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1. Introduction
The research in fluid dynamics can be done on both experimental and numerical 

basis. For the latter one a computer code needs to be written in order to solve the 
governing fluid flow equations. The code KAPPA is a CFD-simulation package serv
ing as a platform to develop faster and more accurate numerical schemes, better physical 
models, or as an engineering tool for the simulations of flow's in technical equipment. 
Another important subject is the training and education of students or engineers. Since 
CFD is highly calculation intensive, new computer architectures like vector and paral
lel computers are necessary to treat more complex flow fields or to resolve these 
flows more accurately . Therefore KAPPA has been specially designed to be used on 
these architectures. The structure of the code is such that the solution of additional 
transport equations needed for the simulation of chemistry , turbulence modeling, 
multiphase flows etc. can be easily implemented. In order to treat complex geometries 
the code is block stuctured. The finite volume method is used to discretize the equa
tions in space. The code is written in Fortran 90 using the highly desirable new feature 
of this language in order to make up for the disadvantages of the Fortran 77 language 
with respect to other programming languages like C, C++, or Pascal. For the applica
tion of the code on parallel computers a message passing tool has been used. Since we 
feel that MPI (Message Passing Interface) has become the dcfacto standard tool for 
distributed memory parallel platform, it is used in KAPPA. Especially for the training 
of students in CFD, a graphical user interface for KAPPA has been developed. This 
has been done using the freeware Tcl/Tk (Tool command language/Tool kit) developed 
by John Ousterhout [19] which has gained widespread acceptance in the programming 
community. It turned out that with the graphical user interface not only the handling of 
the code has been improved but also the amount of typing errors has been significantly
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reduced. The code solves the compressible Navier-Stokes equations in Reynolds av- 
erage form in conjunction with a statistical turbulence model like algebraic turbulcnct 
model or two-equation model, as well as in a space and time fdtered form for large 
eddy simulation.

Steady and unsteady flow fields can be simulated. Unsteady flows can also bt 
treated together on moving grids.

The code is subject to continuous development with respect to compressible flow 
fields, chemically reacting flows, multi phase flow's, turbulence modelling etc. in ou: 
institute as well as in other research facilities in Europe.

2. Basic Equations Governing Fluid Flow
The calculation of viscous flow around complex 3D-bodies with large seperation 

regions requires the solution of the Navier-Stokes equations. An exact solution for this 
system of nonlinear and coupled partial differential equations in conjunction with geo
metric and dynamic boundary conditions to which the system may be subjected is 
usually difficult to obtain. One possibility to solve this system is the direct simulation of 
the full Navier-Stokes equations with a numerical scheme which resolve all the signifi
cant time and space scales appearing in a turbulent flow. The effort to solve a flow 
field increases approximately proportional, with the third power of the Reynolds-numbcr. 
Even with the help of the highest sophisticated super computers available today and in 
the near future the direct simulation method can only be used for Reynolds-number 
regions in the order 0( 104) which is definitively too low for practical flow situations.

In order to obtain the governing conservation equation for turbulent flows for high 
Reynolds-numbers it is convenient to split the instantaneous quantities of the Navier- 
Stokes equations into a mean and fluctuating part. This concept is called the Reynolds 
averaging technique.

The average of a turbulence variable can be defined in several ways, e.g. time, 
mass, phase or ensemble averaging [33]. The appropriate averaging concept for 
compressible and stationary Rows is the mass-weighted averaging after Favre [3], 
Replacing the instantaneous quantities in the Navier-Stokes equations by their mean 
and f  uctuating parts results in an expression which contains mean terms, f  uctuating 
terms and additional unknown terms representing the mean effects of turbulence [ 18], 
The additional terms make the resulting conservation equations undetermined, the gov
erning equations do not form a closed set. They require additional relations, based on

statistical or similarity considerations. The unknown Terms —  p v /v  ■' are called

Reynolds stresses and are subject to turbulence modeling techniqes.
The compressible, time-dependent Navicr-Stokes-equations in integral form can 

be written as:
for mass conservation:

r

dp
~ t

dV +
J J

pv ■n dS -  0 ,
( 2. 1)
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for momentum conservation 

' ( p v )JJJ ( dV + JJ p v  (u • n )JS + JJ p/i dS -  j j n  T dS = 0 , (2.2)

for energy conservation:

J J J ^ r * " ' + I I p/;( '' ■ '7 ) ‘ , x  +  J J , , ( f  ■ " )< ,x
I s s

-  JJ v(/7 • T)dS + JJn • q dS = 0.
s s

This is a system of hyperbolic equations with respect to time, where E represents 
the total specific energy (summation o f inner and kinetic energy) and q being the 
energy flux vector.

It is assumed that the energy flux vector expresses only molecular energy trans
port which can be described by Fourier’s law:

q = —kVT. (2.4)

With k the thermal conductivity, determined with the assumption o f a constant 
Prandtl number according to:

(2.5)

T in the momentum equation is the „viscous stress tensor” which will be de
scribed later.

The total specific energy for ideal gas is:

pE = pe + p / 2 v 3 = p / ( k  -  l)+  p / 2 v 2 (2.6)

and the total specific enthalpy:

pH  = pE  + p . (2.7)

Here c represents the inner energy. II the total enthalpy and k  the ratio o f 
the specific heats.

For Newton-type fluids the assumption is made, that the stress tensorT is 

continually varying with deformation velocity tensor D (Stokes hypothesis).

T = 2 p D - ^ p V - ( v  l ) (2 .8 )
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The deformation velocity tensor D is given by

D =
m, 1/2(iiv + v() l/2(z/_ + vr )

1/2 («,.+*’,) v,. l/2 (v .+ u’r)
l/2(«r + «'r) l/2(i’, + vr ) vv_

(2.9|

/Li being the total viscosity (laminar + turbulent) and I being the unit-tensor. Fur
thermore, the dependency of the laminar viscosity fj from the pressure is neglec
ted so that the Sutherlan formulation could be used.

^ " T T T  (2.10)
1 - r  r

with c and d being fluid specific constants which for air is given by:

c = 1.46-10 6 [ J 
d - 110.4A"

3. Finite Volume Method
There are some different approaches for the approximation of the equations gov

erning fluid Hows. The most popular are the Finite Difference, Finite Element and 
Finite Volumes Methods. All methods have their particular advantages and disadvan
tages, see Ferzigcr/Perie [37] or Hirsch [9] for a detailed description.

In KAPPA we arc using the Finite Volume Method to approximate the integral 
form of the conservation equations. The solution domain is subdivided into a finite 
number of contigous control volumes (CV), and the conservation equations, as well as 
the transport equations for turbulence, species etc. are applied to each CV. At the 
centroid of each CV lies a computational node at which the variable values arc to be 
calculated. Interpolation is used to express variable values at the CV surface in terms 
of the nodal (CV-center) values. Surface and volume integrals are approximated using 
suitable quadrature formulae.

As a result, one obtains an algebraic equation for each CV , in which a number of 
neighbour nodal values appears. In this chapter we shall deal mostly with 2D grids; the 
extension to 3D-problems is straight forward. We will describe the method for an 
arbitrary conservation equation </> on a grid moving with the velocity )/

V s

J  J* Fgrad <t> ■ tic/S + U K " '
.V V

(3.1)
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Dividing the flow field in a finite number of control volumes one needs to approxi
mate the volume and the surface integral.

The simplest approximation of the i itegral is the midpoint rule: the integral is ap
proximated as a product of the integrand and the volume or surface area (this results in 
second order accuracy). For the volume integrals one assumes a const, value of the 
integrand and multiply it with the volume. The surface integral is approximated in 
terms of the variable values at one or more locations on the cell face and the cell face 
values arc interpolated in terms of the nodal values.

There are several ways of doing this, the simplest one is to take the value at the 
node upstream of the face.

For example on the face e one has to check the flow direction at this face and then 
to take either:

<l>c =
[</V | f ( ( v - v , ) - A / ) > °

\<Pr if ((»’- 1;,,)■»'),. < °  ' (3.2)

This approximation is only first order accurate — which is regarded as insufficient 
for practical calculations, therefore a second order approximation is necessary for the 
face value (j>c

_ (f) + (p P
^ r i (3.3)

For equidistant grids this approximation is second order accurate whereby the 
fonnulation:

t  = A A  + 0 - ^ . ) / v > ( 3 - 4 )

where linear interpolation factor A is defined as:

(3.5)

is second order accurate on non-cquidistant grids [37].

4. Higher Order Approximations
The most critical terms in the Navier-Stokes equation are the convective fluxes 

since they are nonlinear. If one wants to apply higher order approximations usually 
only these terms are treated differently .

In Finite Volume Methods one has to approximate then the surface integral with 
tluce points in 2D and with 9 points in 3D for fourth-order accuracy according to 
Simpson's rule. In order to retain the fourth-order accuracy these values have to be 
obtained by interpolation of the nodal values at least as accurate as Simpson’s rule.
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Cubic polynomials arc suitable by lilting

= a 0 + a ,.v + ci2x~ + a-.x ’ (4.1)

through the values of <p at four nodes (two on either side of the face).

5. Turbulence Models
Turbulence modeling concerns the generation and testing of closure relations de

scribing the Reynold stresses. At present we can confidently predict only a small class 
of turbulent flows. Turbulence models can be decided into three major kategories: 
eddy-viscosity models, algebraic Reynolds stress models and differential Reynolds stress 
models, flic differential Reynolds stress models consist of partial differential equation

for each component of the Reynolds stresses •'. They can be derived in exact

forms but contain higher order correlation that have to be approximated in order to 
obtain a closed system. In these models one needs to solve the equation for the turbu

lence energy dissipation rate r;, in addition to those for pv,'-v ■' for the length scale.

A particular advantage of the Reynolds stress models is that terms accounting for 
buoyancy, rotation and other effects are in principle introduced automatically. Several 
closure schemes have been proposed by Launder et al. [40], Lumley [ 17], Gibson/ Rodi 
[39] and others.

In differential stress models, there are differential transport equations for each 

component of pvAyd in addition to the ^-equation. To reduce the computational ef

fort, Rodi [50] proposed an algebraic relation to calculate the Reynold stresses. The 

convection and diffusion terms in the transport equation of p i ’Av.' are replaced by 

model approximations, reducing the equations to algebraic equations. Rodi assumes 

that the transport of pvAi’7 is proportional to the transport of A' and the proportional

ity factor is . With these approximations incorporated, the transport equations

yield algebraic expressions for pv(Ar ■' that contain the various production terms ap

pearing in the pv,-'-v.' equations. Thus, the gradient of mean flow quantiles, K and e

appears also in the expression, so that K and £ equations have to be added in order to 
complete the turbulence model. The algebraic expression together with the K and £ 
equation form an extended M s  model. Algebraic stress models are suitable whenever

the transport of pvAv-' is not important. Algebraic stress relations arc basically like
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eddy viscosity formulations [51 ] and therefore are not applicable to cases with counter 
gradient transport. On the other hand, all effects that enter the transport equations for

pVj'-v-' through the source terms for example, body force effects (bouyancy , rotation

and streamline curvature), non-isotropic strain fields and wall damping influence can 
be incorporated. So algebraic stress models can also simulate many of the flow phe
nomena that were described successfully by differential Reynolds stress models.

Boussinesq [12] was the first to attack the problem of finding a model for the 
Reynolds stresses by introducing the concept of eddy viscosity . He assumed that the 
turbulent stresses act like the viscosity stress, which implies that the turbulent stresses 
arc proportional to the velocity gradient. The coefficient of proportionality was called 
the “eddy viscosity" and was defined by

Note that this viscosity is a property of the fluid motion and not a physical property 
of the fluid itself. From dimensional considerations and by analogy with kinetic theory 
the eddy viscosity is proportional to the product of a length and a velocity scale. Many 
types of eddy viscosity models have been proposed in the past. We w ill restrict our
selves to the description of those models which have been introduced in the code.

The simplest turbulence models are the algebraic eddy viscosity models which 
relate the eddy viscosity p by an algebraic expression for the length and velocity 
scale.

5.1 Baldwin/Lomax model
The Baldwin/Lomax model [34] calculates the eddy viscosity pt algebraically from 

mean flow quantities introducing a two layer concept based on the idea of Cebeci/ 
Smith [42] and deciding the flow into an inner and outer layer. For the inner layer they 
assumed:

(5.1)

P, = P l 2 |« (5.2)

where

/ - k r  1-W 1' 1 (5.3)

v = normal distance from the wall
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and

(  A ' ,
X

( V iM  = ,
\ A - ; r x jt V ' 1 y

The constants k = 0.4 and A" = 26 according to van Driest. 

For the outer layer:

/ ,  = kC irp F u:/l/. FUt.iy ( r  )

with

v Fmc/.v /m/\ ’

/~i ? r / 2 \
u <•3 nni.\ U (hll

F . . ..

(5.5)

(5.6)

(5.7

where r  and F  are determined by the maximum of the folowing function:
-  max max . J

F{y)= i w - e -v‘ ,-f (5.8)

This function has a pronounced maximum in the boundary layer.The normal dis
tance from the wall to this point (r ) replaces the displacement thickness in the 
formulation of Cebeci/Smith. The Klebanoff-factor is given by:

F a,  O')
1

1+5.5 -y h--" (5.9)

and U is the maximum of the velocity in the wall layer. The other constants are 
given below:

K = 0.016S (Klauser);
c =1.6; C -0.25; CUI 0.3.cp  - n *  filer

Switching from the inner to the outer model is performed where values of foi 
inner and outer model become equal.

5.2 Martinelli/iakhot model
The algebraic turbulence model of Martinelli/Yakhot [48] is based on tlr 

Renormalisation Group Theory [36]. Although free from uncertainties related to tlr 
determination of modelling constants, they still require the specification of a length 
scale which leads to a restriction in the generality of the model. The cddy-viscosit\ i 
obtained from the following relation.
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f  3
A'  = A h \.+ H u  A -  4

Te F f - c L
V 1' J

(5.10)

where ll(.x) is the Heavyside function defined by H(x) = x for ,v > 0 and H(x) = 0 
otherwise, A the wave vector corresponding to the integral scale of the turbulence 
in the inertial range, and f.i= f.i + f.i is the total viscosity (laminar plus turbulent). 
The constants a = 0.12 and C ~ 75 were derived in [36], The mean dissipation 
rate s and the wave vector A( must be determined before using this equation to 
compute the eddy viscosity.

The integral scale of turbulence L f = n  A ;' . corresponding to the top of the iner

tial range, is postulate to be proportional to the distance from the wall y  (Z. = k\\ 
where k is the Von Karman constant).

In the outer region, it is plausible to take the integral scale in the order of the 
boundary layer thickness <5. Following the idea of Stock/Haase [28] the boundary layer 
thickness 6 is determined by:

where r is the wall distance where the function
* max

Flr) =)\<0
has its maximum.

(5.11)

With this assumption the eddy viscosity equation can be cast in the following form:

At = A'/ 1.+ H
(

a
V 6

f l  + 1 >
- 4  >

- C c
A'/

V w r  Ys ; )
(5.12)

where a = 0.192 or a = 0.0256, depending whether the Von Karman is taken to be 
equal to the value predicted by.the RNG theory (k = 0.372) or to the standard va
lue (x'=0.4). The value of the parameter y= 0.225 has been chosen in order to 
recover the constant predicted by the RNG-theory for the outer part of the boun
dary layer. More precisely the value of /  has been chosen in such a way that 
yan 8 -» 0.084(5 as /  -  > 8.  Also equilibrium (Production = Dissipation) is assumed, 
from which follows:

^ = Pk = ATS = Ah
Oil-

■ +
OXj f.v

Cl,i _ 2  5 J “I
Ucx. dxj (5.13)

The turbulent eddy-viscosity fii is then obtained by solving the cubic equation at 
every point in the computational domain.
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5.3 Algebraic wake model
In order to use the simple algebraic models on block-structured grids, the probleit 

arises how to calculate the turbulent stresses in those blocks which do not havei 
boundary-layer-type flow. A typical example is the wake of blunt bodies, because tk 
algebraic models cannot calculate the characteristic length and the velocity scale nor 
mal to the wall. Therefore, empirical distribution laws were introduced to describethi 
turbulence transport into these blocks. Because the production of turbulent energy it 
local equilibrium flows correlates with vorticity, this was taken as a weighted functiot 
to distribute eddy-viscosity in that area, according to

l1, = AL
(0 Y

IK V
(5.11

with: g -  the maximum eddy-viscosity along the upstream block face and | coj- 
-  the local vorticity at that point. The exponent a is determined by numeric! 
experiments, a = 0.2.

In addition the eddy-viscosity is also smoothed by an exponential damping factorii 
order to ensure steadiness on the block faces.

AL = AA o exp
f  AVy >

V A'maxy
(5.15

with: /( -  the eddy-viscosity on the upstream blockface at the same j-station a:
'/

u Ax -  the normal distance to the location of u ’ and A.v -  the length oi 
the block in strcamwisc direction.

5.4 K-e model of Launder and Sharma
The most popular two-equation model is the K-e model, with K the turbulent 1 

netic energy and £ the dissipation.rate of the turbulent kinetic energy. These two equa
tions have been derived from the full Navier-Stokes equations by adopting the decom
position of the instantaneous variables in a mean part and a fluctuating part according 
to Reynolds. Additional correlations appear from the non-linear part of the Navier- 
Stokes equations, which must be modelled appropriately [43].

The K-e turbulence model is valid only in the high-Reynolds number region. In 
order to use the two-equation models throughout the laminar, transition and fully turbu
lent regions one must extend these models to account for the wall proximity effects. 
Patel et al. [44] reviewed eight different models and found that the model of Launder 
and Sharma [41] appears to perform fairly well in a majority of the test cases studied 
by Patel et al. [44].
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The full K-i: model in generalized curvilinear coordinates reads:

GW GF GG GH „-----+ —  +  +  = S
Gt GG G>] G£

with

F =
p K U  -

p s U

£ k_ 
Vo l \

Vo I

O K  O K
------- h C\------
GG “ d ij

d e

■ +  c .

d s
+ G +  C \

d K

~ X
d s ^

dll dc y j

P  A T  -

G =
Vol

a K  G K  G K
C' ~ T  + C> ^  + C

P >- V -  -

v (

Vol

X  
G 8

' + c\

(>1
G 8

<X )
\

■ + C,
O 8

G% Gi] " GC y a

fh

I I  =

p  K W -  -  
Vol

p p W
Vol

G K

~ x
G 8

■ + <A
( T
Gi  7

■ + c„
d K

~ x

■ + Co
C 8

' + Cc
Ol]

a e

X

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)
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( 2 ^
Vol Ps + dA -  pe -  2pv

dv ,
V  ̂ 7 7 3f / 7 3

1 • £" cU -
C ,-[ P + / A- J - P ^ T T ' /-A -2 p ,p ,

f x  X
V \ ‘ y yJ

(5.21!

( 7  :=  ; /  • S '  +  u ■S +  v v  • 5 , " (5 .2 2 |

+d
f

'

22II • 9 ’
" 7

+  u - s ; 1 . 2 3 )

- u - S ' k +  u • S ' +  m - 5 ; (5 .2 4 1

ii +d7+d J < d  :

ii + d7 +dT ( 5 .2 5 )
tod

fII +  5 , * s ; s ; d s =  d ,  =  s;s ;  +  s ; A  +  s ; s , : ( 5 .2 6 )

<■, = c, = s ;  s • + S ' s ;  + s ; s ;«, = (s ; J  + J  + J  is m

d r  r r  f i r-------1---- -—|-------
dr dv Dz (5 .28)

(  d i i  ^
2

f  dv
2

 ̂dvvN
*>

dz/ d i’2 ----- + — + + •—■—— -j— —--
^ d x  j dy\  ■ J 1 dz J d y  dx

+

di/ dw 
dz dx

2 1 “
dv dvv 2 dz/ dv dvv

+ +1 -fcv 
1 ^ o3

-----1---- - H-----
dr dy dr _

( 5 .2 9 )

with

dzt
dr d<̂  ' dii 1 vol ( 5 . 3 0 )
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etc.

Cu

dv
' Z L s ' + ^ s ' + l a - s : '^  ̂ ' ■'X / 'X y  A
v f'S oi] (X vol

C'll
"Xuz

Oil

c h
Sr du c , du 

or\ ' dQ

1
vol

(5.31)

(5.32)

V k = ( i h + X  aO
c\ = 1.44 c2 = 1.92 c/( = 0.09
e, =0.491 A, ,=0.77 Â . =1.0

(5.33)

A', = (aT + \ aO

p K 2
k t =-

I fo

Af = W tlf„ Rr 

f 2 =1-0.3 exp(- 7?̂  )

f u = e x P
'  -2 .5  N

1 +0 .02Rt

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

5.5 K-t model o f Speziale ei id.
Very recently Speziale ct al. [27] proposed a K- r model with improved asymptotic 

behaviour of the wall damping functions. This model yields improved predictions for 
turbulent boundary layers and is computationally robust. This robustness makes this 
model very attractive to use in a 3D-Navier-Stokcs solver for complex geometries.

The A'-r model proposed by Speziale et al. in generalized curvilinear coordinates 
reads:

dlV cF cG dll  r , 
-------+  —  +  —  + ------- =  S
ct (X dll dt; (5.39)
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with

W  =
p KVol 
p r  Vol

F =

r _ Pk'
f cK dK dK \

p  KU -
Vol ci

V
y-

O
+ Co —--

07]
+ c , ----

cC /
_ Pt

f OT dr dr 'P T U - c, — + c-> — + ----
Vol V d£ OIJ ' K ;

G

p K V
Vol

pT V ~ Pr
Vol

}

d:K dK d K '— + c\ + c( ----
fit ' dii J
or dr dr \----- h Cs --- - + c( —*tj' -
<;S dij

H =
p  K W

Vol I

pT W  C
Vol

d K d K d K  '+ cx --------H Cn — ---
o

vd i i
d r d r d r  "----- + -------  ̂Co

o i l

Vol
S  =

Vol f ’ - C ,  [‘ps + pA
\

Ps + Pk - P -T

K

°k = - ~ P K
d u  ev c i v  

~ o +7 K +~eT
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f  \2 ( - 22 2 ~\ ^on t v rn- Oil (V
2 — + — 4- ---- , + - - - - - 1- - - - -

dx rv cz dy ex\  / V ■ > \ /

du d\v
_|_______

~>

1
(V ^  fHv 2 du dv

_______ j_________ |_
d»

dz ex
I

cz Cv 4 dx rv dz

2 f dK dx dK
i___________

dx dK
_ l_  __ _____ _

dx ^
A7^ 1 dx dx\

i
cy dy dz dz J

D, = -f‘,
X

Zt- \
2 r ^  >2 / -n \2or + ex + or

1 H 
1 -*>

v  6-v 7
dz

with

du
dx

a t S x
du
dti

S) +
du \

s ;
i

vol

du
7y

\
f2Ls - + U L s ’ + 2 l s

KX  ' Pn ' X  ' , vol

cm
oz

a t
p c °h

du duS : + —  S : +
' ' dt;drj SI vol

etc.

f iK = {ft ,+ X Kfil )

c. = 1.44 c =0.09k\ /'
/.ih = p Ti= fiT Ar = 0.7353 k K =0.7353

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

I d  = ( u l + A : f l l ) ( 5 .53)
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p K t 

V,
(5.54i

C. =1.83
(

. 2
r

' V
2 \A

1 TT exP —

9
V V

O'

J J

1 -  exp
f  + v

3.45
tanh

(  ,.+■ A

v70J
v =

( \  
y,PzP

v, = v ,  s  fu  Rr

(5.55

(5.56'

(5.51)

(5.58,

(5.59)

6. Numerical Algorithm
If one wants to solve a partial differential equation numerically one ultimately must 

discretize and hence reduce the partial differential equation to a system of algebraic 
equations. There are many possibilities of achieving this. We will not describe here all 
the methods which have been successfully applied in the past but will restrict ourselves 
to those methods which have been implemented in KAPPA.

In KAPPA we use the so called „semi-discretc method". This is a discretization 
process in two stages, first discretizing only in space with the finite-volume method, 
leaving the problem continous in time. This leads to a system of ordinary differential 
equations in time. We then discretize in time using cither the explicit Runge-Kutta 
method or the implicit LU-SSOR method for systems of ordinary differential equa
tions.

Explicit methods typically need less computational work and are simpler both in 
derivation and application. Implicit methods, although expensive in computation, have 
less severe stability bounds (classical stability analysis shows unconditional stability but 
in practice nonlinear problems bounds are encountered). The extra work required for 
an implicit scheme is usually compensated by the advantages obtained by the increased
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stability limits, and in general implicit schemes have been useful and successful for a 
variety of inviscid and viscous flow-field calculations. On the other hand, the explicit 
methods, although restricted by the small time steps due to fine grid spacing for nu
merical resolution, have been made competitive by the use of convergence accelera
tion techniques.

With the advantage of high speed vector and parallel computers one must also 
consider the degree to which a certain algorithm can be vectorized resp. parallelized 
when choosing a scheme. As a rule explicit schemes are more easily vectorized resp. 
parallelized than implicit schemes.

Another consideration is the question of time accuracy versus non-timc-accuratc 
steady state iteration. For unsteady problems we wish to employ time accurate meth
ods, initialize the flow with some realizable state and integrate forward in time whith 
time steps commensurate with the unsteady phenomena which are be'ng calculated. 
Both implicit and explicit methods are capable of computing time accurately. In steady 
state calculation we wish to integrate from some arbitrary state to the asymptotic 
solution in a way which will get us there with the least amount of computational work. 
Non-time-accurate techniques e.g. relaxation methods, variable time steps, multigrid 
techniques can be employed as long as they are convergent and do not distort the 
steady state equations so as to produce inaccurate results.

6.1 Explicit method
Stable time stepping methods for the semi-discretized Navier-Stokes equations 

can be patterned on standard schemes for ordinary differential equations. Multistage 
schemes of the Runge-Kutta type have the advantage that they do not require any 
special starting procedure, in contrast to leap frog and Adams Bashforth methods, for 
example [46]. These schemes are usually designed to give a high order of accuracy. If 
the objective is simply to obtain a steady state as fast as possible, the order of accuracy 
is not important. This allows the use of schemes selected purely for their properties of 
stability and damping [4, 29]. If the cell volume V.jk is independent of time, the semi- 
discretized N-S equations can be written as:

aw
( 6. 1)

where R is the residual.
Let m" be the value of vr after n time steps. The general m stage hybrid scheme to 

advance a time step At can be written as:

vv<°) =

= vr'"» - a  tAtRm

_ „.<«» _ a  ,A //?<"'■
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w{m) = U'("> -  a  ,AtR["-l)m-1
„.("+!) = n-<™)

Where appropriate coefficients a  can extend the stability region considerably [30],

6.2 Implicit method
An approximate LU decomposition method developed by Jameson and Turkel [45] 

applied in two dimensions by Jameson and Yoon [49] modified and extended to three 
dimensions by Rieger and Jameson [31 ] is implemented in KAPPA. Since the classical 
direct LU decomposition of the unfactorcd implicit operator is too expensive for m u l t i 
dimensional problems one has to resort to incomplete or approximate LU decomposi
tion methods. In the latter concept a particular approximation to the unfactored implicit 
operator is chosen so that the desired LU-represcntation will directly result. Hence for 
any dimensions only two factors appear which additionally have the advantage to be 
easily invertible. Usually this objective can be achieved by an appropriate lower o rd e r  
analogue of the original operator. For triangular matrices inversion is done by simple 
forward and backward sweeps across the field. Hence, these methods resemble the 
Symmetric Succesivc Over-Relaxation (SSOR) approach. The numerical method for 
the semi-discrete Navier-Stokes equation then reads:

R = ^ i E - E v - E n )+ ^ { F - F v - F D)+^ ( G - G v - G D), (6.2)

where E, F, G represent the inviscid and viscous flux vectors into the general 
coordinate directions .vp .r,, xy respectively. For control and nonlinear instabilities 
and central differences a scheme has to be provided by suitable dissipation opera
tors which are indicated by lower indices D.

Then a Newton-iteration would read:

f  „ „ Y
cR
dc,

S q n + R ” = 0. (6.3).

Here the upper index indicates the iteration count and <5q" is defined as 
8q" = q"+> -  q". In general, the computation and inversion of the functional matrix 
dR/dq is too costly , so that an approximate form has to be found such that the inver
sion is easy and stable. A choice which has been found beneficial resembles that of 
flux-vector splitting. Because the particular construction only affects the implicit op
erator a rather crude choice fulfills the requirements for diagonal dominance of the 
coefficient matrices.

For definition of the functional matrix some Jacobians of the different flux vectors 
are needed.
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A =
5E

A A hi
C

j

|C
*1

dq dq =  1) dq

B = OF B III B
cC

l
fO

III

— 1 dq --- V dq =  D . dq

C =
cG

C
_ d G v

C
— dq —  f> dq =  1 ) . dq

(6.4)

(6.5)

(6 .6)

Then an appropriate approximation to the functional matrix in 6.3 could be:

f

V
dq

-  J
Dt d +D<iH+Dc £■ (6.7)

The experience shows that in principle only the inviscid flux Jacobians have to be 
considered for definition of the implicit operator , also for viscous calculations. Al
though robustness and stability may be improved for severe problems by including into 
the implicit operator an approximation of the artificial dissipation operator and by parts 
the physical viscous flux Jacobians. for a further discussion the basic scheme [31] is 
sufficient.

The difference operator D etc. are written as a sum of first order forward (A ) 
and backward (V  ) difference operators:

IX A A A - V ; / f .  ( 6 .8)

Now, the particular flux Jacobians A + and A etc. are defined in such a way that 

they possess only non-negative and non-positive eigenvalues:

£  = y ( d ± r , i ) . (6.9)

IV 'ZZ mJ P >- (6.10)

That is achieved by defining /• as a value which has to be equal or greater than the 

spectral radius of A .

By sweeping forward and backward through the field the resulting relations can be 
combined similar to a SSOR method [32] and it turns out that the implicit operator in 
6.7 can be approximately factorized into a product of a strictly lower triangular matrix
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L , a diagional matrix D  and an upper triangular matrix U_ . Hence the basic scheme 

can be written as:

with:

q" = - R "  , (6.111

(+ + V,; 5 + + V , C + -A ~  - Z T - C - , (6.12)

£  = Oi l + r B +  rC )[ ’ (6.13)

r + A ,  + Ac C~ + A + + B + + C +. (6.14)

Now stab: ity should be inhanced providing diagonal dominance for each factor [45], 
Consider, as an example, the L-factor for which rearrangement will allow to write:

L = (rA+rB + rc ) l iJk

2 k +  V,
l ) ,= 'i.j-].k

(6.15)

It is evident that diagonal dominance is only assured if the quantities /• and 
r u etc. are redefined so that they are equal and simultaneously the maximum of 
both original values defined after 6.10. That is:

rA = max - r,u -\.j.k  ̂ (6.16)

C<,M ; = , V ’ r A i - \ . j .k  ■ ~ t A ■ (6.17)

Corresponding settings following for the U-factor suggest also a modified diagonal 
matrix D:

£  = ^ ( v + V + ' «  + v + r r - + v k -  (6I8I

In fact inversions of scheme 6.11 are accomplished by sweeping along diagonal 
planes I+J+K = const, across the domain. Then during the inversion process all vari
ables needed from the off-diagonals are already updated, allowing a variation of the 
straightforward procedure. In averting the modified L-factor we obtain from 6.11:
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I'-' + ' •  + rc t , , /  lh.,.k ~ - R ” + d l UA5 Sj-tjj,

+ B+ Sq .  +C+ S q
—  /./ I .A --- j  t  j .  ,

(6.19)

To avoid the explicit evaluation of Jacobian matrices the intermediate tlux states 
can be approximated by a Taylor series expansion:

( 6 .20)

S E + = E + - E +"

Now, the scheme 6.11 is inverted by the following steps:

( 6 .2 1 )

8 q — -  R", ■, + 8 E , + SE,_j_lk +8 G,,/,a_! » (6.22)

Sq = -D-Li.j.k

■ / ~

/ k $ 9'■k Lij.k (6.23)

Sq = D j \ . \S q  -S E ~  -Li.j.k —'-./A \ Li.j.k —'+> (6.24)

i f  = £ * (? ) ' - K k ' i (6.25)

S L  = t i l ) i - c ' C 1)- (6.26)

In comparison to the straightforward inversion of scheme 6.11 no degradation in 
performance was observed with the cost-effective relaxation-type inversion 6.23.

6.3 Stability analysis
The numerical schemes for the solution of a partial differential equation must be 

stable. This means that any perturbation of the input values at the /?lh time level should 
be prevented from growing without bound. The stability of a scheme can be investi
gated by the von Neumann Analysis.

Consider a distribution of errors at any time in a mesh written as a series of the 
fomi:
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(6.27)

If the amplification factor g
c + At)

£ (-Wo)
< 1 then the numerical scheme is

stable. A similar technique can be used to investigate the stability for systems of equa 
tions [38]. A model for the equation encountered in fluid mechanics can usually be 
written in the form:

dw  | dFW) j w  l{]m  Q
dt dx dt dx

( 6 .28)

We now locally linearize the system by holding [A] constant while the W vectoris 
advanced through a single time step. For an explicit scheme this analysis leads to the

requirement that A At
Ax

< 1 where Amax is the largest eigenvalue of the [A] matrix,

We apply this analysis to the K-s model in generalized curvilinear coordinates. 
A conservative estimate for a nominal Courant number of unity is

At =
(6.29)

where A are the averaged spectral radii of the Jacobian matrices in i, j and k directions. 
Linearizing around a reference state the K-£ equations in matrix form arc:

dW dW dW dW d~W „ d2W , , d 2lV
—  + A — -  + B — -  + C -----+ D ----- -  + E ---- -  + F ----- t = G ■ W ,
dt dE, drj d£  dE, ~ d i f  dC, “

(6.30)

with:

and:

W — Vol
p K  

P £

u 0

0 u

V 0

0 V

(6.31)

(6.32)

(6.33)
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c  = W 0

0 tv (6.34)

U = us) + vs) + ws) V = us) + vs) + i vs) IV = us) + vs) + ws) (6.35)

D =
- Ci + C , 4 ("

0
l o l

- 2)rc\ + r 4 + ci
iw

(6.36)

E =
-Ci + C e, +('v

0lol
- ~ c  , + r 5 + cx

iw
(6.37)

F  = l o l
0

-<\i + <'(, + <■<) 
l o l

(6.38)

G =
0 -  c.Vol

-  c s  — t c -,VoI -  2c 'tC-,Vo1 ■—- K - J *
(6.39)

The eigenvalues are readily obtained by calculating det(A -  A/) t  0. The largest 
eigenvalue then reads:

A., = uS) + vS) + wS- (6.40)

XH = uS) + vS) + wSj (6.41)

Ar  = u.S"/ + vS) + \vS~ (6.42)

K  —
76

Ko/ (6.43)

A£ = - 76 c2 +c5 + c 
Vol

,  \
(6.44)
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lh ( C1 + cb + c‘>
(6.45)

(6.46)

and the time step can be calculated according to:

Vol
A t = (6.47)X j +  Ayj +  X(J +  XD +  Xp +  Xy +  Xq

The estimations of the time step for the K-x model and Navier-Stokes is similar 
and will not be repeated here (for reference see [20]).

6.4 Artificial dissipation
Whenever discrete methods arc used to calculate complex 3D-flows including 

shocks, or to compute high Reynolds number behaviour, scales of motion appear which 
cannot be resolved by the numerics [26], These can be brought about by the nonlinear 
interactions in the convection terms of the momentum equations (resp. two equation 
turbulence model). If a scale is represented by wavelength or frequency , it can be 
easily shown that two waves interact as products to form a wave of higher frequency 
(the sum of the original two) and one of lower frequency (the difference).

The lower frequencies do not cause a problem, but the continual cascading into 
higher and higher frequencies docs. It is accounted for physically by shock formation 
or by viscous dissipation of the very high wave numbers. In numerical computations ii 
cannot be ignored and must be accounted for in the algorithm constructed. In any finite 
discrete mesh the cascading frequencies can eventually exceed the capacity of the 
mesh resolution at which point they can either: a) alias back into the lower frequencies 
or b) pile up at the higher frequency side. In either case, if uncontrolled, these terms 
can lead to serious inaccuracies and possible numerical instability.

For the central difference type scheme used in KAPPA a numerical dissipation 
model is included in this scheme. The form of this dissipation model is a blending of 
second-difference and fourth-difference terms [46]. The second-difference terms are 
used to prevent oscillations at shock waves, while the fourth-difference terms are 
important for stability and convergence to a steady state. The dissipaton model used in 
KAPPA was first introduced by Jameson, Schmidt and Turkel [46] for the Euler equa
tions. Several modifications of the model have been investigated in [47] and [30] in 
order to improve it and make it suitable to obtain accurate and efficient solutions of the 
Navier-Stokes equations.

Basically the same dissipation model has been used for the two equation turbu
lence models. We will describe these models here only for the K-i; model and refer the
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interested reader to the report of Magagnato [13] and Leicher [24] for the Navier- 
Stokcs equations in 3D.

The linearized K-e equations in generalized curvilinear coordinates read.-:

n v  , n r
-----+ A ------
dt

+ Qnv n r  n d-iv r d-wB -----+ C ------+ D ----- -  + E ---- -
dn X (>r

cl2 iv
(Xcr

G W . (6.48)

where the definitons of the matrices A...G and W can be found in the proceeding 
paragraph. To advance the scheme in time we use a multistage scheme. A typical 
step of a Runge-Kutta approximation to this equation is

lV("') = , v (0)- a  —  \d -A (", a) + D + D -C {,"-])
VolL ’ ''

+ D r D lm~'] + Dn2E l""'] + D -2F {,"-1) -  Glm~') -  Ad \

where I ) . . D ( . D ., D .2, D 2, D 2 arc first resp. second spatial differene opera
tors, and represents the artificial dissipation terms. The dissipation terms consist of 
fourth differences. That is:

AD = -(Dt  + DA + DA )W , (6.50)

where

-V [<A;,  )A_V_.\ | i r „ , .  (6.51)

D 4 and D ' are defined analogously. V. and A, are the standard forward and 
backward difference operator respectively associated with the c direction 
and /d4) is a constant.

The variable scaling factor A . ,  A  and A _ could be taken proportionally to the 
largest eigenvalues of the matrices A, B and C resp. if one would solve the K-e  model 
uncoupled with the Navier-Stokes equations. But in practice the Navier-Stokes and 
the K-e model are solved simultaneously , so that the largest eigenvalue of the cou
pled N-S and K-e equations must be taken. Since the eigenvalues of the N-S equa
tions are larger than those from the K-e  model one must take the former.

They arc:

Ac = |nS,:' +vS2 + wS~ | + c-J( s4 y + (si’ ]f + {Sf (6.52)

A,, = \i‘Sj + 1 Sj + wSj | + C'-J(5; f  + (s'/ f  + f  (6-53)

A- - 1*Sxk + vS{ + WS :t | + c j f a f  + ( s [ f  + ( s ; f  (6.54)

where c is the speed of sound.
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For meshes with cell aspect ratios ()(103) typically generated for high Reynolds 
number viscous flows, Swanson and Turkel [47] and also Martinelli and Jameson [30] 
proposed to adjust the scaling factors. Instead of using the anisotropic formulation:

A,-+i :,/.a- = Â (6.55)

A;./+|.'2.A- = A,, (6.56)

A/./.a+i : = A- (6.57)

they adjust the scaling factors as a function of the spectral radii o f  the Jacobian 
matrices associated with the g. jj, C directions and account for varying cell aspecl 
ratio

A,-+i /2./.A = A, + i/2,/.A '0/ + I.2../.A (6.58)

V + I/2.A = A,,/ + i/2,A ■0/./ + l'2.A (6.59)

K,..A + l/2 = A/,/.i- + i/2 A/.A+ 1/2 (6.60)

where

=1 + m a x ^  /  X , ) a ■ (A-/A« ) “ ) (6.61)

and analoguously for tj) |1( and $ t)/,.

7. Convergence Acceleration Technique
For the calculation of stationary flows it is interesting to accelerate the convet 

gcnce to steady state as quickly as possible. Several techniques arc applied in KAPPA 
in order to minimize the computational effort. The convergence acceleration technique 
cannot be used for all possible combinations of numerical schemes and/or physical 
equations. For example, the local time stepping technique is senseless if one adopts the 
implicit LU-SSOR scheme or the enthalpy damping technique for a Navier-Stokes 
calculation. Anyway, the code switches off automatically those accelerating techniques 
which are not appropriate for the specific computation.

7 .1 Local time stepping
For explicit numerical schemes the time step is limited by the Courant Friedrich 

Lewy condition (CFL), which requires that the domain of dependence of the numerical 
scheme must at least contain the region of dependence of the original differential 
equation. That means that the time step is a function of the cell size. The ratios be
tween the smallest and the biggest cell size are of the order of 0( 10s) for viscous flow 
meshes. Computation using the time step of the smallest cell in the whole computa
tional domain would be very costly . The concept of local time stepping overcomes this 
difficulty by advancing every computational cell at its own stability limit. A conserva-
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live estimate of the loeal time step limit for the Flulcr equation is:

Vo\nu
At=---------------  ,

A, + A + X- (7.1)

where Ac, A and A are estimates of the local maximum wave speed in the A', i] 
and C-direetion of the convective operator. For the Navier-Stokes equations the 
contribution due to the diffusive operator has to be added:

A t =
___________ Yoj____________
(/.. h - A , ; +  A A  +  ( t w  + vn +D-) (7.2)

And finally the two equation turbulence model has a time step limit which is aug
mented by an estimate of the source terms:

A i _____________ Ro[_____________
(A, + A + a - ) + (iw + 1A + 1a  ) + (7.3)

7.2 Implicit residual averaging
Another technique to enhance the convergence rate of an explicit scheme is the 

implicit residual averaging. For a multistage scheme the residuals in each Runge-Kutta 
step are replaced by a weighted average of the residuals at the neighbouring point. For 
three-dimensional (lows the implicit residua! smoothing is applied in the product form:

(I -  e- V, A,)(1 -  V„A,,)(1 -  c: V- A: )Rljk = Rn, . (7.4)

where: Rm -  is the explicit residual at the point /, /, k and R,,k -  is the smoothed
residual. For highly stretched cells Martinelli [20] has given a formula in which the 
smoothing coefficient is a function of the characteristic wave speed. In three-di
mensions this can be de fined as [22]:

c, = max CFL A,
CFL.X. A- + max(X ■ A-)

( A  , \" ( , y  ^
l + max

A,\ ~ j

Ac
~K,V '

- l c (7.5)
w

and analoguously the q and A coefficient. In KAPPA we replace the lower limit 
c = 0 , proposed by Martinelli [20] by r  = 0 .1 for the Navier-Stokes equations and 
c = 0.2 for the two equation model.

7.3 Multi grid
A very efficient convergence acceleration technique is the multigrid strategy. 

Although proposed in 1964 by Fcderenko [23] it has been applied only recently for
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viscous calculations by Martinclli [20J. The general idea behind any mu 11igrid is 
to transfer some of the task of tracking the evolution o f  the system to a se
quence of successively coarser meshes [5]. This has two advantages. First, the 
computational effort per time step is reduced on a coarser mesh. Seeond. the 
use of larger control volumes on the coarser grids tracks the evolution cm 
larger scale, with the consequence that global equilibrium can be more rapidh 
attained. The coarser meshes arc generated by elimination of every other line it 
the /, /  and A-direction. Sweeping through the coarser meshes in different ways 
influences the efficiency and the damping property of the numerical scheme. It 
KAPPA the V-cycle can be used to accelerate the convergence. In most cases 
the multigrid strategy increases the convergence rate by a factor o f  5 to 20 by 
increasing the computational work by a factor of 2 for a multigrid cycle, so that 
the epu-time can be reduced effectively by a factor between 2 and 10 using the 
multigrid technique.

The principle concept of the multigrid is to combine the coarse grid effi
ciency with the fine grid accuracy. Analytically, error is the sum of infinite nunibe: 
o f  frequencies in a Fourier scries representation. On a given grid the visiblt 
modes of the error are finite and depend on the grid spacing. A short wave
length (high frequency) wave on a fine grid can be represented ais a long wave
length (low frequency) wave on a coarser grid, (the so-called aliasing effect),

Low frequency components of error are badly damped by the convention! 
iterative techniques employed in the solution methods, as opposed to high fre
quency modes which can be damped very effectively. The mathematical basi; 
underlying the multigrid method is to damp different error modes on differet 
grids effectively by making use of the aliasing principle. A practical conclusio: 
o f this is that it is advantageous to use as many grids as possible to cover a large 
spectrum.

The following steps are performed in the multigrid computations:

• Smooth the error on the fine grid,

• transfer this solution and the residuals to a coarser grid (restriction), an 
solve on the coarse grid,

• transfer back the corrections, the difference between the transferred soli 
tion from the finer grid and the solution obtained on the coarser grid, to th 
finer grid by interpolation (prolongation).

Then the new solution on the fine grid is obtained by adding these coarse gri, 
corrections to the fine grid solution, Figure 7.1 (a). This one cycle is called th
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C Finer grid
O ' O

Restriction Prolongation
o  : o

Coarser grid

Residuals, Solution vector W (FAS)

(a) ( b )

Figure 7.1 (a) Multigrid operations for a I'-eyele. (h). Grid coarsening.

V-cycle. It is remarked here that the reason that the residuals arc also restricted 
to the coarser grids is that the solution on the coarser grids is driven by the residuals 
on the finest grid, to ensure converged solution on the coarser grids once converged 
solution on the finest grid is obtained. This is done by introducing a so-called forcing 
function which is the difference between the residual on the coarser grid and the 
restricted residual from the finer grid. This multigrid algorithm where the solution and 
the residuals are used is called Full Approximation Storage {FAS) scheme.

A coarse grid is obtained by deleting every other coordinate line in each direction, 
as shown in Figure 7.1 (b). In practice, in addition to the multigrid operators restriction 
and prolongation, additional smoothing is performed to ensure a smooth representa
tion of the errors, (elimination of the high frequency components of the error is essen
tial to the success of the multigrid method).

Multigrid operations begin on the finer grid. However, iterations beginning from the 
initial flow field, commonly initialized with the freestream flow values, may deteriorate 
or even preclude convergence on the finest grid. The solution to this problem is the so- 
called Full Multigrid (FMG) technique, where converged solutions on the intermedi
ate grids are used as the initial solution on the finest grid as illustrated in Figure 7.2. In 
this example it is assumed that 5 grids are available in each block, the finest grid is 
denoted by h and coarser grids arc denoted by 2/?, 3h etc. Multigrid operations begin 
on the grids 3/?, 4/; and 5h. A user specified N l  number of V-cycles are performed on 
these grids to obtain a converged solution on grid 3/; (here N l  is used to indicate an 
input, in KAPPA the number of V-cyclcs for each level is element of an array, N l  is 
not the name of the variable). In the second level, the solution on grid 3/; is interpolated 
to the finer grid denoted by 2h and N2 number of V-cycles arc performed on these 4 
grids. Converged solution on grid 2h aftcrN2 iterations is interpolated to the finest grid 
and final N3 number of V-cycles are performed on the complete 5-grid system to 
obtain the final converged solution on the finest grid /;.
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h : fin est grid, 5h c o a r se s t  grid.
3h

4h
5h

2h
3h
4h

5h

h

2h
3h
4h

5h

Figure 7.2 Full nmltigridstrategy.

It is seen that there are three different iterations performed in the eode:

1. Loop over multigrid levels, 3 in the example
2. loop over grids within a level. Nl. N2 ani/N3 in the example.
3. loop on a given grid, typically 1 or 2.

Understanding of these iterations is essential for the understanding o f the global structure o f  the axle.

8. Boundary Conditions
The efficiency and generality of a flow code in terms of its ability to handle a wide 

variety of problems and flow conditions is highly dependent on the accuracy and the 
flexibility of the boundary conditions incorporated into the eode. KAPF’A possesses 
a number of different boundary conditions which can be selected to define the physical 
problem to be considered. These are the wall conditions, the moving wall condition, the 
symmetry condition, the farfteld condition, the specification ofa velocity profile or the 
static pressure etc. For block faces which coincide into a singular line or into a singular 
point there arc a couple of boundary conditions allowing to describe the physics appro
priately. Last but not least, the boundary of these blocks which adjoin another block 
face must be specified.
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8.1 Solid wall and moving wall
The condition of no slip for viscous How is imposed by setting the flow velocity to 

zero at solid surfaces or to specify the velocity of the moving wall at the surfaces. For 
inviscid calculations one must assume that the flow is tangential to the solid surface 
and the pressure is determined from the normal momentum equation.

8.2 Farfudd condition
A very attractive boundary condition for the farfield should damp all outgoing dis

turbances effectively without falsifying the flow field too much. Therefor this condition 
is based on the introduction of the Riemann invariants for a one dimensional flow 
normal to the boundary. At the out flow boundary, the tangential velocity components 
and the entropy are extrapolated from the interior, while at the inflow boundaries they 
arc specified with the free stream values. These two quantities together with the sum 
and the difference of the two invariants provide a complete definition of the flow in the 
farfield.

For the specification of the boundary condition for tlic tw'o-cquation turbulence 
model two parameters of the turbulent flow field need to be known. The first is known 
in most cases or at least can be guessed, namely the turbulence level Tu The other 
parameter, the turbulence length scale, is difficult to measure and in most eases not 
known a priori. One possible way to calculate the length scale L f is to choose the eddy 
viscosity in the order of the laminar viscosity, and by applying the definition of the eddy 
viscosity //, = pctiJ~K I.r the corresponding turbulence length scale can be calculated. 
A good compromise for the eddy viscosity is to scale it with the turbulence level, for 
example: = 1 + 2 • Tir [14). The two-equation models have different boundary con
ditions than those for the Navier-Stokes equations. At in flow boundaries both values of 
the turbulence model must be specified by Dirichlet boundary conditions while at out 
flow boundaries these are extrapolated from the interior. Also at the wall the boundary 
condition must be specified by a Dirichlet boundary condition, which sometimes is trou
blesome for the £-equations. Howev er, with the use of the K- r model this reduces to 
K= r=  0 at the wall, which is computationally the best boundary condition for 
the wall.

9. Grid Generation
There is a wide variety of methods for generating grid systems. Algebraic meth

ods such as conformal mapping, quadratic functions, or the control function approach 
of Fisemann [21 ] have been widely employed. The numerical approach of using ellip
tic solvers, Thompson, Thames and Mast in [35], is also widely used. Thompson [16] 
provides a good review of the current state of the art in grid generation. With increas
ing complexity of the geometry these methods become more and more in flexible, so 
that new concepts which should overcome these difficulties were developed. The 
subdivision of the entire volume network into adjacent sub-areas provides the possibil



246 F. Magagmita

ity to arrange these sub-domains according to the actual geometry and thus to buildup 
more complex grid structures at all. This approach is well known under the term of 
„block-structurcd grids”. For the price of an additional necessary block-topology, in
creased flexibility in the possibilities of the geometry description are attained. Certainly 
the introduction of the block structure leads to a visible progress with respect to the 
treatable geometries, and based on this approach some almost automatic grid genera
tion methods running in batch-mode have been well established for standard geometry 
configurations. But especially if the basic types of configurations are changing fre
quently, other weaknesses of this approach become evident. As all the steps of grid- 
generation and -control are carried out by means of batch programs, the editing of 
a base geometry, i.e. the evaluation of the geometry input for a mesh generator might 
lead to substantial difficulties. The actual generation programs require large lists of 
control parameters to determine the approach in advance. A visual inspection of the 
networks is only possible using plots and to do improvements implies again the use of 
the generation procedure. Due to the development of harc  ̂ and software within the 
CAD/C’AM area or in computer graphics in general during the last years, it becomes 
feasible to rearrange the entire preprocessing into graphic-interactive programs [52], 
The advantages are obvious: within a dialog and under permanent visual control step 
by step (and even backwards) a basic geometry can be upgraded to a final network 
within one session. Errors can be cancelled immediately since they are easy to recog
nize, and possible variations can be tried at the smallest expanditure of time.

In our institute we are using the commercial software package ICTM-CFD for the 
generation of block structured grids.

10. Multiblock Topology
Conceptually multiblock topology is simple: the discretized flow domain, the grid,is 

divided into a number of blocks. From the parallel computation point of view, multiblock 
topology is a systematic way of distributing the domain among a number of procesSrs 
in a non-overlapping manner. Even fora serial computation, however, multiblock topol
ogy is required for mesh generation about complex geometries due to practical difficul
ties in generating single block mesh. Multiblock topology is also useful in cases where 
the whole mesh cannot be stored in the core memory and only a number of blocks 
have to be solved at a time.

In the example shown in Figure 10.1, the flow domain is divided into 8 blocks of 
which the first 4 blocks, blocks 1,2,3 and 4 are assigned to processor number one and 
the other 4 blocks, blocks 5, 6, 7 and 8 arc assigned to processor number two.

The structure of the code is not determined by the requirements of parallelization, 
it is the multiblock topology that determines the code structure. As shown in Figure 
10.1, each processor has a local count of the blocks that are assigned to it and all 
parallel block loops run to that local number of blocks. For instance, in the example 
shown, a serial loop over blocks would be performed from 1 to 8, whereas in case of 
two processors, loops from 1 to 4 would be performed by the first processor, and from 
5 to 8 by the second.



247KAPPA Karlsruhe Parallel Program fo r  Aerodynamics

Multiblock topology

A block can have either a connection boundary, that is, it is connected to another 
block, or a physical boundary. In Figure 10.1, the block number 1 is connected to 
blocks 2,4 and 7, and it has one physical boundary. Whether a data exchange between 
two blocks at the connection boundary is performed across processors or within 
a processor, makes no principle difference except for practical coding complications 
where a different routine has to be called for either case.

In all these cases a common requirement is that each block be individual, inde
pendent item of computation except for the global data exchange with other blocks at 
the connection boundaries. This is achieved in KAPPA by providing a halo of two- 
layers of dummy cells around each block.

A one-dimensional example of block connections and array dimensioning is shown 
in Figure 10.2. The number of grid points in i-dircction isN I, in j-directionNJ, and in 
k-direction NK, as used in the code. In this example, the grid arrays are dimensioned

B lo ck  S tru c tu re  E xam ple in 1-D

Array dimensioning of a 1-D block:

I--f ---
lO I 1 , 0 , 0 2 3 E2M -1

• • • •
I2 M  I2 M + 1  
0 , 0 ,

< 0 , 1 2 3 N .T -1  N I  N I  + 1

-  ~ T ------ I

0 , 0 ,  Data exchange at the connection boundary.

N I

O ' Application of physical boundary condition 

Fixed value here.

N I

Figure 10.2 Block structure example in 1-D.
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from (0 : N I  + 1) . The first layer dummy eell coordinates are computed either by 
extrapolation from inner points for physical boundaries, or they are assigned the coor- | 
dinates of the corresponding cells in the connected block for the connection bounda- j 
rics. The flow variables are stored at the cell-centers, and flow variable arrays are ] 
dimensioned from 0 to I2M + 1 in i-direction. j

The cell-centers denoted by solid circles in the Figure indicate the internal flow j 
field points which are computed during an iteration (for instance during a Runge-Kum 
stage). Dummy cell values at the connection boundaries are assigned after the internal 1 
flow field is computed, by assigning the corresponding cell values of the connecting | 
blocks, as indicated by arrows in Figure 10.2. This procedure is called data exchange. \ 
After the data exchange, the physical boundary conditions are Applied by fixing the; 
dummy cells so as to have the correct boundary value at the boundary plane. For j 
instance, if the boundary value of IV at the plane NI is IV , and the value of IF at] 
I 2 M - 1 is IVpu p the value of the first dummy cell, IFpv/, is fixed as:

W„ 2W -W~ ,v/ 1 n./2AM ’

so, that a linear interpolation between the first inner and dummy cell values give] 
the correct value at the boundary. To fix the second layer of the dummy cell,! 
either a higher order interpolation, or simple extrapolation is used.

Each block becomes a computationally independent unit once the dummy cell val-l 
lies are fixed.

11. Data Management

1D Array: WALL
Data Management

---------------------------------------------------------------------------------------------------------------------- j-------------------------------------- ,----------------

Dependent variables * Pressure * 1________________________ i________j___
1 N1 N1+N2

Grid 1

N l  =  NVAR *  N C E L L ( 1 , 1 )
N2 =  N C E L L ( 1 , 1 )

A LLO C : IW A L L P ( IG R ID , I B , 1 ) =  1
IW A L L P ( IG R ID , I B , 2 )  =  N l+ 1

Grid 2

B lockl

KAPPA: C A LL RUNGEK(W ALL)

RUNGEK: D IM E N S IO N  W A L L ( * )
IBW = I W A L L P ( IG R ID , IB ,1)

IB P =  I W A L L P ( IG R ID , IB ,2 )

C A LL C A LC P ( 1 2 , J 2 , K 2 , W A L L ( IB W ), W A L L ( IB P ) )

C A LC P : C A LC P ( I2 M , J 2 M , K 2M , W, P)
D IM E N S IO N  W ( 0 : I2 M + 1 , 0 : J 2 M + 1 , 0 : K 2 M + 1 , NVAR) 
D IM E N S IO N  P ( 0 : I2 M + 1 , 0 : J 2 M + 1 , 0 : K2M +1)

<
Figure 11.1 Data management
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A practical implication of the multigrid operations described above is the necessity 
of a flexible data management. In KAPPA a standard solution of using a large one 
dimensional work array WALL is chosen, Figure 11.1. The work array WALL is cre
ated by subroutine ALLOCATEWALL within each processor for the blocks assigned 
to that processor. For instance, in the example shown in Figure 10.1 the data for blocks
1,2,3 and 4 will be stored in processor 1, and data related to blocks 5, 6, 7 and 8 will be 
stored in processor 2, blocks being numbered from I to the number o f  blocks 
assigned to that processor, i.e., numbered locally. For each block, the data is stored 
for each grid in that block, beginning from the finest ghid o f  that level. For each 
grid the same arrays are stored consecutively beginning with the dependent variables 
as indicated in Figure 11.1. These arrays are clearly indicated in subroutine 
ALLOCATEWALL. At the beginning of each new multigrid level, the data structure 
related to that level is created. In the example shown in Figure 7.2, at the third level, 5 
grids will be stored for each block, the grid number 1 being the finest grid.

A pointer of an array is the location o f  the first element o f  the array. The 
allocation of the data structure is done by storing the pointers of each array for each 
grid and for each block. In the example shown in Figure 11.1, IWALLP is the pointer 
array for grid number IGRID of block IB . The first component of IWALLP points 
to the dependent variables, number of variables NVAR times the number of cells of 
that particular grid, grid 1 of block 1, indicated by NCELL ( 1 , 1 ) .  Similarly, the 
second component is the pointer to the pressure array.

The subroutine RUNGEKUTTA, the driver routine for the solution using the Runge- 
Kutta method, is called from the main rouf le by only passing the WALL array, 
(Figure 11.1). Relevant data for the routines called from RUNGEKUTTA arc passed 
to these routines by passing the first element of the arrays pointed by the pointer and 
their dimensions. In this example shown, the routine CALCP is called from 
RUNGEKUTTA by passing the dimensions 1 2 , J 2 , and K2 of the arrays W and ?, 
and their first elements WALL (IBW) and WALL ( I B P ) , respectively. Conven
tional three dimensional representation of these arrays is recovered in the subroutine 
CALCP, (see also Figure 10.2 for the dimensions).

There arc two main advantages of this data management structure :

1. Only the work array WALL has to be dimensioned as it is the only array seen by 
routines at the first and second levels of the calling-tree,

2. a complete generality is achieved in calling lower level routines, for instance the 
routine CALCP in the example given, the W and P arrays can belong to any grid 
of any block.
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12. Global Structure of KAPPA
Once the items disccuscd above are clarified the global structure of KAPPA can 

be grasped easily. A block diagram of KAPPA code is shown in Figure 12.1. Input data

Figure 12.1 Block diagram o f KAPPA code

is read and printed out in subroutine READ1N which is called once. Then the startin' 
grid level of the FMG is assigned to MLG. The loop on the multigrid levels MLG is the 
outmost iteration loop described in Section 4. For this grid level, the data setup it 
performed by the routine SETUPM which calls routines to read the mesh and bound
ary conditions, initial solutions or profiles. The work array WALL for this level is alsc 
created in SETUPM. Then the second loop over the number of V-cyclcs, N 1 in Figure
7.2 is performed. In this loop the driving solver routine is called to do each V-cycle 
This solver routine is cither RUNGEKUTTA or LUSSOR as chosen by the user 
depending on whether the Rungc-Kutta explicit or LU-SSOR implicit method is se
lected. Once these cycles arc done, it is checked whether there is another level. The 
process is repeated for all the levels, for instance 3 in the example given in Figure 73 
and the program stops.

Out o f the three iteration loops described in Section 3, two loops arc performed ir 
the main routine KAPPA: loops over the FMG levels and the number of V-cyclet 
within each level. The driver routine of the solution, depending on the numerical method
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chosen, is cither RUNGEKUTTA or LUSSOR. These solver routines are almost iden
tical in structure as it will be discussed later in the report. Consequently, only the solver 
routine RUNGEKUTTA will be looked at in more detail.

A detailed block diagram of RUNGEKUTTA routine is shown in Figure 12.2. A 
single V-cyclc is performed by the solver routine RUNGEKUTTA. This subroutine 
consists of two main parts:

1 First leg of the V-cycle where the grids from finest of that level to the coarsest 
are worked through in descending order,

2. the second leg of the V-cyclc where grids beginning from the second coarsest to 
the finest are taken up in the ascending order.

The first part is performed in the routine in a linear fashion within the loop over 
grids from finest to the coarsest grid as shown in Figure 12.2. The second part is 
performed in subroutine RKPRO.

Figure 12.2 Block diagram of RUNGEKUTTA subroutine

Beginning with the finest grid, on each grid ISOLV number of iterations are per
formed. Inside these two loops data exchange is performed over each block, as de
scribed in Section 2. The bold face rectangles in Figure 12.2 indicate loops over blocks 
which are performed in parallel. After this operation the update of the boundaries is
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performed by applying the boundary conditions (sec Section 2). Everything which is 
frozen during the Runge-Kutta stages is computed before entering the loop over the 
Rungc-Kutta stages: physical and eddy viscosities, time step, source terms and viscous 
fluxes. It is noted here that the source terms and viscous fluxes are only computed on 
the finest grid of the level. The initial solution (the current value of the dependent 
variable array W) is saved as required by the Runge-Kutta method in the routine 
SAVEIN. Within the following loop over the Rungc-Kutta stages routine operations 
are performed: computation of the convective fluxes, artificial dissipations and solution 
update. Between the stages data exchange, boundary condition application and pres
sure computations arc performed except for the last stage. Once loops over stages 
and ISOLV are finished, the solution is restricted within the subroutine COLLC (natu
rally, there is no restriction on the coarsest grid of the level) and the next coarser grid 
is selected in the loop over the grids, and the same operations arc repeated. Once the 
coarsest grid is reached, the routine to perform the same operations from the second 
coarsest grid to the finest grid is called: RKPRO. Precisely the same operations as 
those described above are performed in the subroutine RKPRO with two differences: 
the outmost loop is over grids from the second coarsest grid to the finest, and prolonga
tion routine ADDX is called instead of the restriction routine COLLC. For the implicit 
LU-SSOR method the driver routine LUSSOR is called instead of RUNGEKUTTA. 
which in turn calls the routine LUPRO instead of RKPRO. The simplicity of the global 
structure o f KAPPA program is best illustrated in Figure 12.3 where the program

iHEADF.Rl

Ir e a d i n I

iPR IN TFO l

iPRINTXO l

KAPPA

SETUPM RUNGEK LU SSO R
------- .1___

SETBLN

CHECK

IALLOC I

MESHNO

BLOCK

I I N I T P I  

I IN I S O L l

R E F IN N

I C T L C P l 
l~BC UBLK 1 
IBLOCK Ifv:.sc I 
It v i s c I
I S TEP I 
I S OURCE I

[n s f l u x  |

ICONVl

H RKPRO

%JAMESON
AUSM I 

ISA V E IN l

SOLVRK

ICOLLCI

ADDX I vise I 
It v i s c 1 
I s t e p  I 
I s o u r c e  1

IN SFL U X | 

ICONVl

____ 1________

C A L C P 1 -1 LUPRO 1
BO U BLK 1
BLOCK 1

dJAMESON
AUSM I 

ISA V EIN l

SOLVLU

ICOLLCI

ADDX

7 T L _ .
ITOTFOQI
lOUTSOOl

IconhedI
Ico nd a tI

Figure 12.3 Global calling-tree o f  program KAPPA
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calling-tree up to the third-level routines is depicted. The first and the last block of 
routines HEADER, READIN, PRINTFO, PR1NTX0, TOTFOO, etc, are called once. 
The most important routine to understand and study among these routines is the data 
input routine READIN.

The second block routines headed by SETUPM is called for each level once. The 
routines SETBLN, where the block topology and boundary condition data is input, and 
ALLOCATEWALL, where the data management is performed by creating the work 
space WALL are the most crucial routines. The array bounds are computed in subrou
tine BLOCK which is also called from solver routines.

The driving routines for the solution are RUNGEKUTTA or LUSSOR. The first 
block under the routine RUNGEKUTTA headed by CALCP performs the operations 
described above and the routine names are self evident. For the convective fluxes, 
either central or upwind differencing can be employed calling JAMESON or AUSM, 
respectively. The Runge-Kutta multi-stage operations are performed in routine 
SOLVRK. The restriction routine COLLC is called on the way down from the finest 
grid as described above. The same block denoted with a solid line is also called from 
RKPRO, which calls the prolongation routine ADDX. The implicit method solver is 
LUSSOR from which the same routines in the third block are called with the differ
ence that the LUSSOR logic is performed in SOLVLU as opposed to SOLVRK, and 
the loop over the grids on the way up is performed in LUPRO as opposed to RKPRO 
for the Runge-Kutta method. This repetition of the routines clearly facilitates the un
derstanding and study of the code. For instance, both for implicit and explicit time 
integration schemes the right-hand side is computed using the same routines as shown 
in Figure 12.3. The left-hand side operations (the time integration) are either per
formed by SOLVRK or SOLVLU. The multigrid operations restriction and prolonga
tion are performed by COLLC and ADDX, respectively. Critical variables that control 
the flow of the multigrid logic are MODE and KODL which are described in routines 
RUNGEKUTTA and LUSSOR and must be studied. A very important ingredient of 
the multigrid method is the smoothing, as explained in Section 3. These smoothing 
routines PSMOO and PSMOOC, which are called from SOLVRK and ADDX, re
spectively, are not shown in the Figure. Once this global structure presented here is 
clearly understood, study of any lower level routines which are below SETUPM, 
RUNGEKUTTA and LUSSOR or those which are not shown in Figure 12.3 is the 
study of implementation rather than the study of the structure of the code.

Finally, the detailed flowchart of KAPPA is given in Figure 12.4 where the global 
elements of program, the I/O routines, FMG control logic and convergence checks are 
shown.
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| KAPPA

I
Write title and heading 
Call HEADER

f
Read/pnnt input data Call READIN

y________
Initialize starting grid level 

mlg = mmesh

v

Figure 12.4 Flowchart o f KAPPA
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13. Applications
Since the code is based on the compressible Navicr-Stokes equations it is in prin

ciple possible to calculate subsonic, transonic, supersonic and hypersonic flows. This 
requires that the code can handle the large variety in the mathematical nature o f the 
governing equations. Needless to say, this is a very ambitious task and can hardly be 
fulfilled by a single numerical scheme. For example, supersonic flow requires the use 
of an implicit solver in order to solve the large disparity of eigenvalues in this flow 
regime while an explicit solver in conjunction with the multigrid strategy is best for low 
subsonic flows. Various two-dimensional and three-dimensional, internal and external, 
steady as well as unsteady flow fields have been calculated in die past in order to 
assess the accuracy and reliability of the code KAPPA. Some of these flows are 
discribed ip this chapter.

13.1 Flan’ around ON ERA M6 wing
The flow around the ONERA M6 wing is a standard test case in the CFD commu

nity since it is a very accurately measured and validated test for 3D transonic flows 
[1], In order to capture the essential features of the flow a mesh consisting of about 
760.000 points has been used, subdivided into 30 blocks for parallel computation (sec 
figure 13.1). The frecstream Mach number is Ma=0.84 the angle of attack a = 3.06° 
and the Reynolds number based on the mean chord length is Rc= 11.7*1Of

The calculation has been made using the nonlinear two equation turbulence model 
of Craft et al. [11] without explicit forcing of the transition region. A sequence of four 
multigrid levels has been used to accelerate the convergence to the steady state solu
tion. Appr. 300 iterations were necessary to achieve a converged solution. The con
tours of const, pressure coefficient arc shown in Figure 13.2 demonstrating the two 
shocks forming at the leading edge and middle part of the wing. These two shocks 
merge into a single shock at the wing tip. The comparisons of the experimental pres
sure distribution with the calculation at y/s=0.2, y/s=0.65 and y/s=0.95 wing section 
are displayed in figures 13.3, 13.4, 13.5. The agreement arc generally very good.
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Figure 13.1 Mesh o f the ON ERA M6 wing
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Figure 13.2 Pressure distribution of the ON ERA M6 wing in the symmetry plane and on the surface
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Figure 13.3 Pressure distribution of the ONERA M6 wing on the wing section v/s=0.2

Figure 13.4 Pressure distribution o f the ONERA M6 wing on the wing section y/s=0.6



F. Magagnato25ft

Figure 13.5 Pressure distribution of the ON ERA M6 wing on the wing section v/s=0.95

13.2 Flow past the Space Shuttle
The hypersonic flow past the Space Shuttle has been investigated next. The mesh 

consists of about 200,000 points. The frecstream Mach number was Ma = 10 and the 
angle of attack a  = 30° while the frecstream Temperature is T = 220K. The flow field 
has been calculated inviscid with the LUSSOR implicit solver and the USLIP high 
resolution scheme of Tatsumi et al. [25]. Two levels of multigrid have been used to 
speed up convergence. A total of 200 iterations were necessary to reduce the re
siduum by 6 order of magnitude. The surface mesh of the Space Shuttle is displayed 
in Figure 13.6. Please note that only half of the Space Shuttle has been calculated due 
to the symmetrical flow field calculation.

The density distribution on the lower part of the space craft as well as on the 
symmetry plane is shown in Figure 13.8. The bow shock formed in front of the vehicle 
can easily be observed. A better visualization of the shock structure is shown or 
Figure 13.7. The Mach number distribution at three stations along the fuselage indi
cates the spatial structure of the bow shock. In Figure 13.9 one can observe the pres
sure distribution on the lower part of the Space Shuttle.
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Figure 13. 7 Mach number distribution at three stations oj the fuselage
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Figure 13.9 Pressure distribution at the lower surface o f the Space Shuttle
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13.3 Flotv around a car
The flow around a basic car has been considered next. The mesh has been origi

nally generated by Wiistcnberg [15] at Volkswagen AG but smoothest by the author. 
All complex geometric details have been left out, the wheels arc omitted and the wheel- 
houses closed, and the underbody of the model is flat. A region of 28m * 7m x 9.3m 
around the half model is discretized by 30 blocks with a total of about 2,500,000 cells in 
the finest mesh (see figure 3.11). The Reynolds number of Re=7.62* 106 is based on 
the freestream velocity of u=32 m/s and the length of the model L=3.66m. The calcu
lation has been done using the non-linear eddy viscosity model of Craft ct al. with a 
freestream turbulence level of Tu=0.h( %. The pressure distribution in the symmetry 
plane and on the surface of the car as well as on the floor can by studied in figure 3.11 
and in figure 3.12.

Figure 13.10 Block structure o f the VIV-car



262 F. Magagnato

Figure 13.11 Pressure distribution in the symmetry plane and on the surface o f the VW-car

Figure 13.12 Pressure distribution in the symmetry plane and on the surface o f  the VW-car
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13.4 Unsteady vortex sheeding past a cylinder
The unsteady flow past a circular cylinder measured by Cantwell and Coles [8] 

has been investigated next. The freestream Mach number is M a=0.1 and the Reynolds 
number based on cylinder diameter is Re= 140,000. An O-type grid has been generated 
with a total of about 50,000 points in the finest grid (sec Figure 13.13). Calculations 
with appr. 12,000 points showed very nearly the same result as with 50,000 points 
indicating mesh indepcndance.

Again the non-linear turbulence model of Craft et al. as well as the linear model of 
Laundcr/Sharma [41] have been used with a freestream turbulence level ofTu = 0.3 %. 
In order to advance the solution in time an accurate and efficient solver must be used. 
In KAPPA we have implemented the Dual Time Stepping scheme proposed by Jameson
[6] and refined by Arnonc [2], Only 30 to 40 iterations per time step were necessary to 
reduce the residuum by six orders of magnitude. The velocity component in x-direction 
is shown in Figure 13.14 for the non-linear model. The vortex sheeding take place at a 
Strouhal number of St=0.215 for the calculation with the non-linear model and St=0.226 
for the linear model while the experiment of Cantwell/Colcs gave St=0.179.

The mean total drag calculated with the non-linear model was cd = 0.9\\ while the 
linear model gave cd = 0.922 compared to cd = 1.237 in the experiment. The agreement 
with the experiment in this case is poor and depend very much on the transition criterion 
applied in the calculation. The pressure distribution around the circular cylinder is dis
played on Figure 13.15. Both models show a lower pressure at <j) = 90° and overpredict 
the pressure recovery in the wake.

Figure 13.13 Computational mesh around a circular cylinder
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Figure 13.14 Contours of const stream wise velocity-component

Figure 13.15 Pressure coefficient distribution around cylinder
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13.5 Unsteady vortex slieeding past a VKI turbine blade
Finally the flow around a VKI turbine blade has been calculated. The measure

ments were conducted by Ubaldi et al. [7] o f the University o f Genova. The blade 
geometry is given by Cicatelli/Sieverding [10]. The Reynolds number based on the 
iscntropic exit Mach number is Re = 1,600,000 and the exit Mach number Ma = 0.23. 
The turbulence level upstream of the blade has been measured as Tu = 0.8 %. The 
number of grid points for this test case is about 72,000 points on the finest grid. Calcu
lations with about 18,000 points showed again almost the same results as in the finest 
grid.

The distribution of the Mach number is shown on Figure 13.18. One can recognize 
the vortex shedding at the round trailing edge o f the turbine blade. The vortex shedding 
frequency is about 1500 ITz in the calculation while in the experiment [7] 1700 Hz has 
been measured. Another calculation with the linear eddy viscosity model o f Launder/ 
Sharma gave no vortex shedding at all. The comparisons o f the velocity profile at the 
suction side of the blade are shown next. The agreement o f the calculated profile with 
the experiment is excellent at the station s/smax = 0.35 (Figure 13.16 and very good at 
the station s/smax = 0.95 in Figure 13.17.

Figure 13.16 Suction side velocity profile at at s/smax =  0.35
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Figure 13.17 Suction side velocity profile at at s/smax = 0.95
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Figure 13.18 Mach number distribution at the VKI turbine blade
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