
TASK QUARTERLY 2 So 1 (199S), 107-119

THE ARCHITECTURE OF MODERN
DATABASE SYSTEMS

KRZYSZTOF GOCZYLA

Department o f Applied Informatics
Technical University o f Gdansk

Narutowicza 11/12, 80-952 Gdansk, Poland
kris(a\pg.gda.pl

Abstract: The paper presents major trends in the modern architecture of large database systems. Two
types o('architecture arc described in detail: the parallel architecture and the distributed architecture. It has
been widely recognised that centralised, single processor computing systems and centralised database
systems in particular are approaching their theoretical limits of performance. Hence we can observe
a growing interest among researchers and developers in the design and implementation of highly efficient
distributed architecture, the paper focuses on different types of client-server architecture, which nowa
days is becoming very popular in data processing systems.

1. What is a database system architecture?
The concept of "system architecture" is not precisely defined in the information

technology. Depending on contexts and applications, system architecture may be un
derstood as a hardware configuration, a software configuration or a set of communi
cation protocols between different components of a system. If we consider a system
as a whole, the "system architecture” includes all those elements — hardware, soft
ware and communication protocols. In the case of a database system, the architecture
of a system can have two facets: logical architecture and physical architecture. This
paper focuses mainly on different types of physical architecture of modern database
systems. To help to understand the problems of physical architecture, the paper first
gives a brief overview of the underlying concepts of logical architecture of a database
system.

The first standards of logical architecture of database systems were introduced in
the 1970s by a special workgroup called “Study Group on DBMS” within the frame
work of ANSI/SPARC. The ANSI/SPARC model requires the database systems to
be constructed according to three-level logical architecture (Figure 1). The three lev
els of the architecture are:

• the external (or user) level,

• the conceptual (or logical) level,

• the internal (or physical) level.

IDS K. Goczrla

The external level is a level from which a user communicates with a database
system. This level separates the user from the technical details of the system. At the
external level the user can access the database by means of a high-level query lan
guage and can develop applications using special development tools. The user does not
have to know anything about physical representation of the data stored in the data
base. Moreover, this level usually restricts privileges that the user has for the access to
the data, which provides data security. The data security is obtained by means of user
identification, authentication and by authorisation protocols. The security mecha
nisms can be applied to a single user as well as to whole groups of users. As a result,
each user is allowed to operate on some specific portion of data (visible through views)
in a specific, permissible way. The authorisation is performed during an interactive
access to data (e.g. when the user queries a database in an ad hoc manner) and
during execution of a database application, where database queries are embedded into
a high-level language program.

Figure 1. The tlirec-level logical architecture o f a ilatahase system

The conceptual level of a database system defines a schema of a database. The
database schema is defined according to a data model that is common to all the
databases in a database system. The most popular relational data model defines a
database as a set of logically related tables (relations) composed of rows (tuples)
representing elementary data entities. The traditional relational model is presently mi
grating towards other models specific to so-called next-generation database systems.
A most prominent example of such new models is the object-oriented data model.
This model describes a database schema as a set of classes, each class representing
a collection of similar objects. An object is a database entity that encapsulates not only
its data, but also its behaviour (functions). The specific data model applied in a given
database system is of great importance to the user, as the model strongly influences
the query language of the system and other programming languages that are used to
develop database applications.

The Architecture o f Modern Database Systems 109

The main task of the internal level of a database system is to store physical data in
a reliable and persistent way. At this level there are external storage devices of differ
ent kinds, as well as methods of structuring and accessing data files. The patterns of
data storage at this level usually differ much from the data representation at the con
ceptual level and from their formulation in the query (or other high-level) languages.
However, differences in data representations do not cause problems to the user who
can operate on the database in a convenient way. Due to the postulated isolation of the
three levels, it is possible to modify the techniques (devices and access methods) ap
plied at the internal level without changing anything in the database schema and data
base application programs. This feature of database systems is called physical data
independence (or just data independence). Data independence is probably the most
useful feature of modern database systems, and preserving this feature as close as
possible is one of the main goals that database systems developers are seeking.

The operation of a whole database system at the three levels is performed
by software, called Database Management System (DBMS). The main tasks of
a DBMS are:

• carrying out the operations submitted at the three levels,

• mapping data structures between the three levels — which is necessary to
support data independence,

• providing data security by granting or revoking user privileges and monitoring
user operations,

• resolving conflicts during concurrent access to the same pieces of data,

• maintaining the integrity (logical consistency) of data,

• performing recovery after failures.
Commercial DBMS for large database systems arc among the most complicated

(and expensive) software packages in today’s i lformation technology.
Logical architecture of a database system is implemented by physical architecture

of the system. Physical architecture of a database system is understood here as imple
mentation of the three levels of logical architecture by different physical components
of a computer system. These components are: processors, memory chips, storage
devices, communication media etc. The following sections of the paper discuss types
of physical architecture whose dominating feature is decentralisation of processing
and data. This feature enables database systems to achieve high efficiency, reliability
and availability that is required for demanding, mission-critical applications.

2. Parallel database systems
Database systems that exploit parallelism have started to replace traditional cen

tralised systems based on mainframes. This is particularly true in the case of large
databases (with capacity of terabytes) and heavy workloads that demand processing

IK) K. Goezrla

many thousands of on-li ie transactions per second. In the early 80s, however, the
future of parallel database systems seemed rather questionable. Database technology
concentrated on the development of highly specialised and highly efficient (but also
very expensive) hardware configured into database machines. The special hardware
devices were, for instance, bubble and CCD memory modules and fixed-head disks of
large capacities and short access times. However, the database machines did not fulfil
their promises and their development was given up. Such tradifonal (commodity) de
vices as semiconductor memory chips, conventional processors and moving-head disks
dominate in today’s database systems (also parallel systems, see Figure 2).

Figure 2. The components of a parallel database system

In the mid-80s database systems developers started intensive research in the area
of employing parallelism (i.e. “physical concurrency”) in the processing of voluminous
data. The reasons were two-fold: economical (prices of typical memory devices started
to decrease radically, with steadily growing bandwidths) and experimental (the suc
cess of some prototypes, like Bubba or Prisma). Soon, first commercial products ap
peared on the market. The leaders in the development of parallel DBMSs were Teradata
and Tandem. There was also a dynamic progress in the development of multiprocessor
computers (Intel, nCUBE, NCR etc.). Parallel machines began to achieve perform
ance comparable to (or even higher than) large centralised systems. The main advan
tages of the parallel systems in comparison with the centralised ones are: lower price
and the feature of scaleability (which means that they arc able to increase their per
formance proportionally to the price). The scaleability is a very desired feature as it
enables the parallel system to “grow with its owner”: the owner of the system can
gradually extend the system according to his/her growing needs and financial capabili
ties.

Nowadays the major database systems manufacturers make their DBMSs capa
ble of operating in a parallel mode on parallel machines. Some popular and commer-

The Architecture o f Modern Database Sv.stens I I I

dally available parallel database systems include Oracle versions 7.x or later and
Informix-Online versions 7.x or later.

A parallel database system can be defined as a system composed of a (usually
large) number of simple components that operate in parallel (concurrently) on data
partitioned among them. It is essential that the simple components are not self-con
tained database systems. To compose a fully functional database system, they have to
tightly co-operate. That is the basic difference between parallel and distributed data
base systems. In distributed database systems each component can operate autono
mously as a self-contained, fully functional database system, and in this sense each
component is independent. In a parallel database system, a single component (a node)
performs one strictly defined role in data processing. For example, nodes of a parallel
system, called virtual processors, can be divided into the following functional groups:

• interface processors — responsible for interaction with a user and for co
ordination of transactions,

• transaction processors that perform the operations on data,

• recovery processors that maintain transaction logs and perform recovery after
failures.

Usually, the number of virtual processors can differ from the number of physical
processors in a computer. This enables the system to be set up in a flexible way, so that
no major configuration changes are necessary when the number of physical proces
sors changes.

It is clear that the quick growth of parallel database systems is related to the
popularity of the relational data model. Due to the closure property of the relational
algebra, the relational model of data processing can be easily adapted to exploit paral
lelism. A result of a relational operator is always a relation, so operations performed on
a relational database can be mapped onto dataflow graphs with vertices representing
relational operators and arcs representing flows of relations. The dataflow graphs can
be decomposed into subgraphs, one subgraph per one node of a parallel system (i.e.
per one virtual or physical processor). New operators necessary to perform the de
composition are: SPLIT and MERGE. SPLIT performs a split of a single relation,
which enables the data of the relation to be partitioned among different nodes; MERGE
performs a merge of a partitioned relation, which enables the system to collect the
result of a query into one relation, if necessary. Figure 3 illustrates an example of
a decomposition of a SELECT (selection of tuples from a relation) followed by
a SORT (ordering the result). The exemplary query is:

select *
from data
where ...
order by ...

Figure 3. Data flow graph for an exemplary query:
a) no parallelism, h) with parallelism

The efficiency of the parallel processing in relational database systems depends,
among other factors, on how uniformly the data is partitioned among the nodes that
participate in a given transaction. The poorer the data uniformity is (or the higher the
data skew is), the less advantage is gained from the parallelism in a transaction. In an
extreme case (at a high data skew), a parallel execution of a query can be slower than
a sequential execution of the same query — due to necessary co-ordination costs.
Researchers are conducting intensive investigation in the area of the optimal data
partition fora given relational query. Also, possibilities of exploiting the parallelism in
next-generation database systems (extended relational and object-oriented) is under
close investigation.

The most common architecture of parallel database systems is shared-nothing
architecture (Figure 4). In this kind of architecture each processor is equipped with its
own main memory and disk storage. Such a solution minimises both the interference
between processors and the traffic volume in the communication medium (mainly, only
queries and query results arc transmitted over the medium). As a result, shared-noth
ing parallel systems scale up well to hundreds (or even thousands) of processors. The
development of shared-nothing architecture was possible due to reduction of prices
of RAM chips and discs units, accompanied by growing memory densities.

Figure 4. The shared-nothing parallel architecture

The Architecture o f Modern Database Svslens 113

3. Distributed database systems
Distribution is one of the outstanding features of modern information systems.

Distribution in general can be accomplished by: distribution of processing, where many
computers work together on behalf of one application; distribution of data, where data
to be processed by one application are stored on many computers; and a combination
of the two. The development of distribution technology was possible due to the rapid
development of network technologies, which enable remote systems to communicate
with each other efficiently and reliably. A distributed database system is a set of
computer nodes interconnected through a communication network. The nodes have
the following properties:

1. bach node is a self-contained (autonomous) database system.

2. The nodes established rules of co-operation, so that any user working at one
(local) node can access data located at other (remote) nodes as if the data
were located at one, local node.

A single node of a distributed system usually consists of a computer called data
base server that runs DBMS and stores data, and many workstations for users to run
their applications and to issue their queries and commands. From the user’s point of
view, the basic requirement that a distributed database system should meet is trans
parency. The system satisfies this requirement if it enables a user to work with the
distributed system in exactly the same way as he/she worked with a centralised sys
tem. In other words, the features of distribution should be transparent (hidden) to the
user. It is clear that more transparent systems are more convenient for the users as the
users do not have to bother about where their data is located and which computer is
able to perform their operations. The transparency of distribution manifests itself in
several aspects. The most important ones are discussed below.

Figure 5. The layout o f a distributed database system

K. Gaczyla114

Location transparency. A user should not need to know which node of
a distributed system actually stores the data hc/shc wants to operate on.
The system should be able to locate the data, communicate with the appropriate
node(s) and perform necessary transmissions to accomplish the user’s request.

Fragmentation transparency. For efficiency reasons, one log'cal database object
(c.g. one relation) may be partitioned into physical parts (called fragments) that
are stored at different nodes. For example, in a distributed banking system it may
be reasonable to partition the accounting database in such a way that each
account is stored at the node where it was first created. The fragmentation
transparency requires that the user should be able to operate on fragmented data
as if the data were not fragmented at all.

Replication transparency. For efficiency reasons, one logical database object
may be maintained at the physical level in many copies (replicas), each replica
being stored at a separate node of a distributed system. The advantage of this
solution is that all “read” operations can be directed to the nearest node, which
reduces the network traffic and the access time. The main disadvantage of
replication is that all updates made to the replicated data must be propagated to all
replicas; otherwise the distributed database system looses its logical integrity
(enters an inconsistent state). The replication transparency requires that the
replication should be invisible to users; in other words, it is the database system,
not the user application, that is responsible for propagating updates to all
appropriate replicas of modified data.

Let us consider two basic methods of support for data replication, as replication
management is one of the most important problems in distributed database systems
management. It is clear that the crucial issue is the reF ibility of the nodes and of the
communication network. In case of a serious failure at a node participating i n the
replication or a failure in the communication network, the immediate propagation of
updates may become impossible and the database system as a whole loses (at least
temporarily) its logical integrity. Although this problem complicates the implementation
and management of the replicas, advanced distributed database systems do support
different schemes of data replication. Below two completely different schemes are
described; in real-life they can be mixed together into different configurations and
variants.

The simplest scheme of data replication is a read-only replication (Fig. 6). In this
scheme there is one server (a primary server) that is responsible for propaga'ing
updates to the rest of a distributed system. The primary server sends updated data to
target servers (i.e. the other servers participating in a replication) where they can be
accessed by users in a form of snapshots. The snapshots of the replicated data may
be updated periodically, continuously or on demand. This scheme is simple because
there is always only one source of updates (the primary server) and in case of a node

The Architecture o f Modern Dalalui.se Systems 115

or the network failure, it is comparatively easy to restore the system integrity.

Target
servers

Primary Server

Figure 6. The read-only replication scheme

The other replication scheme, much more sophisticated, is an update-unywhere
(oxsymmetric) replication (Figure 7). In this scheme there is no primary server; all the
servers participating in a replication are able to perform any updates of the replicated
data and are responsible for propagating the updates to all the replicas residing on
other servers in a replication group. One server in each group stores the definition of
the group that contains information on the servers participating in a replication and on
the data being replicated. Implementation and proper management of an updatc-any-
where replication scheme is much more complicated than a read-only scheme, so
DBMS vendors recommend using a read-only scheme whenever possible. However,
some specialised applications may require employing an updatc-anywhcrc scheme,
particularly when replicated data is updated frequently and when there are many sources
of updates. In such workloads, a high overhead caused by heavy communication to a
primary server may justify introducing a more complicated, but also a more powerful
and flexible update-anywhere scheme.

N e t w o r k

Figure 7. The update-unywhere replication scheme

4. The architecture of autonomous database systems
This section describes different kinds of architecture of a database system that is

a single node of a distributed system or operates autonomously (is a centralised database

116 K. Cnczvlu

system). The idea of distribution of processing and data can also be exploited in an
autonomous database system. The distribution of processing can be obtained in a
straightforward manner by assigning DBMS tasks and application tasks to separate
computers — a database server and workstations. This configuration is called aclient-
server configuration (Figure 8). The server, running a DBMS, is responsible for the
management of shared network resources, including information resources (data from
databases stored on the server). To access any shared resource, a client (a workstation'
must request an appropriate service from the server. Resources that are local to
a workstation (peripherals, storage devices) are inaccessible to other workstations.
Advantages of client-server configurations are the following:

• Simplicity in shared resources management and in controlling data security.

• Possibility of centralised optimisation of operations performed on the server.

• The database server is released from performing such cumbersome and time-
consuming operations like graphical data presentation and heavy computations;
these operations are performed on workstations.

A disadvantage of client-server configurations is that workstation resources are
usually poorly utilised. Also, reliability and efficiency requirements for the server
are very high, so the server itself must be usually a powerful, multiprocessor
macl he.

An application that runs in a client-server environment may be decomposed into
two separate components: a front-end, that operates on the client, and a back-end,
that runs on the server. The front-end component interacts with the user, sends re
quests to the server, receives results from the server and displays them to the user.
The back-end component performs operations on the data and accesses shared re
sources. Some vendors (e.g. Oracle, Informix, Progress), together with their DBMSs,
provide also user-friendly tools for development of the front-end components of data
base applications.

Newer (second-generation) client-server configurations can accommodate sev
eral database servers (run under control of different DBMSs) in one system. It is
achieved by conforming to the idea ofopen database systems', i.c. following the ODBC
(Open Database Connectivity) standards of communication between front-ends and
back-ends. Moreover, some parts of application processing (e.g. user-defined
procedures) can be delegated for execution from a workstation to a server, so that the
traffic in the local network is reduced. In that way the distribution of processing and
data is achieved in one autonomous database system. It is expected that increasingly
sophisticated, flexible and powerful client-server configurations will dominate the local
processing configurations in the nearest future.

The Architecture of Modern Database System 117

Figure 8. The client-server configuration

A workstation can gain access to server resources through Internet. Figure 9
illustrates such a configuration. A workstation accesses data located at a Web site
through a Web browser. Vendors of DBMSs provide ready-to-usc Web servers (or
tools for development of specialised Web servers) that enhance the functionality of
their database systems so that they can perform services through Internet. The Web
server plays the role of a broker between workstation applications (in this case -
- Web browsers) and database servers. It submits data requests to an appropriate
server, receives results from the server, formats them into HTML pages and transmits
them to the requesting browser. A Web server can reside on the same computer as the
database server, or it can be installed as a separate Web site to communicate with
many different servers in many remote database systems.

Figure 9. The client-server configuration on the 11 eh

Another configuration of an autonomous local database node is a peer-to-peer
configuration (Figure 10). There is no separate server in this configuration. Each com
puter can play the role of a server for other computers and the role of a workstation.
So, server (back-end) processes and application (front-end) processes can be simulta
neously run on one computer. Information stored at one computer is accessible to
other clients, provided the clients have appropriate permissions. Such configuration
can form a “locally distributed”, simple database system, though without typical fea-

K. Goczvtal i f t

tures of distributed database systems such as distributed transactions management or
support for data replication. An advantage of a peer-to-pcer configuration is its flex
ibility and simplicity in sharing resources among all computers in the network. The
main disadvantage is that it is difficult to provide sufficient data security (because of
the lack of sophisticated authorisation and recovery mechanisms) and to achieve glo
bal optimisation of the system. As a matter of fact, a pecr-to-peer configuration is not
a proper environment for fully functional database systems, but rather for locally dis
tributed information systems, suitable for small departments and not for very demand
ing applications.

n
/7 ----------- /V /2 Z_— - J nX

(Client] T ,
[Client) [Client 1 ci.. ^

1 Server] (Server J (Server 1
A

LAN

Figure 10. The peer-to-peer configuration

5. The future
Basic physical kinds of architecture employed in contemporary database systems

have been sketched-here. It must be stressed, however, that nowadays the boundaries
between different configurations become blurred, mainly due to the rapid technology
progress. Also mechanisms of information management become more "global” in the
sense that there is a strong tendency to make increasingly large information volumes
available to the increasing number of users through a world-wide, easy-to-acccss com
munication medium. An example of such global configuration, proposed independently
by different vendors (Sun, Oracle), is the Network Computing Architecture (Figure
11). The skeleton of the architecture is a global bus with a large number of “sockets"
for functional modules to be pluggcd-in.

Data Servers
Application Servers

Figure 11. The Network Computing Architecture (NCA)

The functional modules can be:
• Clients — simple network computers equipped with huge main memory and

multifunctional network browser-..

The Architecture o f Modern Database Svstcns 119

• Application servers — computers that store and make available applications to
be run on elients.

• Data servers — computers that store data and make it available; they can be
simple file servers, or sophisticated database servers running DBMSs.

The modules are plugged into the sockets through overlays that are able to filter
out some functionality of modules. For instance, the same data server can have differ
ent functionality if it is plugged into different sockets. The overlays can also be respon
sible for checking user permissions and performing other supplementary tasks. It is
assumed that the applications offered by application servers can be executed on any
client machine without any modification (they arc perfectly portable throughout the
whole global bus). The emerging technology that could be applied in the NCA is Java
introduced by Sun Microsystems. Applications written in Java (called applets) can be
run on any client equipped with a browser that can interpret Java. An applet can
access data stored in data servers through Java Database Connectivity (JDBC)
interface, which is a layer over the standard ODBC protocol.

The NCA is a good example of a general tendency in data processing and in
database technology in particular — the distribution of processing and data, and
a universal connectivity between different systems. It may be expected that regard
less of specific configurations, in the nearest future the trends towards distribution of
database systems in a macro (corporate and world-wide) scale and distribution and
parallelism in a micro (departmental or local) scale will dominate and will be further
developed.

References:

[1] Date C. .1., An Introduction to Database Systems, Vol. I, 5th Ed. Addison-Wcsley Pub.
Co. 1990

[2] DeWitt, Gray L, Parallel Database Systems: The Future o f High Performance Database
Systems, Communications of the ACM, Vol. 35, No 6, pp. 85-98, 1992

[3J Olsen. Parallel Systems Management with Oracle 7 and IBM S/390 Parallel
Transaction Server, Oracle Magazine, ['all 1994. pp. 97-100, 1994

[4] Parallel Database Systems, Proc. o f PRISMA Workshop, Noordwijk, The Netherlands,
Sept. 24-26, 1990, Springer-Verlag, 1990

[5] Bell D., Crimson .1., Distributed Database Systems, Addison-Wcsley Pub.Co.. 1992

[6] Khoshafian S.. Object Oriented Databases, J. Wiley & Sons Inc., 1993

[7] Bobrowski S., Implementing Data Replication. Part I & II, Oracle Magazine, May/June
(pp. 93-96), July/August (pp. 97-102), 1996

[8J Informix-Online Workgroup Server (Manual), Informix Software Inc., 1996

[9J Hurwitz. J., Second-Generation Client/Server Computing. Hurwitz Consulting Group,
Inc., 1994

