
OPTIMAL MULTICOMPARTMENTAL 
EXPERIMENT DESIGN

RENATA KALICKA
Technical University o f  Gdansk, Faculty o f  Electronics Telecommunications 

and Informatics, Department o f  Medical and Ecological Electronics 
80-952 Gdansk, Narutowicza 11/12, Poland

Abstract: Compartmental modelling o f  biomedical systems, devoted to e.g. optimal therapy design, 
prov ides us with a compartmental system, the associated set of differential equations, and a number of  
unknow n parameters. We estimate values of the unknow n parameters so that we obtain a best fit o f  the 
model input-output behaviour to the experimental data. If the fit is not satisfactory, we remodel the 
structure o f  the system or/and reorganise the experiment design, and re-estimate the parameters. This is an 
iterative process, leading to the best model structure described with the most accurate values o f  its 
parameters. For satisfactory solution of the problem of optimal experiment design three co-operating 
computer programs are designed: MFIT, OSSP and OIN. MFIT enables to choose the best from any 
reasonable model functions. Reduced optimal sampling schedule (OSSP) and optimal input signal (OIN) 
allow to get the most accurate parameters’ value. They operate on the basis o f  output files o f  MFIT. The 
final optimal experiment design is obtained by repeating the procedures.

1. Introduction
The knowledge of model parameters enables assessment of the actual state of 

a system using compartmental identification procedure. For satisfactory solution of 
the problem it is necessary to adopt the optimal experiment design.

The aim of the paper is to set up an optimal identification procedure for models 
of therapeutic processes. The knowledge of model parameters allows estimation of 
the actual state of a system. Then, it makes possible practical implementation of the 
adaptive therapeutic procedures, in contrast to commonly used intuitive or routine 
therapy. For satisfactory solution of the problem it is necessary to set up the adequ­
ate description of a system in the form of a mathematical formula expressed in 
model parameters. Next, the problem of „a priori” identiliability [1J has to be suc­
cessfully solved out, i.e. the proper input-output pair has to be selected, in order to 
ensure that all the parameters could be estimated. Some input-output pairs, optimal 
in the above meaning, are not applicable from the clinical point of view. This is the 
first aspect of the experiment design. Having the „in-out” pair for which the system 
is structurally identifiable (SI), it is possible to carry out the experiment that allows to 
calculate the set of n model parameters, with an additional assumption that the num­
ber of measurements is not smaller than n. The test input, as well as the number and
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the location of measurements, can be subjected to optimisation. Another experiment 
variable is sampling schedule (SS). After being optimised, the SS provides optimal 
(OSS) instead of intuitive (ISS) sampling schedule. The input signal is the next 
design variable. The optimal input signal (OIN) has such a form and duration that it 
ensures the best accuracy of parameters’ estimation.

2. System under consideration
Let us assume that models under consideration are single-input, single-output 

(SISO), linear, dynamic and multicompartmental:

— = A(p)x(t) + u(t) > 0
dt (1)

z{tk) = y(tk,p)+e{tk), k 1.....N; t0 <tk <T,

where x is a state vector, u is a test input, y is a measurable output z(tk,p), is a me­
asurement of y at time tk, e(tk) is zero-mean gaussian noise with variance s2(tk) Ma­
trices A, B, C are the state, the input and the output matrices respectively, they are 
square matrices of dimension equal to the number of compartments, p>0 is an unk­
nown parameter vector {p.} i=l, 2, ..., n. N is the number of samples. It is assumed, 
that the model is uniquely structurally identifiable (SI) for the designed experiment 
and that this assumption was previously checked up. The goal to be achieved is to 
calculate the parameter vector p. This vector has to be the most accurate one 
among the others calculated for optional experiment design.

3. Optimal experiment design
The essence of the optimal experiment design derives from Cramer-Rao the­

orem: the covariance matrix of unbiased parameter estimates COV(p) has the in­
verse of the Fisher information matrix M as a lower bound, i.e. COV(p)>M ’. The 
power of this theorem is based on the fact that the matrix M can be expressed by 
experiment design variables: M = M(u,N,SS,T,e), where: u, N, SS, T and e are re­
spectively: input signal, number of samples, sampling schedule and measurement er­
ror. The optimisation is carried out with respect to chosen variable. The order of se­
arching is not optional: the OSS is optimal only for a particular input but not for any 
input. The particular form of the variable for which M reaches maximum denotes 
the optimal experiment condition.

Three co-operating computer programs are designed: MFIT, OSSP and OIN. 
MFIT enables to choose the best from any reasonable model functions. Reduced 
sampling schedule (OSSP) and optimal input (OIN) are obtained on the basis of 
output files of MFIT. The final optimal experiment design is obtained by repeating 
the procedure. The design is optimal by a way of compromise between essential 
estimates’ accuracy, reduced number of samples and the closest to the optimal, if 
not strict optimal, inputThe computer programs co-operate in the way shown in Fig.l
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Figure 1. Interaction o f  computer programs MFIT, OSSP and OIN

3.1. Optimal input design study
An optimal input design is a necessary settlement for the optimal design of 

other experimental variables. The optimisation is carried out with respect to a parti­
cular form o f an output signal y(t) which depends, according to the equation (1), on 
the particular form and duration of input signal u(t). This problem is difficult both 
from the theoretical and practical points of view. The optimal design problem, i.e. 
achieving maximal precision of parameter estimates, can be posed as a maximisation 
or minimisation problem of some function of the information matrix M with respect 
to a chosen variable. For solving the problem the A-optimisation has been adopted 
(after Kalaba, Spingam, Mehra, Cobelli, Ruggeri and the others) [5, 6], Among the 
consistent and unbiased estimates the best one is that having minimal variance. It 
gives the minimal mean square deviation of the estimate with respect to real value of 
the parameter. The Rao-Cramer inequality can be shown in the form:

-1
CO v(p)  > j .'V J [ d !n f(  if/, tt) /  / ( y ,  p)dy \ = | f [  S ln f(y , p)f  ̂ ]} -  M

where f(y, p) is distribution function of y for particular value of the parameter vector 
p. The aim is to find such a form of input signal u(t), on stated time interval 
0 < t < T , for which the sensitivity is Sy(t)/8p maximal, therefore:

T
n n u /  ? v ' /  \2

traceM  = E  m.. = E M a" I ( SvJ Sp. J dt
T (  u n

I
V< =

2a = max.

T‘it
The input is constrained to have a finite energy E: J u2(t)dt < E , E=const. The fol-

o
lowing performance index J is maximised:

qu \ t ) dt, (2)
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where q is the Lagrange multiplier. The magnitude of q must be selected in such 
a way that the input energy constraint is satisfied. The optimal input design problem 
is solved util ising Pontriagin’s maximum principle that involves maximising of the 
Hamiltonian function H. The u(t) which maximises Hamiltonian H is obtained as 
follows:

SH /  d'u = 0 ^ u ( t )  = - q ~ ]B T A t )  . (3)

The costate vector A(t) is the solution of the equation d  At  dt = -  S H j  Sx  , B is the 
input matrix, as it was defined in the equation (1).
The computer program OIN, that determines optimal u(t) (3), is designed. An opti­
mal u{t) is obtained on the basis of „a priori” estimates of the model parameters and 
the initial value .v(0) for stated q and T .

3.1.1 Algorithm and main procedures
The equation (3) allows to calculate the optimal input signal. The final form of the
solution is derived from sensitivity equations:
where:

dxp ( t ) / d t  = Ax p (t)+ Apx(t),

y P{t ) = C x n{ /)■
where: x p (t)= Sx(t) /  Sp, y p (t) = Sy(t) /  Sp, Ap = SA /  Sp.

Next, so called expanded state vector is defined: XR(t) = [x(t), x (t)]1, for which,
by analogy to the above equation, the state equations are formulated:

dxR( t ) /d t  = ARx R(t) + BRu(t).

YR0 )  = CRx R{t). where: YK(t) = [>(?).y pU ) J .

According to the above, the performance index J has got the following form:

J  -  max — 
nU) 2 J T x l i r ' c ' c , A „

0 V /' = t
q i r ( t ) dt.

( 4 )

Expression (4) contains information about accuracy of measurements, the model 
structure, its parameters, the initial state and the optimal input u(t). This form of the 
performance index allows to use it in practice for optimal i iput calculation. For deri­
ving this optimal input signal formula, for a system described in terms of sensitivity 
equations, the theory of isoperimetric calculus of variation, the method of Lagrange 
multiplier and Pontriagin’s maximum principle are adopted. The particular expres­
sions are as follows:

• Hamiltonian H  = /^ ( /)  / 0( /)+  Ap(t ) fpi t ) ,
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• costate vector i 0 (r) = - l ,  AR{t) = [ A]( t ) ..... dn{k+])( t ) ] ,

• additional state variable f 0(t) -  dx0(t) / dt -  d  J / dt = —\ X r R {CRCSX R -gw 2],

• expanded state equation f R(t) = dXR( t ) / d t  = ARX R(t) + BRu(t),

— 1 T• optimal input u{t) -  - q  B R AK{t).

Table 1. Calculation fo r  obtaining optimal input signal u(t).

Step Calcula lions on the base....

1 m atrixes A B , C
structure o f  the model and its mean 

param eters

2 x R<t> measured initial values o f  the state variables

3 M °> X,(0).  M T „)

4
XH(t), x R(t)

a two-dimensional boundary 
value problem

x R(0 ). XK(0 )

5 optimal input u (t) q, B„, X„(t)

6 D and JC") optimal u (t)

Tu
(*) D  = \ u { t ) d t  ,;/(/) is determined in the interval [0,7’(.], J  is equal to the actual value 
' 0
of performanee index (4) calculated for optimal u(t).

The main steps of calculation are presented in the Table 1. For stated q and given 
Tu, the optimal u(t) has a tabular form: it is a set of the values u(t.) for particular 
time points t.e (0, TJ. In the paragraph 3.2 of the paper an experiment with intrana­
sal insulin distribution is presented. The two-compartmental model is taken into con­
sideration. It is described by pharmacokinetics parameters £(||, k2r kur Its two- 
exponential model function is shown in Table 3. For this model some exemplary opti­
mal input candidates are presented in Fig. 2, 3 and 4. In Fig. 2 optimal inputs for 
estimating ko; are shown.
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optimal input x 10 ' \  time x 10 '' 
q=0.01, D = I .1307x10°, J=3.6948x 10

0 .0  4 .0  8 .0  12 .0  16 .0

optimal input x]0", time x 10 
q= 1, D -6.6378xl0", J=3.5221xl0

0 .0  2 .0  4 .0  6 .0  8 .0  10.0

optimal input x io° ,  time x | 0 ' '  
q=0.1, D=2.4830x 10 *, J=9.4698x 10 ■'

0 .0  10 .0  2 0 .0  30 .0

optimal input x | o time x l o 1 
q= 10, D=7.5491xio°, J=2.2411 >= 102

Figure 2. Optimal inputs fo r  estimating obtained fo r  different T and q.

All the inputs have similar shapes, convenient for implementation. Performance 
index J is bigger for longer Tu and the latter remark seems to be a rule. The dose D 
used in real experiment was 13 10h ng, which is much bigger than the above optimal 
inputs supply. In Fig. 3 there are two optimal inputs for estimating k(),. They are si­
milar in shape to those for k2|, kind of decaying linear function, but the dose is far 
below applicable value and performance index is very low.

optimal inputxlO'5, timexlO"
q=0.1, D= 1.5933x10 J, J=6.6825x 1 O'10

optimal inputxlO'7, timexlO0 
q=l,  D=4.8252x10 °, J = l .3185x1 O'"

Figure 3. Optimal inputs fo r  estimating kfp obtained fo r  different T and q.
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optimal inputxlO', timexlO1 optimal inputxlO1’, timexlO1
q-0.01, D= 1.5807x10'’, J=4.6720x 10“ q=0.l, D=3.3358x 1 0 J=2.0891 x I O'"

Figure 4. Optimal inputs fo r  estimating k()I obtained for different T and q.

The inputs, optimal with respect to kor show very high performance index J. It 
is a very good prognosis for improving accuracy o f & in case of using the optimal 
shape of u(t). What is more, the optimal dose is close to that from the experiment. 
The optimal shape is not easy to produce: it has extremely Hat skirt from the begin­
ning to almost very end, where steep pulse occurs. The presented algorithm has a 
special property: every u(t) obtained for any chosen q and T is theoretically optimal. 
It does not mean that all the obtained u(t) are reasonable from practical point of 
view. Some of them are not applicable, for instance when the dose D<0, some are 
not convenient when they last too long or have too sophisticated form.

3.2. Optimal sampling schedule study
For optimal sampling schedule design the D-optimality has been chosen. D- 

optimality is based on maximisation of the Fisher information matrix determinant: 
detM with respect to SS. The generic element of M is as follows:

m H = X  )  • <%'Qk ) / d'pt ■ %’Qk  ) / SP i '• j  = 1 , 2 . . . n .
k = l

The D-optimality is numeric robust and warrants invariability of OSS under non 
degenerate transformation of the model or choice of units for the parameters [4], 
The computer program OSSP that determines OSS for 6 different, most useful algo­
rithms is designed [2], These algorithms are listed in Fig.5.

Inputs for the program, common for all algorithms, are: „a priori” estimates of 
the model parameters, variance of error a  time interval at which samples are ta­
ken ( / ,  71, and quantization step dt. An output of the program consists o f a set of 
optimal sampling points (OSS), time points in 1SS which are closest to the optimal 
points in OSS, detM  and D-Efficiency for OSS [4]:

EFF  = 100 (del M ISS /d e l M o s s ) l/P ■ (/V oss /  N ISS) [%],
where: N|ss and N()SS are the numbers of samples in ISS and OSS, respectively. 
EFF is a measure of relative amount of information per unit sample size.
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For instance, if EFF=60% is means that the ISS wastes 40% of its sample size in 
comparison with OSS.

Figure 5. Methods o f  optima! sampling schedule design described in the paper.

Table 2. Comparison o f  realised algorithms

M ethod

1-com partm ental model 2-com partm ental model

Number o f  Objective 
Function calls

Relative
extreme

Number o f  Objective 
Function calls

Relative
extreme

min mean max % min mean m ax %

Fibonacci 131 131 131 0 298 350 423 29

Fibonacci II 111 122 125 0 293 365 639 3

Golden Cut 83 83 123 0 183 214 323 24

Golden Cut II 76 79 80 0 196 251 482 6

1 look-Jevess 62 130 180 0 314 421 610 0

Simplex 42 66 245 0 203 351 666 0.2

Exchange 3660 4964 6085 0 6180 8642 9874 0

The obtained OSS does not depend on the method. Work with the program 
shows evidence of replication o f some samples when the number o f time points in 
OSS was bigger than the number of the model parameters. The leave-worst-out 
(1-w-o) method [3] is an attempt to avoid this inconvenience. One sample, the worst 
among all samples, is left out in every step in the algorithm. The remaining SS is of 
required size. Very interesting modification, adopted in Fibonacci II and Golden Cut 
II methods, is not to limit searches to original sampling interval T. It allows to obtain 
optimal SS not for „a priori” stated interval T but globally optimal SS for a particular 
form o f the output model function. The program is an efficient and all-purpose im­
plement for OSS design for linear kinetic models. Two models based the same expe­
rimental data, 1 -compartmental and 2-compartmental, are subjected to 1000
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optimisation runs. The number of samples in OSS is fixed at 2 and 4 respectively for 
1 and 2-compartmental models. Sampling interval T=117, 0, optimisation step = 0.1 
are the same for all the methods. The results are shown in Table 2. Main factors 
used for comparison of individual algorithms are chosen : 1) necessary number of 
procedure calls for computation objective function -numeric complexity is the main 
agent which determines the whole time of optimisation process, 2) tendency to fall 
into relative extreme defined as the percent of the output results that are not in fact 
the optimal sampling points.

3.3. Fitting model to experimental data
The computer program MFIT is designed for fitting any model, linear or non­

linear in its parameters, to experimental data. The program fits different models by 
changing a single subprogram that provides mathematical description of the model. 
As the criterion of the appropriateness of fit a model to data, the least square 
method is adopted. In this method the objective function (OF) is defined as follows:

N 2
O F = H  [}’k -  f ( * k  ' A 1 ’ A 2 x■• ■■, A n ) ]  =  m i n ,

k = \

where: is the measured response of a system at the point t , J(t ,A ) represents
the value of the model response at points tk, A. are the model function parameters, 
/= 1 ,2, .., n. The remaining differences between model and data are called residuals. 
Finding the combination of parameters that minimises OF requires a sequential se­
arch of all combinations of parameters’ values. In MFIT the combined algorithm is 
adopted: the steepest descent approach is automatically applied when it is most ef­
fective at points relatively far from the minimum, while linearization of the fitting 
function is made dominant as the minimum is approached. The information about the 
search direction is contained in both: values of the partial derivatives S/(l,A)/SAi 
which show how fast the OF is diminishing, as well as in results of previous steps in 
the search. The derivatives at the minimum are used to calculate precision of each 
parameter estimate. The method fails as the minimum is approached: it has tendency 
to search inefficiently. That is why the technique relying on linearization of fitting 
function, as more effective, is applied in the vicinity of the minimum. The program 
starts from guessed initial estimates and ends with the optimal set of model parame­
ters when (a) the necessary accuracy of every parameter was obtained, or (b) the 
stated number of iterations was carried out. Residual variance for the optimum set 
of the parameters Aopt is used for evaluation of standard deviations std dev:

i > * - / ( ' i . - v ) f
res variance = —---------------- — ■ dev =

degrees o f  freedom

Sometimes the fitting process is slow and uncertainties in some parameters are 
bigger than would be expected from the uncertainty in the data. The parameters are
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said to be „poorly determined” and its cause is known as param eters interaction”. 
In the program MFIT three convenient measures of parameters’ interaction are ad­
opted: a) so called dependence”, which shows the degree to which changes in each 
parameter are related to changes in others, b) correlation between pairs of parame­
ters, c) condition number, that is the ratio of the maximum to the minimum eigenva­
lues of latent roots of the sensitivity coefficients 8J{t,A)/8A. matrix. Analysis of out­
put results of MFIT for alternative models allows to select from the best analytical 
description of the process under investigation.

Considering quality coefficients of a model parameters estimation — standard 
deviation, dependencies”, correlation coefficients, condition number and residuals’ 
distribution — MFIT enables to choose the best from any known reasonable model 
functions. Reduced optimal sampling schedule (OSSP) and optimal input (OIN) can 
be obtained on the base of output files of MFIT. The final optimal experiment design 
is achieved by repeating the procedure. It is optimal by way of compromise between 
essential parameters’ accuracy, reduced number of samples and the closest to opti­
mal, if not strictly optimal, input. This design gives the best, with respect to cost ef­
fectiveness, experiment which allows to follow changes in model parameters during 
therapy and also allows to implement individual therapy, adaptive dosing.

Numerous experiments were done and results were subjected to optimisation 
for getting, in the most effective way, an optimal set of a system parameters. These 
parameters are used for establishing an individual dosage o f a medicine, or for eva­
luating desired progress in the therapy, or for evaluating quality of a sorption promo­
ter. In every case the interacting programs were used. An example: Male Sprague 
Dawley rats 300-350 g were used in an experiment with 'itranasal insulin distribu­
tion. Prior to the experiment the animals were fasted for 24 hours. Rats were ana­
esthetised with Thiopental 125 mg/kg, Spofa Czech and allowed to stabilise for 30 
minutes before insulin administration. The trachea and jugular veins were catheteri- 
sed with polyethylene tubes. 30 minutes after injection o f Thiopental a dose 0.3 IU 
of insulin with promoting substance Polyoxyethylene-9-Lauryl Ether i.i 20 pi solution 
was installed to the nasal cavity using a plastic disposable pipette lip. The 0.3 pi 
samples o f blood were withdrawn from jugular vein in 0, 5, 10, 15, 30, 45, 60, 90, 
120, 180 and 240 min and allow to clot at room temperature before centrifugation at 
2400 rpm for 30 min at 4nC. D-glucose levels in serum were measured using EBIO 
Compact Glucometer basing on glucose oxidase method. The samples of serum for 
insulin determination were stored at -20°C for 2 weeks. Insulin was assayed immu- 
nologically with RIA kit, Amersham England. After thawing at 23°C, the samples 
from individual subjects were assayed in single batch to avoid interassay variations

A two-compartmental model was taken into considered ion. At first, for the 1SS 
and by means of MFIT, the parameters of model function are calculated. Results 
are shown :n Table 3.

Next, by means o f OSSP ( leave-worst-out method ), the optimal sampling
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points are fixed out. These points are shown in Table 3, together with exactly 
optimal points obtained with any algorithm chosen from among listed in Table 2. 
Finally, for OSS the parameters are reestimated. Results are shown in the right 
column of Table 3.

In Fig.6 there is a comparison of two model functions: one of them is drawn for 
the optimal parameters obtained for complete, intuitive sampling schedule, and the 
second ;s obtained for reduced to four samples, optimal sampling schedule accordin­
gly to the 1-w-o algorithm. For the latter case, the model function which has four 
unknown parameters, follows the four measured points very closely. Residual va­
riance is as small as 7.58 -10'15. It causes that the errors in model parameters are far 
below value of importance.

Table 3. Model function parameters based on /SS. Reestimated model function 
parameters fo r  reduced OSS obtained with the l-w-o procedure.

M o d el
fu n ction param eters  
I(t)=A  ( E"'!'+A }e Aj'

C alculatedon  
the base o f  ISS

C alcu la ted  on the base o f  O SS  
l-w -o: {0 .0 ,5 .0 ,10 .0 ,45 .0}, D -eff= 78 .4%  
exact: {0 .0 ,5 .0 ,10 .0 ,40 .0f, D -eff= 79 .0%

A, -51.4975±4.76% -49.5432
A, 0.36591± 11.06% 0.38983
A, 51,4679±4.47% 49.5432
a 4 0.03566±5.31% 0.03565

res var 7.9867-1 O'1 7.58-10'15

Making use of reduced SS gives satisfactory parameters’ estimates. The ap­
propriateness of fit of the model to data is comparable to this obtained for the com­
plete set of measurements. Not the exactly optimal points, but the best sampling 
points from original ISS have been adopted. In this approach we do not know an 
exact, theoretically possible to achieve value of parameter and its accuracy, 
but it can not be worse than this obtained for the almost optimal SS delivered by the 
1-w-o procedure.

40
35
30
25
20
15
10

5
0

0 20  40 60 80
Figure 6. Model function I(t) [ng/ml], t[min] fo r  ISS (dashed) and fo r  OSS with 
the ISS measurements (dots) in the background.
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The problem currently under development, is to what degree a displacement of 
the particular optimal sampling point, up and down its exact value, would affect re­
sults of estimation. Some of the optimal points are very sensitive to changes in the 
parameters’ values and some are less sensitive. It seems to be of practical utilitg to 
have defined a measure of necessary fixedness for every optimal point with respect 
to expected results of estimation.

Summary
Results obtained on optimal input design show that among equienergy inputs, 

higher value of performance index is being achieved for longer Tuand bigger D. The 
pattern of optimal input is sometimes rather complex and has such a form and 
duration which makes it difficult to adopt, and in consequence the intended purpose, 
i.e. implementation of the signal for parameter estimation, is not fulfilled. Instead of 
that, on the basis of obtained results, an input which is closest to the optimal signal 
should be chosen from among routinely used inputs, such as injection or infusion. 
The dose of signal chosen by compromise, should be equal to the dose „carried” by 
exactly op.imal input.

In agreement with previous experiences, an optimal sampling schedule design 
proved that the reduced optimal sampling schedule is necessary and sufficient for 
parameter estimation. In Table 3 there are results obtained on the bases o f the intu­
itive SS. For comparison, the same parameters are calculated for the optimal SS, got 
by means of the leave-worst-out strategy. The results are very promising. The resi­
dual variance, which is a measure of fit goodness, is very small for the optimal 
SS: the model function follows very closely four optimal measurements, 
res var=7.58 10'15. The residual variance was also calculated when all the left sam­
ples from the intuitive SS were additionally included. It gave res var= 10.277 •10', 
which is bigger than this obtained for ISS but still very satisfactory. It shows the 
goodness of fit of the model function to original, numerous ISS and illustrates ability! 
o f the optimal reduced SS to deliver parameters suitable for describing the whole 
process under investigation.

Parameters’ estimation is an essential part of any analytical experimentation. It 
requires comparison of a model function and experimental results. Unavoidable er­
rors in measurements affect parameters values and their accuracy. The presented 
program MF1T delivers optimal set of model parameters basing on the least square 
method. The program also gives convenient measures of model quality and its para­
meters quality. It enables to choose the best from many alternative model functions, 
describing the process under investigation.
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