 1) . Similarly, the
second component is the pointer to the pressure array.

The subroutine RUNGERKUTTA, the driver routine for the solution using the Runge-
Kutta method, is called from the main routine by only passing the WALL array,
(Figure 11.1). Relevant data for the routines called from RUNGEKUTTA arc passed
to these routines by passing the first element of the arrays pointed by the pointer and
their dimensions. In this example shown, the routine CALCP is called from
RUNGEKUTTA by passing the dimensions I2, J2, and K2 of the arrays W and P,
and their first elements WALL (IBW) and WALL (IBP), respectively. Conven-
tional three dimensional representation of these arrays is recovered in the subroutine
CALCP, (sec also Figure 10.2 for-the dimensions).

There arc two main advantages of this data management structure:

1. Only the work array WALL has to be dimensioned as it is the only array secn by
routines at the first and second levels of the calling-tree,

2. acomplete generality is achieved in calling lower level routines, for instance the
routine CALCP in the example given, the W and P arrays can belong to any grid
of any block.
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12. Global Structure of KAPPA

Once the items disccused above are clarified the global structure of KAPPA can
be grasped casily. A block diagram of KAPPA code is shown in Figure 12.1. Input dai

KAPPA
|

Read/print input data
Call READIN

I
Initialize starting grid level
MLG = MMESHA
{

1
Setup data for current grid level
call SETUPM

\ Solution
Call RUNGEK/LUSSOR ...

Next grid level ?
MLG = MLG + 1

End

Figure 12.1 Block diagram of KAPPA code

is rcad and printed out in subroutine READIN which is called once. Then the starting
grid level of the FMG is assigned to MLG. The loop on the multigrid levels MLG is the
outmost iteration loop described in Scction 4. For this grid level, the data sctupi
performed by the routine SETUPM which calls routines to read the mesh and bound
ary conditions, initial solutions or profiles. The work array WALL for this level s als
created in SETUPM. Then the second loop over the number of V-cycles, N1 in Figug
7.2 is performed. In this loop the driving solver routine is called to do cach V-cyck
This solver routine is cither RUNGEKUTTA or LUSSOR as chosen by the usa
depending on whether the Runge-Kutta explicit or LU-SSOR implicit method is se
lected. Once these cycles are dong, it is checked whether there is another level. Th
process is repeated for all the levels, for instance 3 in the example given in Figure 7.2
and the program stops.

Out of the three iteration loops described in Section 3, two loops are performedi
the main routine KAPPA: loops over the FMG levels and the number of V-cycle
within cach level. The driver routine of the solution, depending on the numerical metho
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chosen, is cither RUNGEKUTTA or LUSSOR. These solver routines are almost iden-
tical in structure as it will be discussed later in the report. Consequently, only the solver
routine RUNGEKUTTA will be looked at in more dctail.

A detailed block diagram of RUNGEKUTTA routine is shown in Figure 12.2. A
single V-cycle is performed by the solver routine RUNGEKUTTA. This subroutine
consists of two main parts: /

1. First leg of the V-cycle where the grids from finest of that level to the coarsest
arc worked through in descending order,

2. the second leg of the V-cycle where grids beginning from the second coarsest to
the finest are taken up in the ascending order.

The first part is performed in the routine in a linear fashion within the loop over
grids from finest to the coarsest grid as shown in Figure 12.2. The second part is
performed in subroutine RKPRO.

RUNGEK
————1 Loop over grids beginning from the finest ]

I
{ Loop over ISOLV |

Data exchange

Compute everything which is frozen during RK stages:
Update BC's, pressure.viscosities.time step.source terms.viscous fluxes
Save initial solution before the RK stages Call SAVEIN

1

I
{ Loop over Runge-Kutta stages ]
I

| Compute convective fluxes. artificial dissipation. update solution 1

1
If NOT the last stage exchange data Restriction
Update BC's and compute pressure Call COLLC

1
iEnd of loop over staged]

1
1End of looplover ISOLV]

I
_ {End of Ioop over grids]
[

Prolongation
Call RKPRO

memseen  [ndicates loop over blocks End
Figure 12.2 Block diagram of RUNGEKUTTA subroutine

Beginning with the finest grid, on cach grid ISOLV number of iterations are per-
formed. Inside these two loops data exchange is performed over each block, as de-
scribed in Section 2. The bold face rectangles in Figure 12.2 indicate loops over blocks
which are performed in parallel. After this operation the update of the boundarics 1s
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performed by applying the boundary conditions (sec Section 2). Everything whichis
frozen during the Runge-Kutta stages is computed before entering the loop over the
Runge-Kutta stages: physical and eddy viscosities, time step, source terms and viscous
fluxes. It is noted here that the source terms and viscous fluxes are only computed on
the finest grid of the level. The initial solution (the current value of the dependen
variable array W) is saved as required by the Runge-Kutta method in the routin:
SAVEIN. Within the following loop over the Runge-Kutta stages routine operations
are performed: computation of the convective fluxes. artificial dissipations and solution
update. Between the stages data exchange, boundary condition application and pres
surec computations are performed except for the last stage. Once loops over stages
and ISOLV are finished, the solution is restricted within the subroutine COLLC (natw
rally, there is no restriction on the coarsest grid of the level) and the next coarser gri¢
is sclected in the loop over the grids, and the same operations are repeated. Once the
coarscst grid is rcached, the routine to perform the same operations from the second
coarsest grid to the finest grid is called: RKPRO. Precisely the same operations a
those described above are performed in the subroutine RKPRO with two differences:
the outmost loop is over grids from the second coarsest grid to the finest, and prolongs
tion routine ADDX is called instcad of the restriction routine COLLC. For the implicit
LU-SSOR method the driver routine LUSSOR is called instead of RUNGEKUTTA
which in turn calls the routine LUPRO instead of RKPRO. The simplicity of the global
structure of KAPPA program is best illustrated in Figure 12.3 where the program

KAPPA
IRUNGEM ILUSSOR' S
SETUPM N  [LOTEOQ] |
, e i Ep O S — ' [GUTSOY
1
: ' rkERO] | [carce]  Hrupro] ! [cowEED),
! ' [BOUBLK] [
' h ' |
: h | , [CONDAT,
v [aLLoc] ', [visc] ADDX || ADDX
i 1
' .: !
: e !
; ') [SOURCE :
! ¥ :
I
, [INITP] ! :
1 ]
| [mson) || [[2RESOH | LomiEson]
1 1 AU [AUSM |
: !
oo o- ¥ !
. .
; : ; !

Figure 12.3 Global calling-tree of program KAPPA
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calling-tree up to the third-level routines is depicted. The first and the last block of
routines HEADER, READIN, PRINTFQ, PRINTXO0, TOTFOO, etc, are called once.
The most important routine to understand and study among these routines is the data
input routinc READIN.

The second block routines hecaded by SETUPM is called for cach level once. The
routincs SETBLN, where the block topology and boundary condition data is input, and
ALLOCATEWALL, where the data management is performed by crecating the work
space WALL are the most crucial routines. The array bounds are computed in subrou-
tine BLOCK which is also called from solver routincs.

The driving routines for the solution are RUNGEKUTTA or LUSSOR. The first
block under the routine RUNGEKUTTA headed by CALCP performs the operations
described above and the routine names are self evident. For the convective fluxes,
either central or upwind differencing can be employed calling JAMESON or AUSM,
respectively. The Runge-Kutta multi-stage operations are performed in routine
SOLVRK. The restriction routine COLLC is called on the way down from the finest
grid as described above. The same block denoted with a solid line is also called from
RKPRO, which calls the prolongation routinc ADDX. The implicit method solver is
LUSSOR from which the same routines in the third block are called with the differ-
ence that the LUSSOR logic is performed in SOLVLU as opposed to SOLVRK, and
the loop over the grids on the way up is performed in LUPRO as opposed to RKPRO
for the Runge-Kutta method. This repetition of the routines clearly facilitates the un-
derstanding and study of the code. For instance, both for implicit and cxplicit time
integration schemes the right-hand side is computed using the same routines as shown
in Figure 12.3. The left-hand sidc operations (the time integration) are either per-
formed by SOLVRK or SOLVLU. The multigrid operations restriction and prolonga-
tion are performed by COLLC and ADDX, respectively. Critical variables that control
the flow of the multigrid logic are MODE and KODE which are described in routines
RUNGEKUTTA and LUSSOR and must be studied. A very important ingredient of
the multigrid method is the smoothing, as explained in Section 3. These smoothing
routines PSMOO and PSMOOC, which are called from SOLVRK and ADDX, re-
spectively, arc not shown in the Figure. Once this global structure presented here is
clearly understood, study of any lower level routines which arc below SETUPM,
RUNGEKUTTA and LUSSOR or those which are not shown in Figure 12.3 is the
study of implementation rather than the study of the structure of the code.

Finally, the detailed flowchart of KAPPA is given in Figure 12.4 where the global
elements of program, the 1/0 routines, FMG control logic and convergence checks are
shown.
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KAPPA

Write title and heading

Call HEADER
Read/print iInput data
Call READIN

Initialize starting gnd levet
mlg = mmesh

V

Setup data for current grid level
100 call SETUPM

{

Qutput gndfinit solution (optional)
call PRNTXOQ/PRNTFO

no

Print convergence header
call CONHED

y

Start outer iteration cycle
20 ncyc = ncyc + 1

{

Start inner iteration cycle
Zero all residuats

{

Solve equations
call RUNGEK/LUSSOR

{

Print convergence history
call CONDAT

Solution
print out ?

(20)

10 continue

i

Save flow field and conv. data
call OUTSOO

Print intermed ate or final solutluonJ

{

Calculate total forces
call TOTFOO

{

no

End ot FMG loop?
mlg=nlg+1l

Go to next multilevel loop
go to 100

Figure 12.4 Flowchart of KAPPA
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13. Applications

Since the code i1s based on the compressible Navier-Stokes equations it is in prin-
ciple possible to calculate subsonic, transonic, supersonic and hypersonic flows. This
requires that the code can handle the large varicty in the mathematical nature of the
governing equations. Needless to say, this is a very ambitious task and can hardly be
fulfilled by a single numerical scheme. For example, supersonic flow requires the use
of an implicit solver in order to solve the large disparity of cigenvalues in this flow
regime while an explicit solver in conjunction with the multigrid strategy is best for low
subsonic flows. Various two-dimensional and three-dimensional, internal and external,
stecady as well as unsteady flow fields have been calculated in the past in order to
assess the accuracy and reliability of the code KAPPA. Some of these flows are
discribed in this chapter.

13.1 Flow around ONERA M6 wing

The flow around the ONERA M6 wing is a standard test casc in the CFD commu-
nity since it is a very accurately measurcd and validated test for 3D transonic flows
[1]. In order to capture the essential features of the flow a mesh consisting of about
760.000 points has been used, subdivided into 30 blocks for parallel computation (scc
figure 13.1). The treestrcam Mach number is Ma=0.84 the angle of attack o = 3.06°
and the Reynolds number based on the mean chord length is Re=11.7*10°,

The calculation has been made using the nonlinear two equation turbulence model
of Craft et al. [11] without explicit forcing of the transition region. A sequence of four
multigrid levels has been used to accelerate the convergence to the steady state solu-
tion. Appr. 300 iterations were necessary to achicve a converged solution. The con-
tours of const. pressure coefficient are shown in Figure 13.2 demonstrating the two
shocks forming at the lcading edge and middle part of the wing. These two shocks
merge into a single shock at the wing tip. The comparisons of the experimental pres-
sure distribution with the calculation at y/s=0.2, y/s=0.65 and y/s=0.95 wing scction
are displayed in figures 13.3, 13.4, 13.5. The agreement are generally very good.
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Figure 13.2 Pressure distribution of the ONERA M6 wing in the symmetry plane and on the surface



KAPPA Karlsruhe Parallel Program for Aerodvnamics 257

Ficure 13.3 Pressure distribution of the ONERA M6 wing on the wing section v/s=0).2
S ! g g 5

Figure 13.4 Pressure distribution of the ONERA M6 wing on the wing section v/s=0.6
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Figure 13.5 Pressure distribution of the ONERA M6 wing on the wing section v/s=0.95

13.2 Flow past the Space Shuttle

The hypersonic flow past the Space Shuttle has been investigated next. The mesh
consists of about 200,000 points. The freestream Mach number was Ma = 10 and the
angle of attack a = 30° while the frecstream Temperature is T = 220K. The flow fieli
has been calculated inviscid with the LUSSOR implicit solver and the USLIP higt
resolution scheme of Tatsumi et al. [25]. Two levels of multigrid have been used
speed up convergence. A total of 200 iterations were necessary to reduce the re
siduum by 6 order of magnitude. The surface mesh of the Space Shuttle is displayed
in Figure 13.6. Plcase note that only half of the Space Shuttle has been calculated due
to the symmetrical flow ficld calculation.

The density distribution on the lower part of the space craft as well as on th
symmetry planc is shown in Figure 13.8. The bow shock formed in front of the vehick
can casily be observed. A better visualization of the shock structure is shown o
Figurc 13.7. The Mach number distribution at three stations along the fuselage indi
cates the spatial structure of the bow shock. In Figure 13.9 one can observe the pres
surc distribution on the lower part of the Space Shuttle.
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Figure 13.6 Surface mesh on the Space Shuttle
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Figure 13.7 Mach number distribution at three stations of the fuselage
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13.3 Flow around a car

The flow around a basic car has been considered next. The mesh has been origi-
nally generated by Wiistenberg [15] at Volkswagen AG but smoothest by the author.
All complex gecometric details have been left out, the wheels are omitted and the wheel-
houscs closed, and the underbody of the modecl is flat. A region of 28m x 7m x 9.3m
around the half model is discretized by 30 blocks with a total of about 2,500,000 cells in
the finest mesh (see figure 3.11). The Reynolds number of Re=7.62*10° is based on
the freestream velocity of u=32 m/s and the length of the model L=3.66m. The calcu-
lation has been done using the non-linear eddy viscosity model of Craft ct al. with a
frecstream turbulence level of Tu=0.6 %. The pressure distribution in the symmetry
plane and on the surface of the car as well as on the floor can by studied in figure 3.11
and in figure 3.12.

Figure 13.10 Block structure of the VW-car
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13.4 Unsteady vortex sheeding past a cylinder

The unsteady flow past a circular cylinder measured by Cantwell and Coles [8]
has been investigated next. The freestream Mach number is Ma=0.1 and the Reynolds
number based on cylinder diameter is Re=140,000. An O-type grid has becn generated
with a total of about 50,000 points in the finest grid (see Figure 13.13). Calculations
with appr. 12,000 points showed very nearly the same result as with 50,000 points
indicating mesh independance.

Again the non-linear turbulence model of Craft et al. as well as the lincar model of
Launder/Sharma [41] have been used with a freestream turbulence level of Tu = 0.3 %.
In order to advance the solution in time an accurate and efficient solver must be used.
InKAPPA we have implemented the Dual Time Stepping scheme proposed by Jameson
(6] and refined by Arnone [2]. Only 30 to 40 iterations per time step were necessary to
reduce the residuum by six orders of magnitude. The velocity component in x-direction
is shown in Figure 13.14 for the non-lincar modcl. The vortex sheeding take place ata
Strouhal number of St=0.215 for the calculation with the non-lincar model and St=0.226
for the lincar model while the experiment of Cantwell/Coles gave St=0.179.

The mean total drag calculated with the non-lincar model was ¢, = 0.911 while the
linear model gave ¢, = 0.922 compared to ¢, = 1.237 in the experiment. The agreement
with the experiment in this case is poor and depend very much on the transition criterion
applied in the calculation. The pressure distribution around the circular cylinder is dis-
played on Figure 13.15. Both models show a lower pressure at ¢ = 90° and overpredict
the pressure recovery in the wake.

Figure 13.13 Computational mesh around a circular cylinder
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13.5 Unsteady vortex sheeding past a VKI turbine blade

Finally the flow around a VKI turbine blade has been calculated. The measure-
ments were conducted by Ubaldi et al. [7] of the University of Genova. The blade
geometry is given by Cicatelli/Sieverding [10]. The Reynolds number based on the
isentropic exit Mach number is Re = 1,600,000 and the exit Mach number Ma =0.23.
The turbulence level upstream of the blade has been measured as Tu = 0.8 %. The
number of grid points for this test case is about 72,000 points on the finest grid. Calcu-
lations with about 18,000 points showed again almost the same results as in the finest
grid.

The distribution of the Mach number is shown on Figure 13.18. Onc can recognize
the vortex shedding at the round trailing edge of the turbine blade. The vortex shedding
frequency is about 1500 Hz in the calculation while in the experiment [7] 1700 Hz has
been measured. Another calculation with the lincar eddy viscosity model of Launder/
Sharma gave no vortex shedding at all. The comparisons of the velocity profile at the
suction side of the blade are shown next. The agreement of the calculated profile with
the experiment is excellent at the station s/smax = 0.35 (Figure 13.16 and very good at
the station s/smax = 0.95 in Figurc 13.17.
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Figure 13.16 Suction side velocity profile at at s/smax = 0.35
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Figure 13.17 Suction side velocity profile at at s/smax = 0.95
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Figure 13.18 Mach number distribution at the VKI turbine blade
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