
IMPLEMENTATION OF THE PARALLEL ARNOLDI
METHOD IN THE IBM SP2 DISTRIBUTED

MEMORY SYSTEM

MICHAL REWIENSKI

The Technical University of Gdansk
Department o f Electronics, Telecommunications and Computer Science

Abstract: The following article discusses the Implicitly Restarted Arnoldi Method used for solving
large sparse eigenvalue problems. It presents the parallel implementation of this algorithm for a
distributed memory architecture developed by Maschhoff and Sorensen (f 1]) and included in the
PARPACK library. The article gives results of performance tests of the PARPACK subroutines in
the IBM Scalable POWTR2 (SP2) parallel system installation at the Academic Computer Centre TASK
in Gdansk and describes some technical problems concerning use of message-passing libraries
(particularly the Message Passing Interface (MPI)). as well as communication subsystems available in
IBM SP2 with the discussed software paekage.

1. Introduction
The Arnoldi method belongs to a class of iterative algorithms capable of

computing a few eigenvalues and eigenvectors of non-Hermitian matrices. It provides
an efficient tool for solving problems from different application areas that are
reducible to finite-dimensional operator equations. This method is most suited for
finding eigenvalues of large structured matrices where the matrix-vector product
operation requires O(n) rather than 0 (n) floating point operations.

The ARPACK software package developed at Rice University (cf. [2] and [3])
provides an implementation of a version of Arnoldi algorithm called the Implicitly
Restarted Arnoldi Method (IRAM) which for symmetric problems reduces to the
Implicitly Restarted Lanczos Method (IRLM). One ofthe most important features of
this package of Fortran77 subroutines is that it allows the user to compute a few
eigenvalues from a specified part ofthe operator spectrum. Another advantage of this
implementation is a pre-determined memory complexity which equals n()(k)+0(k~),
where k is the number of required eigenvalues and // is the order ofthe input matrix
operator. The Arnoldi method, as most of the iterative processes, does not require
any explicit form ofthe input operator matrix to be given. Instead all the information
on the considered operator is passed via the matrix-vector product. This characteristic
ofthe algorithm has been efficiently used in the ARPACK software by introducing

n o M. Rewienski

the reverse communication interface. On one hand this interface enables the subrou
tines that perform the Arnoldi algorithm iteration to be independent of the input
matrix storage format and on the other hand it makes the user of ARPACK free to
choose the most appropriate method for computing the matrix-vector product. This
versatile interface certainly broadens the area for applications of Arnoldi algorithm
and may often contribute to a considerable improvement of performance of solvers
in many specific scientific and engineering problems.

Although the original implementation of the Arnoldi method consisted of
sequential codes, it proved to be useful and efficient also in multiprocessor parallel
systems. In the report by D^bicki et al. [4] parallelization strategies as well as results
of performance tests of ARPACK software have been given for the SGI Power
Challenge shared memory system. Recently the subroutines of the Arnoldi package
have been parallelized for use in multiprocessor distributed memory systems which
were found to provide the most suitable working environment for concurrent execu
tion of this software. A new library called PARPACK (Parallel Arnoldi Package)
has been developed enabling the use of a Single Program Multiple Data (SPMD) style
which is regarded the most effective and transparent in the message-passing program
ming. Once again the reverse communication interface to the PARPACK subrouti
nes enables the user to choose a convenient parallelization strategy for the
matrix-vector product operation. Currently the communication libraries which may
be used with P ARPACK are the Basic Linear Algebra Communication Subprograms
(BLACS) and Message Passing Interface (MPI). This is a great advantage of this
software as both libraries are portable across a wide range of computer systems.
Moreover, MPI emerges as a standard tool in the message-passing programming (cf.
[5])-

One of the modern hardware environments very well suited for testing of
algorithms that exploit the message-passing programming paradigm is the IBM
Scalable POWER2 (SP2) parallel system. This computer architecture is a very typical
implementation of a distributed memory machine and provides a set of software tools,
including e.g. MPI library, needed to handle the execution of message-passing based
parallel programs. Therefore it may be applied for the performance tests of various
parallel numerical algorithms or entire libraries that make use of the data distribution
and message-passing as the primary means of parallelization.

Such tests have been made in the case of the parallel Arnoldi package using a
16-processor IBM SP2 machine installation at the Academic Computer Centre TASK
in Gdansk in order to measure the performance of the P ARPACK library, as well
as to discuss some issues concerning running parallel message-passing programs in
the mentioned system.

2. The Arnoldi method
The Arnoldi method belongs to a class of iterative algorithms performing an

orthogonal projection of a non-Hermitian input matrix operator in order to find its

eigenvalues and eigenvectors. This algorithm appears to be an efficient tool for
finding a few eigenvalues in a standard or generalized eigenproblem from a chosen
part of the operator spectrum.

2.1 Presentation of the sequential algorithm

Given a matrix operator A, the Arnoldi factorization reduces this operator to a
form of an upper Hessenberg matrix. This operation is performed in an iterative
numerically stable process described by the following formula:

A V k = V k H k + f k e l (1)
where:
A is the input n x n matrix,
Hk is a k x k upper Hessenberg matrix (k < n),
Vk is an n x k matrix whose columns are Arnoldi vectors,

Jk is a residual vector of size //, satisfying the relation Vk f k =0.
The idea of Arnoldi factorization is illustrated in Figure 1.

Implementation o f the Parallel Arnoldi Method 111

+

Figure 1. The schematic of Arnoldi factorization

The following similarity relation holds for the matrices Hk and A:

H k = V l A V k (2)
It has also to be noted here that, due to the characteristics of the method, the set

of Arnoldi vectors v, ({v,}, / k = Vk) forms an orthonormal basis in the Krylov
subspace Kk, where:

K k = Span (v, A v, A 2v, . . . , A *”'v | (3)

and v e R" (v e C"). The orthonormal basis {v,}/=i...k is formed in k iterations of the
basic Arnoldi algorithm. In general, the steps of the Arnoldi algorithm (or more
precisely the Arnoldi modified Gram-Schmidt algorithm) are given as follows:

1. Choose an initial vector v/ such that ||v/||2 = 1
2. Iterate: F o r /-1,2,..., k Ao\
(a) iv := Av,
(b) For /=!, 2, ..., k do:

M. Rewienski112

• h j = (w, v/),
• vr := w - hijVj

(c) hj , j= ||w ||2
(d) v/ / = w/ h , I,,
It lias to be noted that during the factorization process the information on the

input matrix (A) is passed to the algorithm only via the matrix-vector product Av,.
This feature of Arnoldi method is used in the discussed PARPACK. library by
introducing a very convenient reverse communication interface which enables the
user to choose an adequate way to perform t \\qA v, operation. During the iteration the
(j+1)-th vector is formed from the previous one (v;) by: Av, multiplication (step 2(a)
of the algorithm), orthogonal ization (2(b)) and normalization (2(c), (d)). As the vector
fk becomes small enough the eigenvalues of Hk start to approximate the eigenvalues
of A and the quality of the approximation may be found by calculating the residual
norm: || Av, - X,v, ||:. Once the norm falls below a desired level of accuracy, the
algorithm terminates. One of the disadvantages of this basic Arnoldi algorithm which
emerges at this point of the discussion is that the number of iterations (k) is not
pre-determined for a fixed accuracy of the eigenvalues approximation. Consequently
both time and 1116111017 complexity of the problem is not well defined and may
increase significantly as the number of iterations becomes large. Another charac
teristic of the algorithm is that it initially converges to the eigenvalues with the largest
magnitude.

Therefore modifications of the basic Arnoldi algorithm have been proposed by
Saad ([6]) and Sorensen ([2] and [3]). These modifications are based on the idea of
restarting the iterative Arnoldi process after e.g. k steps with an updated initial vector
v/. As the number k remains fixed also memory requirements and numerical comple
xity become pre-determined. Another modification enables the user of the library to
find the eigenvalues from a specified part of the spectrum by filtering out the
'unwanted' eigenvalues before each restart, using e.g. polynomial filters, so that the
iterative process converges only to 'wanted' eigenvalues. A detailed presentation of
the problem of modifying the operator's spectrum by applying polynomial filters may
be found in the article by Sorensen ([3]).

2.2 Parallelization of the algorithm in a distributed memory
environment

A straightforward parallelization method of the Arnoldi algorithm has been
proposed by Maschhoff and Sorensen ([1]) and implemented in the P_ARPACK
library designed for distributed memory parallel systems. It is based on the data
distribution programming paradigm applied to the operation of Arnoldi factorization.
Due to the reverse communication interface the problem of parallelizing the calcu
lation of the matrix-vector product Av, (cf. previous paragraphs), which often
becomes a non-trivial task, is left to the user. Consequently the implementors of

Implementation o f the Parallel Arnoldi Method 113

Figure 2. Block data distribution among the processors during the Arnoldi factorization in the
PARPACK library

PARPACK need to handle only the parallel execution of Arnoldi iteration with Av,
vector as an input provided by multiple processors.

If once again the formula for the factorization is examined:
A V k = V k H k + fk e l (4)

with the same meaning of the symbols as in the previous paragraphs, then the
parallelization scheme illustrated in Figure 2 is as follows:

• the k x k upper Hessenberg matrix Hk is replicated on every processor,
• the matrix I f is block-distributed across a one-dimensional processor grid

(as shown in Figure 2),
• fk and workspace are distributed accordingly,
• the representation of the input matrix A in a distributed memory system is to

be chosen by the user according to his or her needs. Typically the block-di
stribution of Fis commensurate with the parallel decomposition of the matrix
A.

The user of P ARPACK is provided with a Single Program Multiple Data
(SPMD) template which enables a simple and consistent handling of parallel opera
tions inside the programs. Because of this the SPMD style becomes dominant or even
standard in parallel programming. From the point of view of P ARPACK interface
the SPMD style is also very convenient as calling of library routines in a parallel
program looks virtually the same as in a serial code. The differences between calling
P ARPACK and ARPACK routines include e.g. passing a local size of the problem
ni„c instead of a global size n or a block of F* matrix local for every processor instead
of the entire matrix as it is in the serial case. The P ARPACK routines need also to
be supplied by the user with information on message-passing environment such as
the MPI communicator (e.g. MPI_COMM_WORLD communicator) or the BLAS
context.

A crucial aspect of parallelization in a distributed memory environment is the
amount of communication occurring between the processors during the run-time of
the algorithm. Luckily in the parallel version of the Arnoldi algorithm there are only
two communication points within the Arnoldi factorization operation. One of them
is the computation of the norm of the distributed vector fk and the other is the
orthogonal ization offk to Ft using modified Gram-Schmidt process. If once again the

M Rewienski114

serial Arnoldi factorization algorithm is considered (cf. previous paragraph) then it
is clearly seen that the step 2(c) (normalization) requires the computation of a 'global'
norm that must be known to all the processors. Step 2(b) requires the computation of
a global sum I (w, v,)v, as the different parts of the do loop (associated with different
ranges of values of indices /') are performed on different processors. This global sum
has to be known by all the processors during the factorization in order to be able to
find the next approximation of the matrix V and the next form of the replicated upper
Hessenberg matrix 74 In case of the MPI implementation of the library the commu
nication operations are performed by using global reduction functions such as
MPI_ALLREDUCE. This is entire communication which is done by the library
routines, but some additional communication will always occur while calculating the
user-dependent matrix-vector product Av, (step 2(a)).

A certain kind of trade-off may be observed in the parallelization strategy
applied to Arnoldi factorization. As the form of the upper Hessenberg matrix is
calculated by each processor the communication between them is not needed.
Obviously all the processors calculate the same thing introducing some redundancy
to the algorithm which may lead to a serial bottleneck as the size of 77* increases. This
may eventually lead to the lack of scalability of the method.

2.3 Calling parallel ARPACK routines

The user of PARPACK software is obliged to follow certain rules while
constructing a parallel program. These include writing the code in the SPMD style
and also inserting a reverse communication loop as a basic means of communication
with the discussed numerical library. Figure 3 shows a fragment of a Fortran77 code
of a parallel program using P ARPACK library routine pdnaupd () in order to
solve an eigenproblem of a given non-symmetric real matrix^. The code assumes
that the inter-process communication is handled by the Message Passing Interface
(MPI) library.

In the Figure 3 it is seen that the MPI COMM WORLD communicator is used
as a communication space among processors. The number of processors which
execute the program is determined in the next line. Following is an initialization of
various parameters needed by the pdnaupd () routine, including e.g. both global
and local problem size, the number of eigenvalues to be found or the type of the
eigenproblem (standard/generalized). Also an initial vector is specified during the
initialization. The lol parameter in Figure 3 determines the stopping criterion for the
Arnoldi factorization (cf. equation (1)). The algorithm stops if the condition:

11 A u , — u i X i 112 < tol ■ | X , | (3)

is satisfied for all X Other parameters define various options of the algorithm
including the maximum number of Arnoldi updates allowed or types of shifts used.
A detailed description of all the parameters of P ARPACK routines may be found
in [7],

Implementation o f the Parallel Arnoldi Method 115

c --------- Parameter selection for pdnaupdO --------------
comm * MPI_COMM_WORLD ! Set the communicator
call MPI_Conun_size (comm, ! Determine the number of

nprocs, ierr) ! processors used
n » N ! size of the problem
nev = NEV ! number of eigenvalues to be computed
ncv ■ NCV ! number of orthogonal columns of V
nloc = n/nprocs ! Determine local size of the problem
bmat = ’I’ ! standard eigenvalue problem
which ■ ’LM’ ! find eigenvalues with largest magn.
tol = l.e-8 ! set the desired accuracy
ido * 0 ! first call to reverse communication
info « 1 ! resid contains the initial vector
do 100 i * 1, nloc ! initialize resid as a vector

resid(i) - l.dO ! with l’s as all the elements
100 continue

iparam(l) » 1 ! exact shifts with respect to H
iparam(3) = 1000 ! maximum number of updates
iparam(7) = 1 ! Mode set to 1

c ------------------ Reverse communication loop ----------
200 continue

call pdnaupdCcomm, ido, bmat, nloc, which, nev,
ft tol, resid, ncv, v, ldv, iparam,
ft ipntr, workd, workl, lvorkl, info)

c
if (ido .eq. -1 .or. ido .eq. 1) then

c Compute matrix-vector product: A»v
call Av(nloc, workd(ipntr(1)), workd(ipntr(2))

c
go to 200 ! Loop back to call pdnaupdO again

endif
c --

Figure 3. Calling pdnaupd () P_ARPACK subroutine in a reverse communication loop

Figure 3 also shows a sample reverse communication loop in which the
pdnaupd () routine is called and if the stopping criterion has not been satisfied then
a user-supplied matrix-vector multiplication subroutine is called. A similar construc
tion of the main loop was used in all the programs used by the author to test the
performance of P ARPACK subroutines.

3. Parallel programming in the IBM SP2 system
As already mentioned all the calculations and tests of the parallel Arnoldi

package which are described later in this article have been performed in the 16-pro-
cessor IBM SP2 system (IBM 9076 Scalable POWER2 parallel system) at the
Academic Computer Centre TASK in Gdansk. Quite often knowing the specifics of
the parallel system environment is crucial to obtaining a certain grade of performance.
Therefore some important details concerning methods of compilation and running of
the programs are presented below.

M. Rewienski116

3.1 Tools supporting message-passing programming in the SP2
environment

The IBM SP2 system contains several tools for compiling and executing parallel
programs based on the message-passing paradigm, including Parallel Environment
(PE) with Parallel Operating Environment (POE) as well as LoadLeveler batch job
scheduler designed for the POWER2 architecture.

The IBM's Parallel Environment (PE) is designed for the development and
execution of parallel programs written in Fortran orC (C++) languages. The Parallel
Environment (PE) consists of several parts, such as message-passing libraries e.g.
Message Passing Interface (MPI) [5] (IBM's proprietary implementation of the
popular portable library) or Message Passing Library (MPL) as well as the software
package called Parallel Operating Environment (POE) which appears to be indispen
sable while compiling, running, and monitoring parallel programs. POE provides
compiler scripts (such as mpxlf - message passing Fortran compiler) that automat
ically link in the message passing libraries when a parallel program is compiled, and
environment variables that allow to control the run-time environment. At run time
POE is responsible for allocating nodes to the job, reproducing the local environment
on each remote node, loading the communication libraries and eventually executing
the program. Detailed guide to using the POE environment may be found in the
Cornell Theory Center web site ([9]).

3.2 Running parallel jobs in the IBM SP2 system

Basically there are two methods of running parallel programs in the IBM SP2
system. The first is running the parallel jobs interactively, providing the user with
opportunity to monitor the progress of the program at run time. The second method
is running batch jobs. In fact it is the only reasonable technique for executing large,
computationally intensive jobs in an efficient way. A tool which supports running
batch jobs in the IBM SP2 system is LoadLeveler - a job scheduler that distributes
jobs to nodes, providing load-balancing of all the nodes of the system. The scheduler
decides when and how a batch job is run based on preferences set up by the user and
system administrator. In the next section some essential details on running parallel
jobs with use of LoadLeveler are described.

4. Numerical results
After presenting the software tools for parallel programming in the IBM SP2 at

the Academic Computer Centre TASK in Gdansk some results of tests of P AR -
PACK subroutines are given in this part of the article. These include benchmarks of
P_ARPACK routines discussing their scalability and issues associated with serial
bottlenecks and communication overheads.

4.1 Compiler options and LoadLeveler scripts
Implementation o f the Parallel Arnoldi Method 117

All the codes used during the performance tests written in Fortran77 and MPl
library were compiled with the standard xlf IBM's XL Fortran compiler available in
AIX based systems. In order to simplify compiling and linking of message-passing
programs the mpxlf compiler script, provided within the Parallel Operating Environ
ment (POE) has been used. This script automatically links in the necessary message
passing libraries and sets environment variables which allow the user to control the
run-time environment.

During the tests the programs were compiled with different levels of compiler
optimizations (-02 = -0 - the standard optimization and -03 - high level of
optimization). Another option that was used - -qhot indicated that the compiler
should determine whether or not to perform high order transformations on loops
during the optimization with -03 flag. Another option: -qarch=pwr2 ensured
generating a code tuned for POWER2 architecture. The programs were linked
dynamically to ARPACK, PARPACK and ESSL (version for POWER2 system)
libraries. The ESSL. library (-lesslp2 linker flag) provided a set of BLAS
subroutines used by ARPACK that are tuned for the SP2 architecture. The Message
Passing Interface library linked to the codes was also the IBM's proprietary imple
mentation provided within POE. According to the available documentation the
presented set of libraries chosen for linking to the testing programs was about to
ensure the optimum performance in the IBM SP2 distributed memory system. Still,
not all the parameters affecting the run-time performance of the programs may be
specified by the compiler and linker flags. Some of them are defined in the scripts
necessary to run the jobs in parallel in the IBM SP2 environment.

Although parallel programs in the SP2 system may run either as interactive or
batch jobs, the latter method was used as it offers a more stable and predictable
environment for doing performance tests. While running jobs interactively it was
found out that the different measurements of execution times of identical programs
and input data varied by hundreds percent. Therefore it has been decided that all the
programs were to lie executed as batch jobs using the IBM's LoadLeveler job
scheduling system. Later on it resulted that some additional effort has to be made in
order to ensure more reliable timings.

The LoadLeveler command file specifies all the parameters necessary to run a
batch job. Figure 4 presents such a script used during the tests. The most important
parameter in this script is the -euilib xx option specifying the communication
subsystem (CSS) used for message-passing during the execution of the program. As
already mentioned in the previous sections, the SP2 system offers two CSS libraries,
namely the IP (Internet Protocol)and US (User Space). The -euilib us specifies
the US and -euilib ip chooses the IP. Additionally while choosing the IP based
inter-processor communication, the physical medium of communication has also to
be specified by putting the -euidevice cssO for High Performance Switch
(HPS) or enO for Ethernet adapter. Obviously High Performance Switch offers by

118 M. Rewienski

far a better message-passing performance than the Ethernet link between the proces
sors. Moreover while using Ethernet it becomes unrealistic to obtain any reliable
results, as the system uses this network for many different purposes, including e.g.
the communication with outer environment which considerably degrades the perfor
mance. Consequently only the High Performance Switch has been used as the
communication medium. The command file also specifies the number of processors
and adequate processor pool to be used by the job and determines where the output
should be redirected.

##
#
® environment = "LL_JOB»TRUE"
® executable « /usr/bin/poe
fl arguments “/users/mrewiens/Tests/testscript -euilib us
® min_processors » 8
® max.processors - 8
® initialdir ■ /usrpl/mrewiens/Tests
6 output - test.$(Cluster).us.out
Q error « test.$(Cluster).us.err
fi job.type » parallel
® requirements *> (Adapter == "hps.user" && Pool == 2)
C class = POE
fl queue
#
##

Figure 4: The LoadLeveler command file test.us.cmd.

cd /trap
cp /users/holkl/mreviens/Test8/test_SP2 .
/tmp/test_SP2

########################«################

Figure 5. The script passed as an argument for the poe command

In the test. us . cmd file a name of the script (testscript) is specified.
This script file (cf. Figure 5) enables the poe to run the actual executable on every
specified node of the system. One very important thing about this script should be
noted. Before executing the program (/tmp/test_SP2) the executable is copied
by each of the processors to their local disks from the author's home directory. This
operation prevents from use of NFS-mounted disks, which offer a rather unpre
dictable response during the run-time and therefore becomes essential while measu
ring execution times of the programs. It has been observed that if the executables

Implementation o f the Parallel A rnolcli Method 119

were not copied to local disks the measured time varied by lip to a 100 percent which
made the results clearly unacceptable. Such behaviour of the SP2 system has also
been reported by Allan et. al. ([8]). This implies that the executables should always
be copied to local disks of the processors in order to obtain a fairly stable execution
time.

4.2 Run-time performance of P_ARPACK subroutines

The aim of the first series of tests of PARPACK subroutines performed in the
IBM SP2 system was to find out what is the influence of the compiler optimization
options and versions of subroutines of BLAS library used by ARPACK on the
performance of the examined library.

The PARPACK subroutine tested was pdnaupd () which performs the Arnol-
di iteration for the non-symmetric real problems. The operator with unknown
eigenvalues was the square diagonal matrix with random elements between 0 and 1
located on the diagonal. Four of the elements of the spectrum were incremented by
1.1. This allowed them to be found easily by the pdnaupd () routine. The matrix
had the size of 160.000 and was block-distributed among the processors. The
pdnaupd () routine was called with the following parameters: NEV=4 (number of
requested eigenvalues =4), NCV = 20 (number of columns of the vector V =20) and
WIIICH-LM' (eigenvalues with the largest magnitude were to be found). The
characteristics of the problem presented above have been chosen so that it is
independent of the changing of the problem size and the number of Arnoldi update
iterations remains constant in every case. It may be said that the possible problem-
specific factors that could influence the performance of P_ARPACK library subrou
tines have been eliminated.

The described series of tests consisted of compiling the P ARPACK library
with different options and running the test program described above, compiled with
the same flags as the library. The following different sets compiler directives have
been used to construct both P_ARPACK library and the executable:

• mpxlf -02 -qarch=pwr2 xxx. f -o xxx (Table 1)
• mpxlf -03 -qarch=pwr2 xxx. f -o xxx (Table 2)
• mpxlf -03 -qarch=pwr2 xxx.f -o xxx -lesslp2 (Table 3)
• mpxlf -03 -qhot -qarch=pwr2 xxx.f -o xxx -lesslp2

(Table 4)
Tables 1, 2, 3 and 4 show the results of performance tests for different

compilation flags used while building both the library and the tested executable. In
the tables all the times are average user times (not system or wall-clock times) and
are given in seconds. The time measured in all the cases is the time spent in the Arnoldi
iteration of the pdnuapd () routine. They should be regarded as total times needed
by the IRAM algorithm to converge to the wanted solutions. During the tests different
communication subsystems (CSS) have been used: the column 'Time (ip)' shows the

120 M. Rewienski

timings while the Internet Protocol has been used for communication, while 'Time
(us)' gives times measured while the User Space protocol has been applied. In all the
cases during this series of tests the number of Arnoldi updates (when the Arnoldi
algorithm restarts with an updated initial vector v,) equaled 4 and did not change with
the changing number of processors used. In Figure 6 the results of the tests are given
in the form of a graph showing the execution times of the test application for different
compilation methods as a function of the number of processors used during the
execution.

Number of nodes Time (ip) Speedup (ip) Time (us) Speedup (us)
1 51.05 1.00 51.17 1.00
2 25.59 1.99 26.78 1.91
4 17.64 2.89 20.10 2.55
8 7.71 6.62 9.83 5.20

Tahl e 1. Performance of p d n au p d () for ip and us libraries, N = 160000. NEV = 4. NCV = 20. number
of Arnoldi iterations = 4. Compiler directive: mpx If -02 -qarch=pwr2, BLAS = standard.
All times arc given in seconds

Number of nodes Time (ip) Speedup (ip) Time (us) Speedup (us)
1 72.96 1.00 77.25 1.00
2 38.52 1.89 39.96 1.93
4 25.33 2.88 25.43 3.04
8 12.73 5.73 12.91 5.98

Table 2. Performance of pdnaupd () for ip and us libraries. N = 160000. NEV = 4. NCV = 20. number
of Arnoldi iterations = 4. Compiler directive: mpxlf -03 -qarch=pwr2, BLAS = stand
ard. All times are given in seconds

Number of nodes Time (ip) Speedup (ip) Time (us) Speedup (us)
1 72.27 1.00 77.03 1.00
2 38.26 1.89 39.72 1.94
4 21.82 3.31 29.23 2.63
8 13.35 5.41 13.09 5.88

fable 3. Performance of pdnaupd () for ip and us libraries. N = 160000. NEV = 4. NCV = 20. number
of Arnoldi iterations = 4. Compiler directive: mpxlf -03 -qarch=pwr2, BLAS = ESSL. All
times are given in seconds

Number of nodes Time (ip) Speedup (ip) Time (us) Speedup (us)
1 76.77 1.00 77.66 1.00
2 38.18 2.01 39.26 1.95
4 19.62 3.91 21.60 3.55
8 10.78 7.12 10.05 7.63

Table 4. Performance of pdnaupd () for ip and us libraries. N = 160000, NEV = 4. NCV = 20. number
of Arnoldi iterations = 4. Compiler directive: mpxlf -03 -qhot -qarch=pwr2, BLAS =
ESSL. All times are given in seconds

The results of the tests appear to be rather surprising, as for the considered size
of the problem N = 160000, the total time spent in the Arnoldi iteration is shorter if
the library is compiled with a lower level of optimization, i.e. the -02 flag and not

Implementation o f the Parallel Arnoldi Method 121

-03 flag. While using only the -03 flag the performance degrades by about 30%.
This kind of situation has also been observed by Allan et. al. ([8]) and is due to some
code-specific characteristics. Still if the US communication subsystem is used then
the speed-up in the execution time is higher if the -03 flag is used. It also has to be
noted that this is not the case while applying the IP CSS.

The comparison between using the IP and US communication subsystem does
not give univocal conclusions either. As it can be found from the tables the measured
times are usually larger in the case of the US protocol used. This is surprising as the
User Space protocol has been designed especially for the SP2 system providing a
more efficient inter-processor communication. Still, the use of the US protocol may
result in a better performance while running large programs with an intensive
inter-processor communication. (As already noted the parallel Arnoldi method does
not require much communication to be performed during the factorization.) One
positive aspect of the use of US CSS which can be inferred from the output data is
that while the -03 flag is used the speed-up is better than for the IP CSS. This result
may confirm that the US CSS provides a more efficient communication between the
nodes of the SP2 system.

Table 4 shows results of performance tests if an additional compiler flag -qhot
is used during the compilation of the P ARPACK library. This flag forces the
compiler to determine whether or not to perform high level optimization (-0 3) on
specific loops in the program's code. Consequently different parts of the code as
optimized with different optimization levels. Although the measured times are similar
to those obtained only with -0 3 flag, the speed-up obtained in this compilation
method appears to be the highest, e.g. for 8 processors the speed-up exceeds 7 (cf.
Table 4), while in the earlier cases it does not reach 6 (cf. Tables 1, 2, 3).

8 0

7 0
CO
T3
C 6 0
8CD
</) 5 0
<D
E 4 0
C
o 3 0
"5
8X 2 0
LU

10

0 1 2 3 4 5 6 7 8
Number of Processors

Figure 6. Execution time (in seconds) of p d n au p d () routine for the problem sizeN = 160000. number
of Arnoldi iterations = 4. NEV = 4. NCV = 20. The results in the graph show timings for library routine
compiled with different levels of optimization (-0 2 , -0 3) and linked to different versions ot BEAS
library (BEAS version 2 (standard) and IBM's implementation of BLAS included in ESSL library)

12 2 M. Rewienski

Another issue that has been examined in the above tests was the use of BLAS
library functions by the P_ARPACK library. Parallel ARPACK software uses a
number of Basic Linear Algebra Subroutines including an matrix-vector product
subroutine Xgemv or a matrix by upper triangular matrix multiplication Xtrmm. In
the first test (Table 2) a BLAS version 2 routines provided together with ARPACK
have been used, while in the second test (Table 3) the implementations of BLAS

.subroutines from the IBM's ESSL library were linked to ARPACK routines. The tests
show that the performance of the pdnaupd () does not depend much on the version
of BLAS library used, as minor differences in the execution times are observed. The
authors of ARPACK still suggest ([7]) that the BLAS libraries already installed in
the system should be used whenever possible instead of those provided with the
ARPACK software. Consequently in all the following tests only the IBM's proprie
tary ESSL library containing BLAS subroutines has been used.

The next series of tests performed measured the scalability of the pdanupd ()
PARPACK library subroutine. The same program (test, f) as in the previous
section was used during the measurements. As mentioned the input matrix A in the
test. f has been chosen so that its characteristic is independent of the size of the
problem. More precisely during the scalability tests with the pdnaupd () subrouti
ne. the number of Arnoldi update iterations remained the same fora fixed number of
eigenvalues to be computed (NEV = 4 = const.) and the changing size of the problem.
The size of the problem was chosen to be N = 200000 for 1 processor and increased
linearly with the number of processors. Both IP and US communication subsystems
have been used during the measurements and the compiler directive used during the
compilation of both the P ARPACK software and the testing program was: mpxlf
-03 -qhot -qarch=pwr2 xxx . f -o xxx. The results of the tests are given
in the Table 5.

>,oc
2oit:LU

0.7

0.6

0.5

0.4

NEV = 1, CSS = IP NEV = 1, CSS = US —t NEV s* 8, CSS * IP -e~ h NEV = 8, CSS = US -x - NEV = 16, CSS = IP NEV = 16, CSS = US -*-■ NEV = 32, CSS - IP o-- NEV = 32, CSS = US

■ ■, >

1 3 4 5 6
Number of processors

Figure 7. Efficiency of pdnaupd () PARPACK subroutine. The size of the test problem equals N =
200000 * Number o f nodes. NEV = 1 .8 . 16. 32. NCV = 40. The number of Arnoldi update iterations
remained constant for a fixed number of eigenvalues (NEV) to be computed.

Implementation o f the Parallel Arnoldi Method 123

Number of nodes Time (ip) Efficiency Time (us) Efficiency
1 97.29 1.00 95.81 1.00
2 97.47 1.00 93.64 1.02
3 125.80 0.77 96.53 0.99
4 143.92 0.67 99.99 0.96
5 134.1 1 0.72 95.92 1.00
6 110.43 0.88 96.95 0.99
7 138.25 0.70 97.92 0.98
8 136.95 0.71 100.98 0.95

Table 5. Scalability of pdnaupd () routine. The size of the problem equals ,Y = 200000 * Number of
/;o<7<’.s'.NEV = 4.NCV = 20.CSS = iporus.com pilerdirective:m pxlf -03 -qhot -qarch=pwr2
test.f.

The results of scalability tests show that the efficiency of the pdnaupd ()
P_ARPACK subroutine remains relatively high for the considered size of communi
cators (number of system nodes), it is well seen that application of the US commu
nication subsystem gives a considerable improvement in scalability and efficiency
of the executed program. For the number of processors from 1 to 8 and the problem
size N = 200000, 1600000 the efficiency stays above the level of 95 %, while in
case of the IP CSS it falls below 70 %. The reason for such behaviour is that for large
problem sizes, the amount of communication increases, so that the transmission rate
of messages between the processors (which is much higher for the US CSS - cf. [8])
starts to play an important role during the run-time. It has to be noted that the above
results stay in a close accordance with the scalability results given in ([1]) for tests
performed in the Maui HPCC SP2 machine. Obviously scalability is not perfect. This
effect is due a serial bottleneck caused by the algorithm redundancy while replicating
the upper Ilessenberg matrix by all the processors during the Arnoldi factorization.

The tests have also been performed using the previously described code in order
to find out the dependence of the total execution time of the pdnaupd () P_AR-
PACK. subroutine on the number of eigenvalues (NEV) to be computed. In the I RAM
algorithm the increment of NEV=£ causes an increment in the memory storage
requirements determined by the upper Hessenberg matrix size (k x k) and the size of
the vector {kxn). In the parallel implementation of ARPACK these increments may
greatly affect performance and scalability of the library routines. As already mentio
ned the upper Hessenberg matrix is replicated on every processor and therefore may
cause a serial bottleneck as its size increases. An increasing value of k may also result
in the increased communication costs, e.g. during the re-orthogonalization phase
where more global sums have to be computed and communicated using the global
reduction operations.

Table 6 shows the timings obtained for the pdnaupd () subroutine. The size
of the problem was equal N = 200000 * Number o f nodes. The number of eigenvalues
to be computed NEV = 1,8, 16, 32 (NCV = 40). The number of Arnoldi update
iterations remained constant for a fixed number of eigenvalues (NEV) to be compu
ted. Once again two communication subsystems were considered.

124 M. Rewiehski

It may be noticed that in case of using the IP communication subsystem the
efficiency decreases faster for larger values of NEV, e.g. for 8 processors the
efficiency equals: 0.87 (NEV = 1), 0.63 (NEV = 8), 0.58 (NEV = 16). (The graph of
performance efficiency vs. the number of processors for different values of NEV is
shown in Figure 7.) This effect has not been observed while the US protocol is used.
A conclusion may be drawn that the degradation in the performance in the first case
is mainly due to communication overhead and not a serial bottleneck caused by
replicating the IIt matrix. If this had been the cause, the efficiency would have
degraded for both communication subsystems.

Another issue which has been investigated during the tests described above were
the times spent in the orthogonalization phase during the Arnoldi factorization for
different numbers of eigenvalues to be computed and different numbers of processors
used during the run-time (the parameters remained the same as those given in Table
6). During the orthogonal ization phase global sums have to be computed and the
number of these global reduction operations depends on the number of eigenvalues
NEV to be computed.

It has been observed that the time spent on orthogonalization increases with the
increasing number of processors used. This is due to the communication costs which
appear during the computation of global sums. It has also been noticed that the
increment of NEV caused a relative increment in the orthogonalization time. For
instance: for the IP CSS the time spent on orthogonalization using 8 processors was
21% larger than the time of an analogous serial operation for NEV =1 and almost
300% larger for NEV = 8. The same effect occured for the US CSS, though the time
increments were not so large.

NEV Number of nodes Time (ip) Efficiency Time (us) Efficiency
1 1 40.96 1.00 40.92 1.00

2 41.05 1.00 40.98 1.00
4 41.90 0.98 42.68 0.95
8 47.00 0.87 43.27 0.94

8 1 83.11 1.00 82.90 1.00
2 105.87 0.78 85.93 0.96
4 100.78 0.82 86.68 0.96
8 131.61 0.63 87.26 0.95

16 1 140.69 1.00 143.14 1.00
2 141.33 0.99 146.62 0.98
4 185.00 0.76 * *
8 240.11 0.58 147.02 0.97

32 1 390.62 1.00 389.61 1.00
2 496.79 0.79 395.85 0.98
4 503.99 0.77 399.45 0.97
8 586.86 0.66 401.66 0.97

Table 6. Performance of pdnaupd () for ip and us libraries, N = 200000 * Number o f processors.
NEV = 1, 8, 16, 32. NCV = 40, compiler directive: mpxlf -03 -qhot -qarch=pwr2 test.f.
All times arc given in seconds

Implementation o f the Parallel Arnoldi Method 125

It is clearly seen in all the results that the US communication subsystem provided
a faster and more efficient background for message-passing (for larger numbers of
nodes and larger values of NEV).

It has to be explained here why in the measurements of the total time spent in
the Arnoldi algorithm (for the US CSS) the efficiency did not decrease significantly
(cf. Table 6). This can be done in the following way: Although the time spent on
orthogonalization increases with the incerasing number of processors, the percentage
of time actually spent in the orthogonalization phase decreases with an increasing
value of NEV. Due to a relatively slow increment in the orthogonalization time for
US CSS, the overall efficiency of p d n au p d () performance remains on the same
level.

5 Conclusion
In this article issues concerning the implementation and performance of a

parallel Implicitly Restarted Arnoldi Method (IRAM) in a distributed memory IBM
SP2 system have been discussed. Various tests have been performed in order to find
out the run-time characteristics of the PARPACK library subroutines. The following
summary of conclusions can be given:

• P_ARPACK provides an efficient parallel implementation of the IRAM
algorithm for a distributed memory system such as IBM SP2, offering a high
scalability and speed-up during a parallel execution.

• The parallelization strategy in the P ARPACK software appears to be well
chosen as no serious serial bottlenecks have been observed during the
performance tests. Also the communication overheads do not block the
scalability of the method for a wide range of input parameters.

• The reverse communication technique as well as the Single Program Multiple
Data (SPMD) template provide a user with a convenient and consistent
interface to the P ARPACK library simplifying message-passing program
ming.

Also some care should be taken while specifying the environment used in
building and running message-passing programs. The following general guidelines
can be given:

• A special care should be taken while choosing compiler flags, including
different levels of optimizations.

• During the run-time the User Space (US) communication subsystem should
be used as it provides a more stable performance of the applications, a better
scalability and the fastest message-passing background.

• The Message Passing Interface (MPI) library to be used should be the IBM's
proprietary library available within the Parallel Operating Environment
(POE). Still, the usefulness of IBM's numerical libraries (ESSL) implemen
ting BLAS subroutines together with P_ARPACK remains an open question.

126 M. Rewiehski

Reference
[1] K. J. Maschhoff, D. C. Sorensen, P_ARPACK: An Efficient Portable Large Scale

Eigenvalue Package fo r Distributed Memory Parallel Architectures}, Rice University,
available at: ftp.caam.rice.edu.

[2] D. C. Sorensen, Implicitly Restarted Arnoldi/Lanczos Methods fo r Large Scale Eigen
value Calculations, Proceedings of an ICASE/LaRC Workshop, May 23-25 1994,
Hampton, VA, D. E. Keyes, A. Sameh and V. Venkatakrishnan, eds., Kluvver, 1995

[3] D. C. Sorensen, Implicit application o f polynomial filters in a k-step Arnoldi method,
SIAM Journal on Matrix Analysis and Applications, 13(1):357-385, January 1992

[4] M. P. Dtjbicki, P. Jgdrzejewski, J. Mielewski, P. Przybyszewski, M. Mrozowski,
Application o f the Arnoldi Method to the Solution o f Electromagnetic Eigenporblems
on the Multiprocessor Power Challenge Architecture, Technical Report no. 19/95,
Faculty of Electronics, Technical University of Gdansk

[5] Message Passing Interface Forum, MPE A Message-Passing Interface Standard! Inter
national Journal of Supercomputer Applications and High Performance Computing,
8(3/4), 1994

[6] Y. Saad, Numerical Methods fo r large eigenvalue problems, Manchester University
Press Series in Algorithms and Architectures for Advanced Scientific Computing, 1992

[7] R. B. Lehoucq, D. C. Sorensen, C. Yang, ARPACK USERS GUIDE: Solution o f Large
Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, document avai
lable by anonymous ftp from: ftp.caam.rice.edu.

[8] R. J. Allan, M. F. Guest, Parallel Application Software on High Performance Compu
ters, 1 The IBM SP2 and Cray T iD , Technical Report CCLRC HPCI Centre at
Daresbury Laboratory, Daresbury 1996

[9] Cornell Theory Center web site: http://www.tc.cornell.edu

ftp://ftp.caam.rice.edu
ftp://ftp.caam.rice.edu
http://www.tc.cornell.edu

