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Abstract: In the paper different algorithms of electroimpedance tomography (EIT) are presented. The 
properties of EIT are discussed. Problems of proper modelling of measurement electrodes are introdu
ced. Results obtained from developed 3D reconstruction algorithm are presented. For practical reasons 
the number of measurement electrodes should be increased. Measurement errors should be small, to 
avoid amplifying them by reconstruction algorithm. Assumed conductivity distribution for the first 
iteration should be as close to the real one as possible. Reconstruction time (of absolute value of con
ductivity) is still a problem for practical applications.

1. Introduction
Electrical impedance tomography reconstructs a conductivity (resistivity) distri

bution in an examined object basing on electrical measurements made on the boun
dary of this object. Depending on the method the currents or voltages are measured. 
The main drawback of this method is its relatively low resolution and low sensitivity 
in the centre of the examined object. The second problem is time needed for recon
struction if absolute value of conductivity distribution should be obtained. Comparing 
traditional computer tomography and EIT, the last one has some advantages — it is 
non-invasive, allows continuos monitoring of biological processes, is using electrical 
signal instead of ionising radiation and allows to construct low cost and portable de
vices. Poor resolution and low sensitivity in the central region of the examined object 
and long reconstruction time (in some cases) limit possible applications. Because of 
that some effort is put to increase the quality of reconstructed images and to speed 
up the process of reconstruction. Stability of an algorithm is also very important. 
Especially when the absolute value of conductivity in an examined object is recon
structed, the algorithm should converge to the real value, even if assumed conducti
vity distribution inthe first iteration differs significantly from the real one. It should 
also not be sensitive for measurement errors.

One possibility to improve resolution is to increase the number of electrodes. 
The higher number of electrodes the better resolution and sensitivity of measure
ments may be achieved. Yet, with the increase of the number of electrodes,
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the problem of measurement noise increases (the difference between measured 
values in neighbouring electrodes have to be greater than the value of measurement 
noise). Typically, the number of driving and measuring electrodes varies from 16 to 
128 or even more in different hardware solutions [1]. The number of electrodes is 
also limited by their size. Bigger electrodes take more space and because of this less 
electrodes can be put, which means lower resolution. The advantage of using large 
electrodes is the small value of their impedance. Their drawback is averaging of si
gnal from part of surface. The drawback of small electrodes is their big value of im
pedance, which causes measurement problems.

The sensitivity of measurements is a function of distance from the measure
ment ports. Near the boundary of the examined object it can be a thousand times 
greater than in the centre of this object. Therefore it is very important to propose 
methods of measurements and reconstruction algorithms of increased sensitivity insi
de the body or with more uniform distribution of the sensitivity function. Rather poor 
sensitivity distribution is due to ill-conditioning — the important problem in recon
struction (big conductivity variation inside examined object may result in low data 
variation on the surface). Because of that reconstruction algorithms use, openly or 
not, so called regularization techniques. These all factors limit the quality of recon
structed images and especially their spatial resolution.

Another problem is the complexity of computation. Most algorithms are based 
on Finite Element Method (FEM) and Boundary Element Method (BEM). We will 
focus on FEM and limitation of algorithms which use this method. The available 
computer memory is limiting the number of elements in a model. Increase in the 
number of elements (which is equivalent to an increase in memory consumption) 
may cause the use of a swap file during reconstruction, which slows it down. Using 
the same model (the same number of elements) different algorithms need different 
time to obtain a reconstructed image. It is due to the way, which was used, when 
algorithm was invented.

It should also be mentioned that the inverse problem is nonlinear. If linear de
pendence between conductivity distribution and measured voltages (or currents) on 
the surface is assumed, then it is possible to obtain very fast and simple reconstruc
tion algorithms, but the quality of images is rather poor (might be good when conduc
tivity changes are small). Because of that the reconstruction algorithms can be divi
ded into two groups. The first group concerns the reconstruction of the relative con
ductivity, while the second — the absolute values. In the first group the linearity be
tween measurements and conductivity distribution is assumed (additionally also that 
the conductivity distribution is uniform or close to that obtained from the previous 
measurement). The advantage of this method is that reconstruction algorithms are 
simple and very fast, which allows to obtain 2D moving images in real time. The 
main disadvantage is low accuracy of reconstruction. The second group of algori
thms allows to obtain more realistic reconstruction but calculation cost is much gre
ater. The new algorithm presented in this paper, representing second group, was
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proposed by M. Kocikowski and was a part of his Ph.D. thesis [2]. It should also be 
mentioned that iterative use of most of algorithms of the first group allows to recon
struct an absolute value of conductivity, while using one iteration in the second group 
allows reconstruction of the changes of conductivity.

Most important algorithms, used for reconstruction of absolute conductivity va
lues, are presented. Algorithms which allow to reconstruct conductivity changes are 
omitted, but as it was mentioned, in most cases one iteration of presented algorithms 
can be used to obtain changes of conductivity.

1° — Backprojection
This method is based on back projection used in roentgen tomography. For 

each excitation the examined object is divided into subregions by equipotential lines 
ending on measurement electrodes [3,4], The new value of resistivity for that exci
tation is calculated from the formula:

where: p."— resistivity of element /-th after n correction, p ”'1— resistivity of ele
ment /'-th after n-1 correction, um— measured voltage, zp — calculated voltage. As 
it can be seen from the above formula for each of subregions the resistivity is gran
ted, which value is proportional to the ratio of two voltages. The first voltage is 
measured while the second one is obtained from simulations study. The new value of 
resistivity of element is the mean value of resisitivities obtained for all independent 
excitations. The obtained images can be filtered in order to reach a better quality, but 
resolution in the centre is poor. The different modifications of this method called 
backprojection can be found in literature [5,6],

2° — Perturbation method
In this method a perturbation matrix i.e. dependence of the change in measured 

current or voltage as a function of the change in resistivity distribution is used [7], In 
each iteration the new value of resistivity is calculated and then the perturbation 
matrix is modified. The resistivity is calculated from the formula:

where p", p"'1 resistivity of element /-th after n, (n-1) correction respectively, 
k — overrelaxation coefficient, T t — perturbation matrix for /'-th element and y'-th

2. Reconstruction algorithms

j
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current measurement in the /-th projection angle, C " — percent difference between 
the predicted and actual current density magnitudes at the current-sensing electrode 
j  tor /-th projection angle at the n-th correction. In Kim [7] method (someti
mes called ART — algebraic reconstruction technique) the perturbation matrix is 
calculated only once. Yorkey [8] has showed that perturbation matrix is a function of 
resistivity distribution, so it should be calculated after each iteration. The formula 
used is of the form:

This technique is similar to S1RT (Simultaneous Iterative Reconstruction Tech
nique). These modifications cause that algorithm is more stable for conductivity 
changes near the surface, but they increase the reconstruction time.

3° —  Sensitivity method
This is an iterative method based on Geselowitz theorem [9,10]. The impedan

ce changes caused by the conductivity changes can be calculated from the formula:

where: (f> — the potential distribution associated with the /  current flowing between 
„current” electrodes, (p— the potential distribution associated with hypothetical / 
current flowing between „voltage” electrodes after the conductivity change Aa oc
currence, — the scalar product. The function

is called sensitivity. If it is assumed that the value of conductivity is constant in each 
element (obtained after the discretization) then the impedance changes for each me
asurement port are equal to:

From the above formula the conductivity change can be calculated and then new va
lue of conductivity is obtained. The main problem in using this method is, in some ap
plication, time needed to inverse sensitivity matrix. This matrix is ill-conditioning and 
large numerical errors during inversion can appear. Another method to solve this 
equation is to use itereative tehnique (it is no necessary to calculate inverse matrix), 
but it is also time consuming.

/. j

j
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This method [4] is based on minimisation of the following functional: 

Vi p) = (v(p)  -  u) r (v(/j) -  u),

where: p — resistivity, v — calculated potential vector for prescribed resistivity p , 
u -  measured potential. The resistivity changes can be obtained from the formula:

=
dv

<9ft'* r?ft
(v { f t ]) - u |

The advantage of this method is very fast convergence (the error diminishes 
with power two) to the minimum of the functional i.e. real value of resistivity. The 
main drawback of this method is small region of convergence i.e. if assumed, in first 
iteration, resistivity distribution is far from the real one, the algorithm can lead to 
„false positive” images or convergence can not be reached.

5°— Wexler double-constraint algorithm 111,12]
Let us consider differential equation

V -(eft7 = 0 in Q ,

where Q is the examined object, with boundary conditions

= 0 on r e ,

fh
1 and J tfdS = on T - T e.

/

The second equation

V -(eft7 c/h )=  0 in Q

and boundary conditions

ch
0 on r e ,

<h = 4 . on r - r c-

where:
0 — measured potential, I — injected current, f ,  — pair of injection electrodes.
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For true conductivity value </>,=</>,. If these potentials are not equal, the functional1!' 
of mean square deviation between current distributions in Q corresponding to these 
potentials can be defined as follows:

n < r)=  Z Zjl W F h - v F t i f s n , ,
injections i Q

where o. is a conductivity of /-th element Q . After minimalisation the new value of 
conductivity o '  is obtained

Z
injections

a'~I  J>*MI
injections

This method is unstable and an increase in the number of iterations does not 
improve satisfactorily the quality of images.

6° —  Optimal control algorithm f  13]
It is based on linearization of the following equation

S7 -(<5/ fy = 0.

Let cr= £7*0) + Act, (/>= j 0> + A where ^ 0) is potential distribution for as
sumed conductivity distribution cr(0). With these assumptions (1) is as follows

V( <7*0)V j 0)) + V( <^0)V A(p) + V( AcN j 0)) + V( A(N Aft = 0. (f 
And from this

V( e /0)V A<P) ~ -V ( AcN j Q)). (2;
Now it is possible to calculate Act by minimising the functional

n  A ct) = yZ Z ( ^ *  ( 4 ° )  ~ A jk ) + y  J| Ao\ dV,

where: A(/>k — difference between measured and calculated potential for &-th me

asurement and /-th stimulation, Av^.— difference between potential with conducti

vity distribution Act and previous for £-th measurement and /-th stimulation 
p — regularization parameter.
After simple calculations and with use of FEM the functional

^ (A  o') = —^  A v ( A y / +  —  A crTQ A c r - ^ j  A j  A v /
2  / - 1 2  / - 1 _ (3
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is obtained, where Q is diagonal matrix of volumes of elements. Now (2) can be 
written as

The main drawback of this algorithm is high acceleration of measurement errors. 
Another problem is reconstruction time, but it can be reduced as was shown in [14].

Other groups of methods are based on neural networks or genetic algorithms 
[15,16] but these types of algorithms are not considered in this work, as the possi
bility to use these methods to solve the 3D problem is not proved, yet.

3. Algebraic reconstruction technique with regulated correction

The quality of images obtained by presented reconstruction techniques are si
milar. These algorithms differ in memory consumption and computation complexity, 
which affected the time needed to obtain the reconstructed image. M. Kocikowski 
[2] proposed as a base for further modification the perturbation method because it 
was faster than others. He proposed a generalised algorithm with regulated correc
tion frequency:

!</</. —
Calculating Av1 from (4) equation (3) became

V A A v1 = B'Ao . (4)

where:

r  = ' Z b , t( a - ' ) t a - ' b ‘ + / jq ,
A

l=\

Finally after minimisation

Aa= R c.

frequency (RCFART) [2]

L/H K

j =1 A = 1

4 ,-f+|) = 4 " +U)

For prescribed iteration i in succeeding corrections h (h=I...H) the cr (con
ductivity of elements) are modified for subset of L/H uniform spread excitations /.
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Corrections are proportional to the current value of conductivity — a',/") , normali
sed covariance of relative changes A-th currents measured to calculated for /-th 

excitation — c\h) and sensitivity for element e - ^ kJ)c. The correction frequency H

should be equal to L/N, where N is a natural number. To speed up the reconstruction 
process modification of overrelaxation coefficient was introduced. The proposed 
modification of overrelaxation constant k makes it dependent on the distance from 
the surface:

k(d) = \ + (kmux- \ ) ~ ,

where: d  is the distance of the centre of an element from the surface, R — the ra
dius of hemisphere. Such modification of overrelaxation coefficient was possible 
because of special dedication of this algorithm to mammograph with hemispherical 
measurement chamber. Such definition of k can increase the sensitivity for the con
trast and resolution inside the examined object without generating big errors near the 
surface. It allow s greater modifications of conductivity in the central region, when 
sensitivity is low and smaller one near the surface, where sensitivity is big.

Some effort was put on minimalization of memory requirements for reconstruc
tion process. The sensitivity matrix is calculated each time it is needed, so consump
tion of memory is substantially reduced.

4. Models of electrodes and complexity of calculations
In a reconstruction process appropriate division of a model of examined object 

into elements is important. The number of different reconstructed values of conduc
tivity (different separated regions) must be equal or lower than the number of linear
ly independent measurements. From that, if there is no apriori knowledge of conduc
tivity distribution in the examined region, the uniform mesh should be used. On the 
other hand most elements should be placed near the exciting electrodes. This is due 
to the biggest potential distribution.changes in this region. Also low' resolution in the 
centre of the examined object causes that there is no necessity to put many ele
ments in that region.

An important problem is also the model of electrode [17] used for forward 
(also used in reconstruction algorithms) and inverse problem, i.e. the assumed boun
dary conditions. The potential distribution is described by the following equation:

V - ( c ^  = 0

where: (f> — potential, a  — conductivity. It is assumed outside the electrodes that 
the normal flux of current vanishes, which has mathematical form as follows:



The boundary condition on the remaining part of the surface depends on the 
assumed model of the electrode. One possibility of such condition is:
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where S - area of electrode. For metal electrodes one can assume that the wholee

electrode has the same value of potential:

4  = <4

A .
(Pi

In models which take into account also the impedance of electrode layer the follo
wing equation should be used

,  <%> ,
(f ^ Ze Cre —  = <Pe, m

where: a  — conductivity of electrode layer, ze — impedance of electrode layer. It is 
also possible to put some additional elements for electrode and modify their conduc
tivity to suit the electrode for better simulation result.

In the first two cases there are no additional non zero elements in the matrix 
equation used to solve the forward problem (obtained using FEM), i.e. to find poten
tial distibution in the examined object. The difference will be in number of nodal vol
tages which have to be calculated. In the case of metal electrode with assumed po
tential on its surface the calculation cost will be lower (less nodal voltages to calcu
late). In the case of taking into account the impedance of electrode layer the modifi
cation of matrix is necessary (additional cost for calculation elements of matrix). 
The last case with additional elements for electrode increases matrix dimension. 
From the above it is obvious that different boundary conditions cause different com
plexity of calculation (which is connected with different time consumption) and gives 
different potential distribution near an electrode.

To show the influence of computer (speed of processor and/or available me
mory) used for reconstruction some comparison of different computers was done. 
Table* below shows the time needed for reconstruction of a hemisphere model with 
cylinder inside. The mesh consists of 3824 elements and 857 nodes. Results for 10 
iterations are shown.

Procesor R10000 Power 
Challenge R4400 Ultra-Sparc

167MHz

time [min] 1.48 7.82 4.9!

*The calculations were done on Cl TASK computers.
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5. Results
To check the proposed algorithm many simulations have been performed [2], 

Models with different sizes of perturbed area, different locations and different valu
es of perturbations were created. The influence of measurement noise, electrodes' 
impedances, number of measurement electrodes, assumed starting conductivity di
stribution, number of iteration needed to obtain good quality of reconstructed image 
were tested. Also the influence of value and modification (dependence on the di
stance from surface) of overrelaxation coefficient were tested. The number of cor
rection used in algorithm was checked. Figures 1 to 4 show examples of models 
with two perturbations, assumed conductivity distribution and results of reconstruc
tion procedure for 16 electrodes. Figure 5 shows an example of phantom 
reconstruction of an object with a volume 50 times smaller than the measurement 
chamber volume.

Figure 2. Results o f  reconstruction o f model from figure 1.
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Figure 3. Model ami awumcil  i  onduetn ttv distribution

Figure 4 hU 'lilts oj reconstruction o f  model from figm\ <

Figure 5. Results o f reconstruction oj disk o f 2% o f volume o f measurement chamber.
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As it was expected the proposed algorithm (RCFART) has advantages of 
SIRT and ART algorithms avoiding some of their disadvantages. RCFART is mucl 
less sensitive than ART for perturbations near the surface (sensitivity is similar t 
SIRT) and has greater resolution than SIRT for perturbations in the centre of th< 
examined object (similar to ART). The increase in the number of iterations increase 
the quality of obtained image (similar to SIRT). The algorithm is as fast as ART ant 
as stable as SIRT.

:

6. Conclusions
The number of measurement electrodes should be increased to obtain better 

resolution and sensitivity in the centre of the examined object. Measurement errors 
should be small, to avoid amplifying them by reconstruction algorithm, which may 
result in a wrongly reconstructed conductivity distribution. Assumed conductivity di
stribution for the first iteration should be as close to the real one as possible (diffe
rence smaller than 50% is desirable). Reconstruction time of absolute value of con
ductivity distribution is still a problem for applications. One possibility to increase the 
speed is to use more elements in solving forward problem and less in inverse one (i. 
e. finding conductivity distribution in the examined object). Still new fast algorithms 
should be developed, as poor sensitivity and low resolution in the centre of the exa
mined object is not fully solved. The table below shows approximate cost of one ite
ration for each method.

Algorithm Approximate number of calculaitons

blackprojection 2.8P,/2E+0.285Pi/2E5/3

SIRT 40EP+0.285 1/2Es/3+0.0 15E7/3

sensitivity method 13 E3

Gauss-Newton method 2E2P+8E5/2

Wexler double-consistans method 6EP+0.57Pi/2E5/3

optimal control algorithm 4E2+8EP

Where: E — number of elements, P — number of independent measurements 
(P=(N-l)*N/2; N — number of electrodes).

Only multiplications and divisions were considered. It should be noted that dif
ferent implementations have different calculation costs. There are also possible opti- 
malizations. Not everything needs to be calculated in each iteration in each method. 
The methods differ also in the number of iterations needed to obtain satisfactory 
results of reconstruction.
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